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Abstract—A new array synthesis problem, whose objective is to
maximize secure information shared with a legitimate recipient
in the presence of a passive eavesdropper, is posed for line-of-
sight (LOS) wireless transmission. By casting the problem into
the form of a semidefinite program, it is found that the prob-
lem is convex and that optimal solutions can be efficiently found
irrespective of the array topology. Representative results for a uni-
form linear array (ULA) and uniform circular array (UCA) are
presented to demonstrate the utility of the method. Furthermore,
it is shown that the radiated power of the optimal solution can
be naturally decomposed into a signal pattern and noise pattern,
providing an intuitive description of the optimal solutions and
allowing comparison with standard array synthesis techniques.

Index Terms—Adaptive arrays, antenna radiation pattern
synthesis, security.

I. INTRODUCTION

S ECURITY is an important concern for today’s wireless
communications systems, where the public nature of the

transmission enables potential interception of sensitive infor-
mation by unauthorized parties. Typically, wireless security is
accomplished by encrypting binary information before modu-
lation and transmission over the channel. However, recent work
has focused on developing techniques that exploit the physical
layer, including the antennas and propagation channel, to pro-
vide increased security in wireless transmissions. Examples of
such techniques may be found in [1]–[12].

One method for using the physical layer to achieve increased
secrecy is to use conventional antenna array synthesis to design
a transmit radiation pattern that provides high gain to a desired
receiver and low gain in directions of potential eavesdrop-
pers [13]. Such an approach reduces the likelihood that an
attacker can decode the information-bearing signal, particu-
larly if the channel coding is carefully matched to the realized
channel gain. The information-carrying transmit radiation pat-
tern designed in this way is referred to herein as the signal
pattern. To further enhance security, artificial noise can be
transmitted on noise patterns that are ideally designed to be
orthogonal to the signal pattern, thereby realizing low artificial
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noise levels to the desired receiver and higher noise in the direc-
tion of eavesdroppers [14]–[17]. This enables enhanced control
over the signal-to-noise ratio (SNR) (and therefore decoding
probability) observed at unauthorized nodes.

Although array synthesis is a mature topic, and there are
many powerful techniques available for synthesizing an indi-
vidual pattern with desired properties, no work has demon-
strated how to jointly synthesize signal and noise patterns to
obtain optimal secrecy. This paper solves this outstanding prob-
lem of secure array synthesis by posing the secure transmission
problem in a form analogous to that of conventional array syn-
thesis, but in which we constrain information-theoretic secrecy
metrics as a function of eavesdropper angle as opposed to con-
straining radiated power as a function of transmission angle.
The resulting convex optimization problem can be solved using
semidefinite programming (SDP) [18] to produce the covari-
ance matrix for the signals transmitted by the array. This
covariance is then decomposed to identify the signal and noise
patterns. Numerical results and comparisons with a conven-
tional but suboptimal method demonstrate the effectiveness of
the new pattern synthesis technique.

II. PROBLEM STATEMENT

This initial treatment considers a narrowband, two-
dimensional (2-D) scenario, with a discussion of the extension
to wideband operation and three-dimensional (3-D) radiation
appearing in Section V-C. Fig. 1 shows a free-space commu-
nications scenario involving three nodes. Alice and Bob are
legitimate nodes who wish to communicate securely, while Eve
is a passive eavesdropper who attempts to receive and decode
Alice’s and Bob’s transmissions. It is assumed that all nodes
know the angles of Alice (φA) and Bob (φB), whereas Eve’s
angle (φE) is unknown to Alice and Bob.

Consistent with traditional antenna array synthesis, a free-
space or line-of-sight (LOS) channel is assumed with Bob and
Eve in the far-field of Alice’s array of NT elements. It is suf-
ficient to consider a single antenna at Bob and Eve, as using
arrays (or changing element gain patterns) only changes the
SNR observed at these nodes, a quantity already controlled by
model parameters. The channels denoted hAB, hBA, and hAE

are vectors that represent the complex baseband gains from
Alice’s array to Bob’s antenna, from Bob’s antenna to Alice’s
array, and from Alice’s array to Eve’s antenna, respectively.
These channel vectors are scaled versions of the electromag-
netic steering vectors, or

hAξ,i = gi(φξ) exp[jk0(ax,i cosφξ + ay,i sinφξ)] (1)
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Fig. 1. Generic system model for secure array synthesis.

where ξ ∈ {B,E}, hBA,i = hAB,i, k0 is the free-space
wavenumber and gi(φ) and (ax,i, ay,i) are, respectively, the
field radiation pattern and coordinate of the ith antenna in
Alice’s array. It is assumed that Eve knows all of the channel
gains, whereas Alice and Bob know only hAB and hBA.

