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Abstract—Relative unmanned aerial vehicle attitude is es-
timated using only on-board radio-frequency signaling. The
method uses a direction-of-arrival (DOA) vector estimate to de-
termine two degrees-of-freedom (DOFs), a polarimetric narrow-
band multiple-input multiple-output (MIMO) channel estimate
to specify the third DOF to within a 180◦ ambiguity, and one
of several potential methods for ambiguity resolution. Simula-
tion results demonstrate that the method accurately determines
aircraft attitude, with errors proportional to DOA and MIMO
channel estimate errors. This approach is useful for cooperative
navigation when external navigation aids are not available, such
as in GPS-denied environments.

Index Terms—Unmanned aerial vehicles, Pose estimation,
Direction-of-arrival estimation, MIMO systems, Relative attitude
estimation, Cooperative navigation

I. INTRODUCTION

ATTITUDE estimation in unmanned aerial vehicles
(UAVs) enables proper stability, control, and navigation

and ensures the success of imaging and tracking missions.
Aircraft attitude consists of three degrees-of-freedom (DOFs),
specified using yaw, pitch, and roll (YPR) angles, orienta-
tion matrices, or quaternions [1]. A variety of approaches
exist for estimating attitude, with the appropriate selection
depending on size, weight, cost, and accuracy constraints. This
paper focuses on the problem of relative attitude estimation,
whose solution can serve as a required input for cooperative
navigation and control as well as collective localization in
robot swarms [2]–[6]. Relative attitude of ground-based robots
only requires bearing information, which can be obtained with
sonar, laser sensing, cameras, etc. However, obtaining the full
three-DOF relative attitude of UAVs is more challenging.

An obvious solution for obtaining attitude information is for
the UAVs to individually estimate their attitude with respect
to a common frame of reference (such as the earth) and then
share that information wirelessly. Traditionally, manned and
unmanned aircraft use inertial tracking along with compass
information to determine attitude [7]–[9]. However, disad-
vantages of these techniques for UAVs include poor accu-
racy of small low-cost inertial sensors, accelerometer error
from high accelerations, gyroscope accumulation error, and
magnetometer error due to local disturbances of the earth’s
magnetic field. Alternatively, it is possible to estimate attitude
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by optically tracking visual references, such as the horizon,
sun, stars, or landmarks [10]–[14]. While optical methods
have demonstrated acceptable accuracy, they are limited to
conditions with sufficient visibility.

Global positioning satellite (GPS) technology overcomes
most difficulties associated with other technologies, allowing
estimation of both location and attitude using multiple receive
antennas [15]–[18]. However, GPS signals are susceptible to
obstruction of the required satellites or intentional jamming,
and typical GPS-only methods provide only two of the three
attitude DOFs. Full three-DOF attitude estimation is possible
by employing widely separated GPS receive antennas [15],
but such a configuration is not appropriate for many smaller
UAVs. For these reasons, fusion methods have been developed
that combine GPS with existing non-GPS sensors to overcome
limitations and improve performance [19], [20].

Given the drawbacks of existing approaches, particularly
for GPS-denied scenarios [21], an attractive alternative is
to use radio-frequency (RF) techniques for attitude determi-
nation, possibly leveraging existing communications radios
and eliminating additional sensors. RF methods have a long
history of use for navigation in aviation, with systems such
as very high frequency (VHF) omnidirectional range and non-
directional beacon (NDB) stations still in active use. Although
these systems are designed for localization, the work in [22],
[23] demonstrates the use of low-frequency (LF) radio waves
(available from NDBs and amplitude modulation (AM) radio
stations) for three-DOF attitude estimation by exploiting the
polarization of LF signals. The work in [24] shows the use
of monopulse methods to estimate the three-DOF attitude of
a satellite using RF signals from at least two ground stations.
In [25], multiple antennas on both the UAV and a ground
station enable three-DOF attitude estimation by estimating the
relative path lengths between all antenna pairs. Finally, satellite
attitude estimation using multiple low earth orbit satellites is
treated in [26]. However, the need for dedicated ground or
space-based equipment, the susceptibility to signal obstruction
and outage, and in some cases the need for ultrawideband
(UWB) signals and station/aircraft proximity makes these
methods impractical for many applications.

Some methods have appeared that provide relative attitude
estimates without the need for dedicated ground or space
equipment. The technique described in [27] estimates the
relative attitude of two spacecraft using at least two transmit
antennas on one vehicle and three receive antennas on the other
based on a method similar to that in [25], but accuracy requires
UWB signaling and vehicle proximity. The methods in [28]



TABLE I
MATHEMATICAL NOTATION

Notation Description Equivalent in [36]
r Vector [r]
r̂ Unit vector [ar]
M Matrix or tensor [M ]
M† Matrix transpose of M [M ]
rA Vector in frame A [r]A

MA
B Coordinate transformation A→ B [M ]BA

and [29] use narrowband direction finding for relative attitude
estimation but offer only two DOFs, requiring use of GPS
signals or a magnetometer to obtain the third. Other related
work employs radio ranging combined with optical direction
finding and attitude estimation for space missions [30] or uses
multiple passive RF identification (RFID) tags to estimate an
object’s attitude [31]. In [32], a method is presented that fuses
data from inertial measurement units (IMUs), magnetometers,
downward looking cameras, and RF ranging to provide high
quality estimation of relative UAV pose. Similarly, the work
in [33] provides a method for position, velocity, and attitude
estimation for a group of miniature air vehicles by combining
IMU, range, and bearing information of nearest neighbors.
Unfortunately, these existing methods do not provide a unified
RF method that can estimate relative three-DOF attitude using
moderate bandwidth for small UAVs at arbitrary range without
requiring additional sensors.