In this LOS environment, if Bob and Eve are close in angle,
it will be difficult to provide different signals to the two, based
only on beamforming. Therefore, we define an exclusion sec-
tor, which is an angular extent φX ranging from φ1 to φ2 that
is assumed to be free of eavesdroppers. In some cases, it may
be possible to ensure that this sector is eavesdropper-free by
using visual information or restricting physical access. When
this is not possible, having an eavesdropper in the exclusion
sector will compromise physical layer security, meaning that
secrecy must rely on upper layer protocols alone.

An informal problem statement for secure array synthesis is
as follows: find Alice’s array signaling strategy to maximize
the information exchanged between Alice and Bob while mini-
mizing the information given to an eavesdropper outside of the
exclusion sector. This is very similar to standard array synthe-
sis where a typical objective is to maximize the gain in the
direction of the intended receiver (the main beam direction)
while minimizing sidelobe transmission outside of the main
beam. While this informal problem statement is helpful, we
now seek to more precisely formulate the problem statement
by considering two specific security metrics.

A. Secrecy Capacity

Secrecy capacity is defined as the maximum amount of
information that can be transmitted between legitimate nodes
without providing useful information to an eavesdropper. Fig. 2
depicts a detailed signal model that allows secrecy capacity to
be defined for the LOS scenario in Fig. 1. In this model, for a
single use of the channel, Alice transmits the complex baseband
vector w that produces the signals ŷB and ŷE at Bob and Eve,
respectively. Mathematically, we have

ŷξ = hT
Aξw︸ ︷︷ ︸
yξ

+ εξ (ξ ∈ {B,E}) (2)

Fig. 2. Signal model for secrecy capacity.

where {·}T is a transpose and εξ represents noise modeled
as a zero-mean complex Gaussian random variable. We set
E{|εB|2} = σ2

0 and make the worst-case assumption that Eve’s
receiver is noiseless (εE = 0).

Secrecy capacity CS for this model is the maximum mutual
information that Alice and Bob can attain, conditioned on Eve’s
signal when Eve is at the worst-case position for security. This
can be interpreted as the maximum secret information that
Alice can transmit to Bob over all possible angles for Eve
outside of the exclusion sector, or

CS = max
p(w)

min
φE

I(w; ŷB|ŷE) (3)

where

I(w; ŷB|ŷE) = H(ŷB|ŷE)−H(ŷB|w, ŷE) (4)

= H(ŷB, ŷE)−H(ŷE)−H(εB) (5)

I(·; ·) is mutual information, p(w) is the probability density
function (pdf) of the vector w, and H(·) is differential entropy.
Note that in the minimization in (3), the minimizing φE can be
a function of p(w), which means that all possible Eve angles
must be considered simultaneously in the minimization.

Assuming zero-mean complex Gaussian signaling, the pdf
p(w) is completely determined by its covariance matrix R =
E{wwH}, where {·}H is a conjugate transpose. We constrain
R to satisfy Tr(AR) ≤ PT, where Tr(·) is trace, A is a cou-
pling matrix [19], and PT is the available transmit power. For
uncoupled transmit antennas, A = I where I is the identity
matrix. The optimization problem in (3) becomes

CS = max
R:Tr(AR)≤PT

min
φE

I(w; ŷB|ŷE) (6)

I(w; ŷB|ŷE) = log2
|RBE|
σ2
Eσ

2
0

(7)

where

RBE = E{[ŷB, ŷE]T [ŷB, ŷE]∗} =

[
σ2
B + σ2

0 σBE

σ∗
BE σ2

E

]
(8)

σ2
ξ = E{|yξ|2} = hT

AξRh∗
Aξ (ξ ∈ {B,E}) (9)

σBE = E{yBy∗E} = hT
ABRh∗

AE (10)
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Fig. 3. Signal model for reciprocal channel key establishment.

| · | is the determinant and {·}∗ is the conjugate. Using (8), (7)
becomes

I(w; ŷB|ŷE) = log2
(σ2

B + σ2
0)σ

2
E − |σBE|2

σ2
Eσ

2
0

(11)

= log2

[
1 +

σ2
B

σ2
0

(
1− |σBE|2

σ2
Bσ

2
E

)
︸ ︷︷ ︸

α(R,φE)

]
. (12)

Our optimization problem is therefore

CS = max
R:Tr(AR)≤PT

min
φE

log2[1 + α(R, φE)]. (13)

Since log2(·) increases monotonically in its argument, we only
need to find the transmission strategy that maximizes α, or

αopt = max
R:Tr(AR)≤PT

min
φE

α(R, φE) (14)

where CS = log2(1 + αopt).

B. Reciprocal Channel Key Establishment

Another mechanism for secure wireless communication is to
encode transmissions using secret keys [1], [8]. To establish
keys at the physical layer, Alice and Bob can each transmit
known training data from which the other can estimate the
channel, and since by reciprocity the two estimates differ only
due to measurement errors, they can be quantized to form the
encryption key. In a fading environment, the radios can esti-
mate multiple independent channel observations over time and
thereby construct long keys [20].

Since the propagation channel does not fade in our LOS sce-
nario, we use beamforming weights to generate random channel
observations, much like what has been done using reconfig-
urable antennas [6], [9]. Referring to Fig. 3, Alice uses a
randomly generated weight vector w to transmit a scalar pilot
yA, resulting in received signals yB at Bob and yE at Eve. Next,
Bob transmits a scalar pilot yB′ , and Eve observes yE′ while
Alice weights the received signals by the vector w to obtain
yA′ . By randomly changing w over time, different channel
observations can be realized.

The effective end-to-end propagation channels created using
this procedure are defined as

hAB = yB/yA = hT
ABw (15)

hBA = yA′/yB′ = hT
BAw = hAB (16)

hAE = yE/yA = hT
AEw. (17)

Since hBE = yE′/yB′ is not random (has no information), it
is ignored. We assume that only estimates of the channels are
obtained, or

ĥξξ′ = hξξ′ + εξ′ (ξξ′ ∈ {AB,BA,AE}) (18)

where εξ′ is zero-mean complex Gaussian noise with
E{|εξ′ |2} = σ̂2

ξ′ .
The reciprocal fading channels between Alice and Bob can

be used to generate secret encryption keys. One secrecy met-
ric for reciprocal channel key establishment is the number of
secure key bits given by

ISK = I(ĥAB; ĥBA|ĥAE). (19)

Assuming that the random vector w is drawn from a zero-mean
complex Gaussian distribution and independently realized for
each measurement, we have

ISK = log2
|RBA||RAB|

σ2
B|R̃|

(20)

where

Rξξ′ = E{[ĥξξ′ , ĥAE]
T [ĥξξ′ , ĥAE]

∗} (21)

=

[
σ2
B + σ̂2

ξ′ σBE

σ∗
BE σ2

E + σ̂2
E

]
(ξξ′ ∈ {AB,BA}) (22)

R̃ = E{[ĥBA, ĥAB, ĥAE]
T [ĥBA, ĥAB, ĥAE]

∗} (23)

=

⎡⎣ σ2
B + σ̂2

A σ2
B σBE

σ2
B σ2

B + σ̂2
B σBE

σ∗
BE σ∗

BE σ2
E + σ̂2

E

⎤⎦ (24)

σ2
ξ = E{|hAξ|2} = hT

AξRh∗
Aξ (ξ ∈ {B,E}) (25)

σBE = E{hABh
∗
AE} = hT

ABRh∗
AE. (26)

Assuming equal estimation error variance at Alice and Bob
(σ̂2

A = σ̂2
B = σ2

0) and a noiseless receiver at Eve (εE = 0), we
can expand the determinants in (20) to obtain