The purpose of this work is to show that by increasing the
complexity of RF resources on a UAV (multiple antennas and
multichannel radios), full relative attitude of two UAVs can
be estimated without the need of any non-RF sensors. The
method uses direction finding to obtain two attitude DOFs and
narrowband, multi-polarization multiple-input multiple-output
(MIMO) channel estimates to resolve the third. The method
has the advantages over existing polarization-based RF attitude
estimation [22], [23] that no ground-based infrastructure is
required, that antennas operating at UHF and above are likely
already to be available on UAVs, and that the antennas may
be smaller than those required for LF systems. While initial
simulation results based on this algorithm appear in prior
work [34], [35], these reports omit mathematical derivation,
algorithm description, and the detailed simulation results pro-
vided in this work. These simulation results demonstrate that
the algorithm provides accurate attitude estimates, with errors
being closely tied to the accuracy of the direction finding and
MIMO channel estimates.

Table I defines the key mathematical notation adopted in
this paper. The framework for orthogonal coordinate systems
and transformations is equivalent to that found in [36], but we
use alternate notation more typical of signal processing and
electromagnetics literature. For those more familiar with the
conventions in [36], Table I shows how to translate notation.

II. PROBLEM GEOMETRY

In this paper we adopt the scenario for relative attitude
estimation found in [21] and depicted in Fig. 1. The tracking
UAV (UAVT) currently performs some operation (such as
imaging of a ground target), and this UAV must be replaced

Fig. 1. Problem scenario showing how local right-hand coordinate systems
are defined for tracking (T) and handoff (H) UAVs. The vector k̂ gives the
direction-of-arrival (DOA) at the handoff UAV for a signal transmitted from
the tracking UAV.

by a handoff UAV (UAVH) that takes over the operation. Suc-
cessful handoff requires that the handoff UAV learn its three-
DOF attitude relative to that of the tracking UAV. We could
pose the problem as UAVH directly estimating the required
rotation (YPR) angles to align itself with UAVT. However,
rotation angles depend on the order of rotation and therefore do
not specify attitude unambiguously. Furthermore, coordinate
transformations based on YPR angles can be complicated,
leading to a difficult estimation problem.

To avoid these difficulties, we instead take an orientation
matrix approach by defining the attitude of each UAV in terms
of three unit vectors that form a local right-hand orthogonal
coordinate system (or frame), as depicted in Fig. 1. As there
are several frames involved, we use the general notation

(x̂AB, ŷ
A
B , ẑ

A
B ) (1)

as orthogonal unit vectors defining a Cartesian frame, where
the subscript ‘B’ indicates the frame used as the basis for
the vector elements and the superscript ‘A’ specifies the
new frame defined by these vectors. No subscript means that
the vector elements are in terms of the global basis vectors
(x̂, ŷ, ẑ) which could, for example, refer to directions of
increasing longitude, latitude, and altitude. Frame A ∈ {T,H}
indicates the tracking and handoff UAV body frame, respec-
tively, where x̂A, ŷA, and ẑA are directions of the nose, left
wing, and up from the fuselage, respectively, expressed in
the global frame. Note that the frame and basis labels can
also be identical, such as (k̂AA, v̂

A
A , û

A
A), which indicates an

alternate frame for A defined using the underlying Cartesian
basis (x̂A, ŷA, ẑA). When Cartesian unit vectors have the same
subscript and superscript, they are simply elementary vectors,
such as ẑAA = [0 0 1]†. When needed, roll, pitch, and yaw are
defined as positive rotation angles according to the right-hand
rule about the x̂A, ŷA, and ẑA axes, respectively.

To simplify shifting from one frame to another we define
MA

B to be the transformation matrix from A to B that satisfies

rB = MA
BrA, (2)

where rA and rB are the same vector defined in terms of the
bases of frames A and B respectively. We have

MA
B =

[
x̂AB ŷAB ẑAB

]
=
[
x̂BA ŷBA ẑBA

]†
. (3)



Note that MB
A = (MA

B)
−1 = (MA

B)
† since we use orthonor-

mal basis vectors.

III. PROBLEM SOLUTION

Before tackling the solution, let us first state assumed
knowledge (inputs) and capabilities of the UAV systems:

1) An estimate of the MIMO channel (Hmeas) between the
tracking and handoff UAV arrays is available. Sending
training symbols in one direction requires time tmeas =
NT /fs, where NT is the number of transmit antennas
and fs is the symbol rate. It should be ensured that
1/tmeas is large compared to the rate change of relative
attitude.

2) At least one UAV has estimates of k̂TT and k̂HH , which
represent the direction-of-arrival (DOA) vector in each
UAV local frame. This local DOA information does not
require GPS, since UAVs can use arrays for direction
finding [37], [38].

3) UAVs have knowledge of the complex (amplitude and
phase) polarimetric far-field radiation patterns of their
antenna arrays over the complete radiation sphere. Al-
though this detailed knowledge would be sufficient to
estimate and/or correct antenna phase center differences,
such operations are not required in our solution.