ISK = log2
1

σ2
E

[(σ2
B + σ2

0)σ
2
E − |σBE|2]2

σ2
E(σ

4
0 + 2σ2

Bσ
2
0)− 2σ2

0 |σBE|2 (27)

= log2
[1 + α(R, φE)]

2

1 + 2α(R, φE)
(28)

where

α(R, φE) =
σ2
B

σ2
0

(
1− |σBE|2

σ2
Bσ

2
E

)
(29)

which is precisely the expression for α obtained in (11) for
secrecy capacity. Note that ISK in (28) increases monotonically
in α(R, φE) ≥ 0, and we once again only need to maximize α
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according to (14) to obtain αopt. The optimal ISK is then given
by (28) with α(R, φE) = αopt.

It is remarkable that both secrecy capacity and the number
of secure key bits depend monotonically on α(R, φE), allow-
ing both problems to be solved using the same procedure. This
observation further motivates use of the general term secure
array synthesis for the solution.

III. OPTIMIZATION PROCEDURE

We now show that our optimization problem in (14) can be
written as a standard semidefinite program, indicating that our
problem is convex and can be solved efficiently. One form of
SDP solves the problem [18]

min
x

cTx, s.t. F(x) = F0 +

M∑
m=1

xmFm ≥ 0 (30)

where Γ ≥ 0 indicates that Γ is a positive semidefinite (PSD)
matrix. To rewrite our problem in this form, we first transform
it to the constrained optimization

α′
opt = max

γ,R
γ s.t.

⎧⎪⎪⎨⎪⎪⎩
(i) α′(R, φE) ≥ γ ∀φE /∈ [φ1, φ2]
(ii) Tr(AR) ≤ PT

(iii) R ≥ 0
(iv) γ ≥ 0

(31)

where α′
opt = σ2

0αopt and α′(R, φE) = σ2
0α(R, φE). In the

following sections, we show how to cast the optimization into
the general form of (30) and how each of the constraints (i)–(iv)
in (31) can be written as a PSD constraint.

A. Optimization Variables

We first parameterize the unknown covariance matrix R in
terms of a set of unknown coefficients. This can be accom-
plished by expanding R using a matrix basis, or

R =

M−1∑
m=1

rmRm. (32)

A suitable set of basis matrices that span all possible PSD
matrices is given by the set S = SR ∪ SI , where

SR = {I+ (Emn +Enm)/2}, 1 ≤ m ≤ NT, n ≥ m
(33)

SI = {I+ j(Emn −Enm)/2}, 1 ≤ m ≤ NT, n > m
(34)

and Emn is an elementary matrix with 1 at position mn and
zeros elsewhere. For NT = 2, e.g., the basis is

S =

{[
2 0
0 1

]
,

[
1 0
0 2

]
,

[
1 1

2
1
2 1

]
,

[
1 j

2

− j
2 1

]}
. (35)

With this formulation, the unknowns consist of the M − 1
values of rm and the value of γ in (31). Therefore, the M × 1
vector of real optimization variables is

x = [r1, r2, . . . , rM−1, γ]
T . (36)

The maximization in (31) can be cast into the minimization
form of (30) using c = [0 . . . 0− 1]T .

B. Constraint (i): Minimum α Threshold

We refer to constraint (i) in (31) as a minimum α threshold,
since its purpose is to ensure that α is no lower than a certain
minimum level for all possible Eve angles. One difficulty is that
(i) represents an infinite number of constraints, one at each pos-
sible value of φE outside of the exclusion sector. We replace
this with a finite set of K constraints by uniformly sampling
Eve’s possible angle at K values outside of the exclusion sec-
tor, which we denote φE,k, where φE,k /∈ [φ1, φ2]. This results
in the set of constraints

σ2
0α(R, φE,k) ≥ γ, k = 1, . . . ,K. (37)

Substituting the basis expansion (32) into (29)

σ2
0α(R, φE) =

σ2
Bσ

2
E − |σBE|2
σ2
E

(38)