4) A data channel exists between the UAVs to allow
required information (the MIMO channel estimate, local
DOA, antenna patterns) to be sent to the processing
UAV node. This channel would also be used to send
the resulting attitude estimate to the other UAV.

5) All inputs to the algorithm (MIMO channel and local
DOA estimates at the two UAVs) are synchronized in
time. If the MIMO channel is used for DOA estima-
tion (Section IV-F), the two DOA estimates and the
MIMO channel are inherently synchronized. If a unified
DOA/MIMO channel estimation procedure is not used,
any relative delay in DOA and MIMO estimates will
increase attitude estimation errors.

Assumption 3 may be difficult to meet in practice, requiring
patterns to be carefully measured in an anechoic chamber or
in the air. Unfortunately, these patterns may be corrupted by
moving control surfaces, changing payload on the outside of
the UAV, and multipath effects. Although beyond the scope
of this first treatment, we expect that careful transformation
or processing of MIMO channel information will lead to
algorithms that require less detailed knowledge and are more
robust to pattern uncertainty.

For analytical convenience, we assume that no estimation
error exists in the local DOA estimates or in the polarimetric
MIMO channel estimates used in the following derivation.
However, both DOA and channel estimation error are included
in the simulations in Section IV.

Fig. 2. The KVU reference frames of the tracking and handoff UAVs are
related by a simple rotation of angle α about the common DOA vector. Thus,
a vector in the handoff frame must be rotated by −α to represent it in the
tracking frame.

A. Relating Frames With DOA Information

We begin by defining a local KVU frame in each UAV local
frame by the unit vector triad (k̂AA, v̂

A
A , û

A
A) where

ûAA =

{
(ẑAA × k̂AA)/‖ẑAA × k̂AA‖ for k̂AA 6= ẑAA

x̂AA otherwise
(4)

v̂AA = ûAA × k̂AA, (5)

and A ∈ {T,H}. The KVU unit vectors are analogous to
spherical unit vectors. The KVU frames for UAVT and UAVH

are denoted as t and h, respectively. The vectors k̂T and k̂H

denote the DOA vector k̂ as seen by the tracking and handoff
UAVs in the global frame (Fig. 1). Since k̂T should equal k̂H,
we have the situation depicted in Fig. 2, where the two KVU
frames are related by the simple rotation

Mt
h(α) =

 1 0 0
0 cosα − sinα
0 sinα cosα

 , (6)

where α is an unknown that cannot be deduced from DOA
information alone. Conceptually, the v̂-û axes in each frame
are related by a single rotation angle α. Once α is known, the
two UAV reference frames are related by

MT
H(α) = Mh

HM
t
h(α)M

T
t . (7)

The matrices Mh
H and MT

t can be readily computed using (4)
and (5) for A ∈ {T,H} and forming

MT
t =

[
k̂TT v̂TT ûTT

]†
, (8)

Mh
H =

[
k̂HH v̂HH ûHH

]
, (9)

which only requires local knowledge of k̂.

B. Finding α Using the Polarimetric MIMO Channel

We now formulate a method for determining α by com-
paring measurements of the narrowband polarimetric MIMO
channel between the two UAVs to a model of the channel.
UAVT and UAVH have arrays with NT and NH antennas,
respectively. It is most natural to define the field radiation
pattern of each antenna element using the local frame aligned
with that antenna. We therefore define Cartesian frames for
the nth tracking and mth handoff antennas as (x̂TnT , ŷTnT , ẑTnT )
and (x̂HmH , ŷHmH , ẑHmH ), referred to as the Tn and Hm frames,
respectively. Patterns are naturally defined in spherical KVU



frames given by (k̂TnTn, v̂
Tn
Tn , û

Tn
Tn) and (k̂HmHm, v̂

Hm
Hm , û

Hm
Hm), re-

ferred to as the tn and hm frames, respectively.
It is assumed that each antenna is simulated or measured in

its local frame, such that the electric field patterns eTntn (k̂TnTn)
and eHmhm (k̂HmHm) are known. Note that for far-field patterns, the
vector field expressed in the spherical basis is [0 eθ eφ]†, since
field polarized in the radiation direction is zero.

Modeling the channel between the two UAVs requires the
pattern in the direction of k̂ defined in each antenna frame,
which is given by

k̂TnTn = MT
Tnk̂

T
T (10)

k̂HmHm = −MH
Hmk̂

H
H, (11)

where the minus sign ensures that k̂HmHm points radially away
from UAVH for the definition of the handoff UAV antenna
patterns. Note that the direction k̂ in a KVU reference frame
can be converted to spherical angles using

φ = tan−1 (ky/kx) , (12)

θ = tan−1
(√

k2x + k2y/kz

)
, (13)

where (kx, ky, kz) are the Cartesian components of k̂, and φ
and θ are the usual spherical azimuth and elevation angles.