=
hT
ABRh∗

ABh
T
AERh∗

AE − hT
ABRh∗

AEh
T
AERh∗

AB

hT
AERh∗

AE

(39)

=
uT rv(k)T r− z(k)T rz(k)Hr

v(k)T r
(40)

where

um = hT
ABRmh∗

AB (41)

v(k)m = hAE(φE,k)
TRmhAE(φE,k)

∗ (42)

z(k)m = hT
ABRmhAE(φE,k)

∗. (43)

The constraint (37) can therefore be written as

v(k)T r(uT r− γ)− (z(k)T r)(z(k)Hr) ≥ 0, k = 1, . . . ,K
(44)

which can be written as the determinant constraint∣∣∣∣ uT r− γ z(k)T r

z(k)Hr v(k)T r

∣∣∣∣︸ ︷︷ ︸
F

(k)
E

≥ 0. (45)

This is equivalent to the PSD constraint F
(k)
E ≥ 0. We can

expand the matrix F
(k)
E in terms of the unknown optimization

variables r and γ as

F
(k)
E =

M−1∑
m=1

[
um z

(k)
m

z
(k)∗
m v

(k)
m

]
︸ ︷︷ ︸

F
(k)
E,m

rm +

[−1 0
0 0

]
︸ ︷︷ ︸

F
(k)
E,M

γ (46)

= F
(k)
E,0 +

M∑
m=1

xmF
(k)
E,m ≥ 0 (47)

where F
(k)
E,0 is the zero matrix.

C. Constraint (ii): Power Constraint

Substituting the basis expansion (32) into the power con-
straint (ii) gives

Tr(AR) =

M−1∑
m=1

rmTr(ARm) ≤ PT (48)
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or

PT︸︷︷︸
FP,0

+

M−1∑
m=1

rm [−Tr(ARm)]︸ ︷︷ ︸
FP,m

≥ 0. (49)

To write this in the form of (30), we must define FP,M = 0.

D. Constraint (iii): PSD Constraint on R

Note that although each of the basis matrices is Hermitian
and PSD, a linear combination of these matrices is still
Hermitian but not necessarily PSD. To represent an admissible
solution, the transmit covariance must be PSD, or

R =

M−1∑
m=1

rmRm ≥ 0 (50)

which is in the form of (30) with

FC,m =

{
0, m = 0,m = M

Rm, 1 ≤ m ≤ M − 1.
(51)

E. Constraint (iv): Nonnegativity Constraint on γ

The constraint γ ≥ 0 is in the form of (30) with

Fγ,m =

{
0, 0 ≤ m ≤ M − 1

1, m = M.
(52)

F. Solution Using MAXDET

Solutions to our SDP problem are found using the freely
available MAXDET package [21] that solves (30).1 While
many of our constraint matrices are complex, MAXDET and
many other SDP solvers require that the constraint matrices be
real. Fortunately, it can be shown that a square complex matrix
F satisfies

F ≥ 0 if and only if F ≥ 0 (53)

where

F �
[
Re{F} −Im{F}
Im{F} Re{F}

]
. (54)

Therefore, our complex-valued PSD constraints can be
expressed in the equivalent real-valued form

F(x) = F0 +

M∑
m=1

xmFm ≥ 0. (55)

Given this, the K + 3 PSD constraints given in
Sections III-B–III-E can be combined into a single PSD
constraint using the block diagonal matrix

Fm = diag
([

F
(1)
E,m, F

(2)
E,m, . . . , F

(K)
E,m,

FP,m, FC,m, Fγ,m

]) (56)

where diag(·) creates a matrix with the vector elements
arranged on the main diagonal.

1MAXDET actually minimizes cTx+ log2 |G(x)|−1 where G = G0 +∑
m xmGm > 0. We let G0 = 1 and Gm = 0 for m > 1.

IV. PATTERNS AND TRANSMIT WEIGHTS

Once the optimal covariance matrix R has been found using
the outlined secure array synthesis procedure, it is desirable to
visualize the solution. While one can simply plot the secrecy
metric CS or ISK with respect to Eve’s angle, such plots only
indicate what security is possible and give no insight into how
it is achieved. We here provide a more constructive visual-
ization by decomposing the transmit power pattern into two
patterns: one each for transmission of signal and noise. We also
decompose the transmit covariance into signal and noise sub-
spaces, revealing how to practically achieve the noise and signal
patterns.