With UAVT as the transmitter, the vector (polarized) field
generated by the nth antenna in the reference frame for UAVH

is given by

eTnH = MT
H(α)M

Tn
T Mtn

Tne
Tn
tn . (14)

With UAVH as the receiver, the polarized reception pattern of
the mth antenna is

eHmH = MHm
H Mhm

HmeHmhm . (15)

With patterns in a common frame, we can compute the mnth
entry of the channel transfer matrix H as

Hmn(α) = (eTnH · eHmH ) exp(jψmn) (16)

where ψmn is the RF phase shift from the nth tracking antenna
to the mth handoff antenna, computed as

ψmn = k0(r
Tn
T · k̂TT − rHmH · k̂HH), (17)

k0 = 2πf/c is the wavenumber (for RF frequency f and speed
of light c), and rTnT and rHmH are the position (assumed phase
center) of the nth tracking and mth handoff antennas in their
local UAV Cartesian frames, respectively.

We find α by searching for the value that gives the best fit
between the measured MIMO channel Hmeas and the modeled
value given in (16). We first stack the channels columnwise
into column vectors, with the operation being denoted as

hmeas = Vec{Hmeas}, (18)
h(α) = Vec{H(α)}. (19)

Since it is difficult to measure or estimate absolute amplitudes
and phases of the channel matrix entries, we normalize the
channel vectors according to

hmeas = hmeas/hmeas,`, (20)
h(α) = h(α)/h`(α), (21)

where ` = argmax` |hmeas,`|. Note that noise amplification
due to this normalization should be small since the channel
element with the maximum amplitude is always used. Finally,
α is given by the solution of

αopt = argmin
α
‖hmeas − h(α)‖2. (22)

Since we are only seeking a single real number over the
interval [−π, π) in (22), a simple one-dimensional parameter
sweep can be used. The relation between the T and H frames
can be found using (7), or

MT
H(αopt) = [x̂HT ŷHT ẑHT ]

† = [x̂TH ŷTH ẑTH]. (23)

Because absolute phase is unavailable, the phase normalization
in (20) and (21) creates a 180◦ ambiguity in α, meaning
MT

H(αopt + π) is also a candidate solution.

C. Resolving the 180◦ Ambiguity

Several methods for resolving the 180◦ ambiguity in α are
described below.

1) Multiple Aspects: Appendix A proves that applying the
method for two different values of k̂ but for the same relative
attitudes gives the same attitude estimates for the correct
value of α but different attitude estimates for the solution
α+ π. Removing the incorrect solution requires maneuvering
to change the relative positions but not the relative attitudes of
the UAVs. Linear motion is an example of such a maneuver.
This technique is appropriate for UAVs that are close enough
for the global k̂ vector to change significantly (perhaps a few
degrees) over a short time, which is not the case for widely
separated UAVs.

2) Tracking: Given known initial relative attitudes, the
method is applied often enough to allow comparison of
subsequent attitude estimates. Using the correct value of α
leads to correct attitude estimates that gradually change over
time. Using the 180◦ ambiguity leads to a large jump in
the attitude (typically 180◦). In this way, as the relative
pose is successively tracked, the α giving an attitude that
is closest (such as in a least squared sense) to the previous
step is retained as the correct solution. With the exception of
obtaining the initial relative attitude estimate, it is expected
that this technique could be used in virtually any scenario.

3) Attitude Constraints: For most UAVs, the range of
attitudes that are consistent with controlled flight is limited.
Often, the YPR associated with the solution α + π produces
nonsensical attitudes, such as an overly steep roll or pitch angle
or even a UAV flying upside down, allowing identification
and rejection of the incorrect value of α. This kind of sanity
checking should be used in conjunction with other methods,
since not all ambiguities can be resolved this way.

4) Path-length Information: Methods such as those pre-
sented in [25], [27] use relative path distances between pairs of
transmit and receive antennas to obtain unambiguous attitude
estimates. Unfortunately, those methods require very high
bandwidth to obtain high accuracy, especially at long range.
However, if path-length methods are only used for resolv-
ing the 180◦ ambiguity, much less accuracy (and therefore
bandwidth) is required. The basic strategy in our case would



be to estimate the path distances between a set of transmit
(tracking) and receive (handoff) antennas. Given the two
candidate estimates of α, two different attitudes are obtained.
For each attitude, the relative path lengths can be computed
and compared with the measured values, allowing the correct α
to be identified. Although the ability of these methods to obtain
an unambiguous estimate in a single snapshot is attractive, it is
unclear how much RF bandwidth is needed. The development
of such methods is left for future investigation.

5) Sensor Fusion: It is likely that most UAVs will not have
to rely totally on RF resources for control and navigation,
possibly incorporating an inertial measurement unit (IMU),
magnetic compass, cameras, etc. Although outside the scope
of this work, we expect that information from these sensors
on the two UAVs could be combined to eliminate the 180◦

ambiguity, even when such sensors do not provide enough
information for estimation of the three DOF relative attitude.

D. Algorithm

An algorithm applying the outlined method can be summa-
rized as follows:

1) Estimate the UAVT DOA vector with a direction-finding
technique [38] locally at UAVT and UAVH to obtain k̂TT
and k̂HH .

2) Use (4) and (5) to obtain ûTT, v̂TT , ûHH, and v̂HH which
give the local KVU frames for the two UAVs.

3) Form the transformation matrices MT
t and Mh

H using
(8) and (9).

4) Normalize the measured MIMO channel using (20).
5) Generate samples of α on the interval [0, π], and for

each candidate value of α perform the following steps:
a) Compute Mt

h(α) using (6).
b) Compute MT

H(α) using (7).
c) Compute the entries of the modeled MIMO chan-

nel by performing the following steps for all pairs
of m and n:
i) Construct MT

Tn = (MTn
T )† and MH

Hm =
(MHm

H )† based on known orientations of the
antennas relative to each local UAV frame.

ii) Find k̂TnTn and k̂HmHm in the local antenna KVU
frames of UAVT and UAVH, respectively, us-
ing (10) and (11).

iii) Look up the polarimetric patterns of the nth
UAVT and mth UAVH antennas by converting
the local k̂ directions from the last step into
spherical angles using (12) and (13). To allow
a unique one-to-one mapping over the full
[−π, π) radian interval, tan−1(a/b) should be
computed using a 2-argument tangent function
(hereafter designated as atan2(a, b)).

iv) Use (4) and (5) to form transformation matrices
from each antenna’s local spherical frame to its
Cartesian frame:

Mtn
Tn = [k̂TnTn û

Tn
Tn v̂

Tn
Tn ], (24)

Mhm
Hm = [k̂HmHm ûHmHm v̂HmHm ]. (25)

1
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Fig. 3. UAV model simulated with FDTD. Numbered cylinders are six
monopole antennas used for DOA and relative attitude estimation.

v) Use (14) and (15) to transform the local polari-
metric antenna patterns into a common frame
of reference (the UAVH local frame).

vi) Compute the channel matrix element with (16)
and (17).

d) Stack and normalize the estimated channel matrix
obtained from the previous loop according to (21).
Use the same normalization index as that used in
the measured channel previously.

e) Compare the modeled and measured MIMO chan-
nels according to (22).

6) Given the solution to (22) from the previous loop, re-
ferred to as αopt, compute MT

H using αopt and αopt+π,
which are two candidate solutions giving the relative
orientation vectors of the UAVs, as described in (23).

7) Use a method to resolve the 180◦ ambiguity (see Sec-
tion III-C) and select the correct estimate of MT

H.

IV. ILLUSTRATIVE NUMERICAL EXAMPLES

A. UAV Model and Antenna Configuration

A detailed UAV model was created using Autodesk Fu-
sion360 as depicted in Fig. 3. The UAV has a wingspan of
1.5 m and nose-to-tail length of 0.8 m. Arguably, a high RF
center frequency in the microwave or millimeter wave regime
is ideal to reduce antenna size and weight. However, such high
frequencies hamper the full-wave electromagnetic simulation
of the complete UAV performed in this paper. Although we use
a somewhat low center frequency of 200 MHz in this example,
resulting in large antennas, practical implementations may use
higher frequencies to minimize antenna size.

Although optimal antenna array design is beyond our
present scope, we expect that accurate DOA estimation over
the whole radiation sphere will require an antenna array with
amplitude and/or phase variation with respect to DOA and no
“dead spots” (directions where no antenna radiates effectively).
Next, three-DOF relative attitude estimation requires detecting
a rotation around the DOA vector, meaning that the MIMO
channel must change due to these rotations. If usual uni-
polarized antennas are used, at least two antennas with distinct
polarization need to be visible for each possible DOA.

Following the above observations, six quarter-wave
monopole antennas were placed on the UAV as shown by the
numbered cylinders in Fig. 3. Although each antenna only
senses (or excites) a single polarization, three orthogonally
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Fig. 4. Normalized antenna gain patterns (in dB) from FDTD simulations in
the yz plane (left) and xy plane (right). Circled and boxed numbers indicate
antenna indices. The small centered airplanes indicate the proper orientation
of each plot relative to the UAV as well as the indexing of the antennas.
Although 2D gain pattern cuts are plotted here, the algorithm uses complex
polarimetric patterns over the full radiation sphere.

oriented antennas are visible for each DOA, allowing the
full E-field polarization vector to be estimated for any DOA.
Finite-difference time-domain (FDTD) simulations [39] were
performed, where it was assumed that the UAV geometry
is a perfect electrical conductor (PEC). Simulations were
performed using a custom FDTD code that has been employed
successfully in several previous modeling problems [40]. The
FDTD simulation domain size was 3.0 m× 3.6 m× 2.4 m in
the x, y, and z directions, respectively, and the FDTD unit cell
size was 5 cm. Each antenna pattern was obtained by running
a separate simulation with a gap voltage source placed across
one of the antennas from the monopole base to the aircraft
body and open-circuiting the other five antennas. Polarimetric
far-field patterns were computed by integrating near fields on a
box enclosing the complete UAV and using a standard near-to-
far field transformation. Far fields were stored for the complete
radiation sphere for each antenna with an angular resolution
of 5◦ in both elevation and azimuth. This coarse sampling was
chosen to show that attitude estimation is reliable even with
non-ideal pattern knowledge.

Figure 4 plots normalized antenna gain patterns for all
6 antennas in the yz and xy planes. Although the antenna
patterns do resemble monopoles with lower radiation along
the monopole axis, the UAV body distorts the patterns.

B. DOA and Channel Estimation

This section describes how noisy DOA and MIMO chan-
nel estimates are obtained, which are used as inputs to the
simulated attitude estimation algorithm.

1) Gaussian DOA Estimation Error: First, we focus on
attitude estimation uninfluenced by algorithmic choices for
the direction-finding method. The noisy estimate of the DOA
vector is obtained by randomly rotating k̂ using

k̂est = k̂
[
x̂K ŷK ẑK

]︸ ︷︷ ︸
MK

(26)

where the noise rotation matrix MK is constructed by gen-
erating zero-mean Gaussian random pitch, roll, and yaw
angles, each with variance σ2

K, and using the expressions in
Appendix B to convert these vectors to an orientation matrix.