A. Signal/Noise Patterns

Since Gaussian signaling is used, Eve’s observed quantity yE
(or hAE) for a fixed angle φE can be decomposed into a sum of
two terms as

yE = βCyB + yUC (57)

where the first term is a Gaussian random variable that is
perfectly correlated with Bob’s signal (βC is a constant) and
the second term yUC is a Gaussian random variable that is
uncorrelated with Bob’s signal. While Eve can extract useful
information from the signal βCyB, the noise yUC has no useful
information content and serves to confuse Eve. Therefore, we
define the signal and noise power observed by Eve as

PS = |βC|2E{|yB|2} (58)

PN = E{|yUC|2} (59)

respectively, which can be plotted as a function of Eve’s angle.
To compute these quantities from the solution R obtained

from the SDP optimization, we recognize that

E{|yE|2} = σ2
E = |βC|2E{|yB|2}+ E{|yUC|2} (60)

E{yBy∗E} = σBE = β∗
CE{|yB|2} (61)

where we have used E{yBy∗UC} = 0 based on our definition of
yUC. Using (8), we can solve (60) and (61) to obtain

PS = |σBE|2/σ2
B (62)

PN = σ2
E − |σBE|2/σ2

B. (63)

We emphasize that the signal/noise pattern interpretation in
(62) and (63) provides the information required to compute CS

and ISK. To see this, we write

α(R, φE) =
σ2
B

σ2
0σ

2
E

(
σ2
E − |σBE|2

σ2
B

)
(64)

=
σ2
B

σ2
0

PN

PS + PN
=

SNRBob

1 + SNREve
. (65)

B. Signal/Noise Weights

While the decomposition of the power pattern into signal and
noise portions allows visualization of the results, it does not
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specify the beamformer weights that achieve these patterns. Our
objective here is to decompose the optimal transmit covariance
as R = RS +RN where

PS(φE) = hT
AE(φE)RSh

∗
AE(φE) (66)

PN(φE) = hT
AE(φE)RNh

∗
AE(φE). (67)

These expressions indicate that if we transmit either signal or
noise with respective covariances RS and RN, Eve observes
only the signal or noise pattern, respectively. Equating (62) and
(66) and using the definitions of σBE and σ2

B lead to

(hT
AERh∗

AB)(h
T
ABRh∗

AE)

hT
ABRh∗

AB

= hT
AERSh

∗
AE (68)

where the dependence on Eve’s angle is now implicit. This
equation can be satisfied with the choice

RS =
Rh∗

ABh
T
ABR

hT
ABRh∗

AB

. (69)

The transmit signal vector that produces this rank-1 matrix is

wS =
Rh∗

AB√
hT
ABRh∗

AB

s = wS0s (70)

where s follows a unit-variance complex Gaussian distribution.
Given this development, the noise covariance is constructed

from RN = R−RS. If we compute the eigenvalue decompo-
sition RN = UNΣNU

H
N , we can form the transmitted noise

vector from

wN =
N∑

n=1

uN,nzn (71)

where uN,n is the nth column of UN and the scalar zn fol-
lows a complex Gaussian distribution with variance ΣN,ii (ith
diagonal element of ΣN). The transmission achieving optimal
security is then given as w = wS +wN.

Now that we have practical weights to separately generate
signal and noise, we may replace the Gaussian random vari-
able s in (70) with an information-bearing signal that employs
standard modulation. Although it is expected that the same
weight vector wS0 obtained assuming Gaussian signaling will
also give good performance for practical modulation, the result-
ing performance is strictly suboptimal. An optimal solution for
non-Gaussian signaling requires a reformulation of the secure
array synthesis problem using capacity or key rate expressions
appropriate for that modulation.

For wideband operation, one possible practical solution is to
apply the weights that are optimal at the center frequency to
all frequency bins, although this approach will be decreasingly
optimal as the bandwidth increases. Although not detailed here,
an alternative approach is to extend the SDP solution by mod-
ifying the max–min problem, where minimum security with
respect to φE and frequency is maximized with respect to a
single R (and therefore weights) used at all frequencies.