2) Table Lookup DOA Estimation: Existing beamforming
and subspace methods [37], [38] may be used for DOA
estimation, but these methods often require a special array
structure or do not automatically handle multiple polarizations.
To allow the same 6-element antenna array to be used for both
MIMO channel and DOA estimation, a straightforward DOA
estimation procedure based on a table lookup was developed
and is described below. Drawbacks of this simple method in-
clude storage requirements for the database and a large number
of required channel-table comparisons. Although the simple
method meets our goal of illustrating correct performance of
the attitude estimation algorithm, we hope that future work
will adapt subspace-based methods to this problem, likely
improving algorithmic efficiency and robustness.

Given the simulated antenna patterns, we can compute
hexp(θ, φ, a, ν), which represents the expected antenna array
complex terminal voltages for local DOA direction (θ, φ) and
incident polarization having axial ratio |a| and tilt angle ν.
Polarization handedness is specified by the sign of a where
a < 0 (a > 0) indicates left (right) hand polarization.

A finite size table was computed by sampling

θ = 0, 5◦, 10◦, . . . , 180◦ (27)
φ = 0, 5◦, 10◦, . . . , 355◦ (28)
a = −1,−0.9, 0.8, . . . , 0.9, 1 (29)
ν = 0, 5◦, 10◦, . . . , 175◦, (30)

which consists of 37×73×21×36 = 2041956 entries. Storage
of the table requires 93 MB of memory for single precision
floating point numbers assuming a 6-element array.

Once the table is computed, the local DOA vector at each
UAV is estimated as follows. Assuming the tracking and
handoff UAVs to be the transmitter and receiver, respectively,
the handoff UAV finds the column of the channel H having
the highest energy according to hH

max = H(:, n0), where

n0 = argmax
n

∑
m

|Hmn|2. (31)

In practice, absolute amplitude and phase are difficult to
recover, and the signal vector and table are normalized as

hH
max = hH

max/h
H
max,`, (32)

hexp = hexp/hexp,`, (33)

where ` = argmax` |hHmax,`|. Finally, the table is searched for
the entry giving the least-square fit, or

(θH, φH, aH, νH) = arg min
(θ,φ,a,ν)

‖hH
max − hexp(θ, φ, a, ν)‖,

(34)
where θH and φH give the estimated elevation and azimuth
angles of the local DOA vector at the handoff UAV. In an
analogous way, the process is repeated on the row of H having
the highest energy to obtain the local DOA vector at the
tracking UAV, or θT and φT.

3) Channel Estimation Error: The exact MIMO channel
estimates are corrupted using additive zero-mean complex
Gaussian noise with variance

σ2
C = 10−SNRdB/10 max

ij
|Hij |2, (35)
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Fig. 5. RMS error of orientation vectors computed using 1000 random attitude
realizations as a function of DOA RMS error, where each curve is for a fixed
value of SNRdB. The three orientation vectors have identical statistics, which
were averaged.

and SNRdB is the specified signal-to-noise ratio (SNR) in dB.
Referencing the noise to the maximum channel gain removes
the impact of antennas obstructed by the UAV that reduce the
average gain and therefore essentially keeps the noise constant
independent of relative UAV attitudes.

C. Performance vs. Estimation Error

To quantify the performance of the method with respect
to error in the DOA and channel estimates, we implement the
method for 1000 random orientations of the UAVs for different
levels of estimation error. Simple Gaussian DOA estimation
error is used, as described in Section IV-B1. The sphere of all
possible attitudes is covered in these simulations by having
yaw and roll uniform on [0◦, 360◦] and pitch uniform on
[−90◦, 90◦]. Given that we use random attitudes rather than
practical flight maneuvers, we cannot apply the methods for
ambiguity resolution of α, and therefore we simply choose the
correct value of α based on the exact relative attitudes.

Using uniformly distributed random attitude angles can re-
sult in some extreme attitudes, and for some of these situations,
slight errors in actual UAV orientation can lead to relatively
large errors in YPR angles. Therefore, we directly quantify
the angular error of the estimated orientation vectors x̂TH, ŷTH,
and ẑTH using the expression

εr̂ = cos−1(r̂est · r̂exact), (36)

where r̂ ∈ {x̂TH, ŷTH, ẑTH}, and (·)est and (·)exact refer to
estimated and exact quantities, respectively.

Fig. 5 shows the RMS error in the orientation vectors
of the estimated UAV attitude as a function of the DOA
estimation error. For infinite SNR, attitude estimation error
is approximately double that of the DOA estimation error,
resulting from the combination of independent DOA error at
the tracking and handoff UAVs. For practical SNR, an error
floor in the attitude estimate is experienced at low DOA error.

D. Single Circling UAV

In this example UAVT hovers in a fixed position at the
origin while UAVH travels in a banked turn around UAVT at
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Fig. 6. Estimates of relative YPR versus time for one UAV flying in a circle
of radius 150 m using a 30◦ bank around another fixed (hovering) UAV.

a constant radius. The free-space wavelength is λ = 1.5 m, the
circling radius is 150 m, the speed is 100 km/h, the bank angle
is 30◦, and both UAVs are at the same altitude. Gaussian DOA
error (Section IV-B1) of 3◦ is used, and SNR is 20 dB. In this
case we resolve the ambiguity in α by rejecting relative pitch
greater than 45◦ and relative roll greater than 90◦. The results
in Fig. 6 show that the attitude estimator is able to accurately
determine the YPR angles, with RMS errors in these angles
of (4.4◦, 3.1◦, 4.3◦).