C. Suboptimal Synthesis for Uniform Linear Arrays (ULAs)

The concept of signal and noise patterns suggests a simple
but suboptimal array synthesis approach for achieving secu-
rity. Specifically, for a ULA, we compute the Dolph–Chebyshev
beam weights ŵS0 that place maximum gain in the direction
of Bob (angle φB) for a specified sidelobe level LSL. We then
compute the singular value decomposition of ŵS0 as

ŵS0 = UΛVH = [u1U0]

[
λ1 0
0 0

] [
vH
1

VH
0

]
(72)

where u1 is a unit-length version of the vector ŵS0 and the
matrix U0 consists of unit-length, mutually orthogonal column
vectors that are orthogonal to u1. Based on our discussion in
Section IV-B, we use a scaled version of u1 for the signal trans-
mission and a weighted sum of the vectors in U0 for the noise
transmission.

Let ζ and ζ̄ represent the fraction of transmit power devoted
to the signal vector and the fraction of power devoted to each
noise vector, respectively, so that ζ̄ = (1− ζ)/(NT − 1). The
covariance of the transmit signals is then given by

R′ = UΣ′UH (73)

where Σ′ = diag
([
ζ, ζ̄, ζ̄, . . . , ζ̄

])
. Finally, we scale R′ to

ensure satisfaction of the transmit power constraint using

R = R′/Tr(AR′). (74)

Using this form of the covariance R, α in (29) can be computed
as a function of LSL and ζ. A brute-force search on ζ ∈ [0, 1]
and LSL ∈ [0, 20] dB is used to determine the values of ζ and
LSL that maximize the minimum value of α for all values of φE

outside the exclusion sector.

V. NUMERICAL EXAMPLES

This section illustrates application of the secure array synthe-
sis method to some practical examples. While we use a ULA
and a uniform circular array (UCA) of idealized patch anten-
nas for these examples, the method is general and can be used
for any array topology. Note that ideal omnidirectional radiators
are assumed at Bob and Eve. If Bob’s antenna gain is changed,
this changes the value of the achieved security metric, but does
not change the optimizing weights. On the other hand, chang-
ing the antenna gain at Eve has no effect on the results since
she is assumed to have infinite SNR. The interelement spacing
for all cases is assumed to be λ/2, where λ is the free-space
wavelength.

Since both ISK and CS are monotonic with α, we only
consider ISK in our analysis. Simulations are performed by
varying the exclusion sector (φX), location of Bob (φB) and
Eve (φE), and the number of transmit antennas at Alice (NT).
In all simulations, angles for Eve outside of the exclusion sec-
tor are sampled uniformly in 1◦ increments on φE ∈ [0, φ1] ∪
[φ2, 180

◦] for the ULA and φE ∈ [0, φ1] ∪ [φ2, 360
◦] for the

UCA. The element pattern used for the patches is

g(φ) =
2 sin [(k0h/2) sinφ]

k0h sinφ
cos

(
k0L

2
cosφ

)
(75)
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Fig. 4. Suboptimal method for secure array synthesis employing a ULA with
NT = 10, φB = 90◦, and φX = 20◦. (a) Power allocation to signal and noise
patterns. (b) Achieved ISK performance for different power allocations.

where h = 0.003λ and L = 0.5λ, and the direction of max-
imum radiation is φ = 90◦. The single-antenna SNR of the
Alice–Bob link is set to 10 dB by assuming unit transmit power
(PT = 1), setting σ2

0 = 0.1, and normalizing the patch gain to
a maximum of 0 dB.

A. Uniform Linear Array

We first apply the suboptimal procedure to a ten-element
ULA at Alice with Bob at φB = 90◦ (broadside to the ULA)
and an exclusion sector around Bob of φX = 20◦. The brute-
force search produces ζ = 0.723 and LSL = 15.6 dB for this
scenario. Fig. 4(a) plots the signal (Dolph–Chebyshev) pattern
scaled by the signal power fraction ζ as well as the linear com-
bination of the equally weighted noise patterns for the optimal
parameter values. As expected, Bob observes more signal than
noise, while an eavesdropper outside of the exclusion sector
observes more noise than signal. Note that although the sig-
nal pattern array factor has equal sidelobes, the overall signal
and noise patterns are shaped by the patch element pattern.
Fig. 4(b), which plots ISK for different values of ζ, demon-
strates how the optimal value of ζ = 0.723 maximizes the
minimum value of ISK.