E. Two Circling UAVs

Next we consider the case where both UAVT and UAVH fly
in 30◦ banked turns (in opposite turn directions) on a circle
of radius 150 m at 100 km/h with an altitude difference of
45 m. Due to the larger relative attitudes, we use multiple
aspects (Section III-C1) to resolve the 180◦ ambiguity in
α at the beginning of the maneuver and tracking thereafter.
RMS DOA error and SNR are the same as the last example.
Fig. 7 demonstrates that the method is able to accurately
determine the YPR angles with respective RMS errors of
(4.4◦, 4.4◦, 4.1◦).

F. Practical DOA Estimation

Finally, we explore the performance of a method that uses
a practical DOA estimation method, illustrating that a single
RF array can be used for both direction finding and attitude
estimation. 1000 Monte Carlo simulations were performed
with uniform random UAV attitude and DOA, similar to those
in Section IV-C. Local DOA estimates were obtained using
the table lookup method in Section IV-B2. Fig. 8 shows the
cumulative distribution functions (CDFs) of the error for the
local DOA estimates (solid curves), defined as

εk̂ = cos−1(k̂Hest · k̂Hexact). (37)

Although DOA estimation performance is poor for 10 dB
SNR, acceptable performance is obtained for 15 dB or higher,
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where 10◦ of error or better is obtained with probability
0.75, 0.9, and 0.97, for 15, 20, and 30 dB SNR, respectively.
Fig. 8 also shows the error of the resulting attitude estimates
(dashed curves). For low to moderate SNR, relatively high
error in the DOA estimates leads to even higher error in
the attitude estimation. However, for high SNR, error in the
attitude estimate becomes similar to that of the DOA estimates,
approaching a bound of about 5◦, which is the resolution of the
pattern lookup table. In practice, 5◦ of error in relative attitude
may not be sufficient for some applications, suggesting that
interpolation or more detailed patterns should be used.

A troubling aspect of Fig. 8 is the heavy-tail behavior that
could lead to poor performance with a tracking filter. The
heavy tails in the error distributions are due to infrequent cases
where the DOA vector at one of the UAVs has large error,
leading to very high error in the resulting attitude estimate.
Fortunately, these cases can usually be detected by checking
the fidelity of the fit between the estimated and modeled
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Fig. 9. Complementary cumulative distribution functions (CCDFs) from
Monte Carlo simulations of the original table-lookup algorithm (Fig. 8)
indicated by “All Data,” and a modified algorithm where 50% of the estimates
are discarded (“Pruned 50%”) according to εH . Significant reduction of the
error tails is obtained.

MIMO channel, or εH = ‖hmeas − h(αopt)‖2. If εH is much
larger than typical values, this usually indicates a poor attitude
estimate. Fig. 9 explores an improved algorithm that discards
attitude estimates having εH greater than the median. Statistics
of εH can be obtained through simulation or collected during
system operation. Fig. 9 plots the complimentary CDF (CCDF)
of attitude estimation error for three SNR levels for the
original and improved algorithm, indicating that far more
robust estimates (shorter tails) are obtained.

V. CONCLUSION

This paper presents a method for finding the relative attitude
of two UAVs using only radio direction finding and MIMO
channel estimation techniques. The method is useful in situ-
ations where GPS access and/or precise attitude information
from gyros/accelerometers is not available. The problem solu-
tion uses the DOA vector to estimate two degrees of freedom,
reducing the unknown relative attitude to a single angle α
that is then estimated using observation of the polarimetric
MIMO channel. Since the narrowband, polarimetric, far-field
MIMO channel only gives enough information to resolve
α to within a 180◦ ambiguity, several methods based on
practical considerations or controlled maneuvers are provided
for ambiguity resolution.

Simulations based on the proposed algorithm for realistic
system parameters and flight profiles show that the method is
able to estimate all three DOFs of UAV relative attitude. Monte
Carlo simulations based on random UAV attitudes demonstrate
that error in the orientation vectors is proportional to both the
error in the DOA vector estimate as well as the SNR of the
channel estimate.

APPENDIX

A. Proof of Shifting k̂ Method

The purpose of this appendix is to prove that the 180◦

ambiguity in α can always be resolved by keeping the aircraft
attitudes constant while changing k̂ by a small amount.

Consider an arbitrary vector rT in the tracking frame. The
handoff UAV estimates the same vector in the handoff frame



for two DOA vectors k̂(1) and k̂(2) with k̂(1) 6= k̂(2), resulting
in estimates r

(1)
H and r

(2)
H when the correct α is used and r

(1)
H
′

and r
(2)
H
′ when α+ π is used. Recall that the correct α aligns

ûT and v̂T with ûH and v̂H in any common reference frame
(see Fig. 2). But when α+ π is selected, we have

Mt
h(α+ π) = Mt

h(α)

 1 0 0
0 −1 0
0 0 −1


︸ ︷︷ ︸

L

. (38)

This means that

r
(`)
H = M

h(`)
H M

t(`)
h M

T(`)
t rT (39)

r
(`)
H
′ = M

h(`)
H LM

t(`)
h M

T(`)
t rT, (40)

where ` ∈ 1, 2 for the two different cases of k̂ and the
dependence on α is dropped in the notation since all quantities
now assume the correct value of α. In the absence of noise and
estimation error, by construction our algorithm always gives
the correct estimate of rH regardless of k̂ when α is correct,
meaning r

(1)
H = r

(2)
H , which implies

M
h(1)
H M

t(1)
h M

T(1)
t rT = M

h(2)
H M

t(2)
h M

T(2)
t rT. (41)

In contrast, when α+ π is selected, we have

r
(1)
H
′ = M

h(1)
H LM

t(1)
h M

T(1)
t rT (42)

= M
h(1)
H LM

H(1)
h M

h(2)
H M

t(2)
h M

T(2)
t rT, (43)

where the second equality comes from using (41) with
(M

h(1)
H )−1 = M

H(1)
h . Next, from (40) and (43) we compute

the difference of the two estimates as

r
(2)
H
′ − r

(1)
H
′ = (44)

(M
h(2)
H L−M

h(1)
H LM

H(1)
h M

h(2)
H )︸ ︷︷ ︸

Q

M
t(2)
h M

T(2)
t rT.

Since the basis transformation matrices are always full rank,
the only way this difference can be zero for all vectors rT is
for Q to be the zero matrix. This requires

M
h(2)
H LM

H(2)
h = M

h(1)
H LM

H(1)
h . (45)

Using (8), (9) and L from (38), we can express (45) as

k̂
H(1)
H (k̂

H(1)
H )† − [v̂

H(1)
H (v̂

H(1)
H )† + û

H(1)
H (û

H(1)
H )†] =

k̂
H(2)
H (k̂

H(2)
H )† − [v̂

H(2)
H (v̂

H(2)
H )† + û

H(2)
H (û

H(2)
H )†]. (46)

We know from properties of basis transformations that
M

h(`)
H M

H(`)
h = I, where I is the identity matrix, or

k̂
H(`)
H (k̂

H(`)
H )† + v̂

H(`)
H (v̂

H(`)
H )† + û

H(`)
H (û

H(`)
H )† = I, (47)

which simplifies (46) to

k̂
H(1)
H (k̂

H(1)
H )† = k̂

H(2)
H (k̂

H(2)
H )†. (48)

The only way for these outer products to be equal is for
k̂
H(1)
H = ±k̂H(2)

H , but this either contradicts our initial assump-
tion or requires a large maneuver that exchanges the relative
location of the two UAVs. Precluding the latter case, we must
have Q 6= 0.

The meaning of this result is that if the incorrect value of
α is used, there exist some vectors rT that will be estimated
differently as k̂ changes, even though the relative UAV atti-
tudes remain constant. However, when the correct value of α is
used, the same estimate will be obtained independent of k̂. A
convenient set of test vectors for rT is (x̂TT, ŷ

T
T , ẑ

T
T), since the

algorithm in this paper already estimates those in the handoff
frame as (x̂TH, ŷ

T
H, ẑ

T
H) or MT

H. Note that it is possible for (44)
to be zero for some test vectors, but since M

t(2)
h M

T(2)
t in (44)

is full rank, the error cannot be zero for all three orthogonal
vectors (x̂TT, ŷ

T
T , ẑ

T
T) when the incorrect α is used.

B. Relation of Orientation Frames to Euler Angles

This paper employs frames rather than Euler angles of
rotation, since this approach simplifies the analysis and does
not suffer from ambiguities due to order of rotation. However,
it may be desirable to convert from a frame to Euler angles
and vice versa, and this appendix provides such expressions.
For this purpose we assume the YPR (yaw, pitch, roll) order
of rotations, which is usually standard in aviation. Yaw (Y),
pitch (P), and roll (R) angles are defined as rotation about the
ẑT, ŷT, and x̂T axes, respectively (Fig. 1), with the positive
direction given by the right hand rule.

1) YPR to Orientation: Yaw (Y) and pitch (P) define the
direction of the x̂T vector, analogous to how φ and θ define
the direction of the r̂ vector in spherical coordinates, or

x̂T = [cos(P ) cos(Y ) cos(P ) sin(Y ) − sin(P )]
† (49)

The other vectors for the case of zero roll can be found as

ŷT = (ẑ × x̂T)/‖ẑ × x̂T‖ (50)

ẑT = x̂T × ŷT/‖x̂T × ŷT‖, (51)

where ẑ = [0 0 1]†. Finally, roll (R) can be applied to obtain

ŷT = ŷT cos(R) + ẑT sin(R) (52)

ẑT = −ŷT sin(R) + ẑT cos(R) (53)

2) Orientation to YPR: Again, direction of the nose (x̂T)
gives pitch and yaw like in spherical coordinates, or

Y = atan2(x̂T2 , x̂
T
1 ) (54)

P = −atan2
(
x̂T3 ,

√
(x̂T1 )

2 + (x̂T2 )
2

)
, (55)

where x̂Ti denotes the ith element of the unit vector. The zero
roll vectors ŷT and ẑT are found according to (50) and (51),
and roll can then be computed as

R = atan2(ŷT · ẑT, ŷT · ŷT). (56)
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