Fig. 5(a) and (b) plots the performance achieved using the
suboptimal and optimal approaches, respectively, as a function
of Bob’s angle φB ranging from near-array endfire (φB = 0◦) to
broadside (φB = 90◦) for an exclusion sector of φX = 10◦ and
different values of NT. The results for the suboptimal technique
show that the worst-case value of ISK is reduced significantly
when either Bob moves toward the endfire direction or the
size of Alice’s array is reduced because of the inferior beam-
forming capabilities of the ULA under these conditions. While
similar trends appear in the results for the optimal solution,
the secure array beamforming technique provides performance
gains of nearly 50% for the smallest array when Bob is close to
the broadside direction. Furthermore, the optimal beamforming
technique maintains higher values of ISK as Bob moves toward
endfire.

Fig. 5. Performance of the (a) suboptimal and (b) optimal methods for a ULA
at Alice with φX = 10◦. Performance is shown with respect to the number of
antennas at Alice (NT) and the transmit angle to Bob (φB).

Fig. 6. Achieved ISK for a varying number of antennas in Alice’s ULA
and different transmit angles to Bob for φX = 20◦. (a) Suboptimal solution.
(b) Optimal solution.

Fig. 6 repeats the analysis of Fig. 5 for a larger exclusion
sector of φX = 20◦. In this case, the performance of the subop-
timal and optimal solutions is similar for large array sizes when
Bob is at array broadside. However, as Bob moves toward array
endfire, ISK falls more rapidly for the suboptimal than for the
optimal method. This highlights the fact that the secure array
synthesis approach has the potential to offer significant perfor-
mance gains over heuristic methods in a dynamic system where
Bob’s position is variable.

It is instructive to use the signal/noise pattern analysis devel-
oped in Section IV to further understand the behavior of the
two solutions. Fig. 7(a) and (b) plots the number of secure key
bits, signal power, and noise power as a function of Eve’s angle
φE for the suboptimal and optimal solutions, respectively, for
NT = 10, φX = 10◦, and φB = 90◦. The straight horizontal
line in each plot shows the minimum value of ISK obtained out-
side of the exclusion sector. At Bob’s position, both solutions
place a peak in the signal power and null in the noise power as
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Fig. 7. Comparison of radiated signal (PS) and noise (PN) for the (a) subop-
timal and (b) optimal approaches for a ULA at Alice with NT = 10 elements,
φX = 10◦, and φB = 90◦. The horizontal line is the minimum ISK outside of
the exclusion sector.

expected, leading to compromised security if Eve moves inside
the exclusion sector.

Outside of the exclusion sector, we see that a null in PS cor-
responds to a peak in ISK, which is intuitive since no signal
power reaches Eve for these angles. Conversely, a minimum
value in ISK coincides with the peak of each sidelobe in PS,
with the noise pattern PN placing sufficient noise power at these
points to keep ISK at or above the minimum value (horizontal
line). We observe that compared to the optimal synthesis, the
suboptimal synthesis directs more signal energy outside of the
exclusion sector, resulting in a smaller minimum value of ISK.
Furthermore, the optimal method achieves an exact equal ripple
response (the minima of ISK touch the ISK lower threshold),
whereas the suboptimal approach only approximately achieves
this condition.

As explained previously, antenna gain at Bob and Eve plays
a minor role in the synthesis, although unequal gains across
Alice’s array may lead to reduced performance. To study this
degradation, we vary Alice’s element gains randomly with a
uniform distribution on [−3, 3] dB, but we assume that the
realized gain values are known during the optimization. Fig. 8
shows ISK for each of 20 realizations, with the results indi-
cating that the method compensates for gain differences and
achieves nearly the same minimum ISK [which is the same as
the minimum ISK for the ideal case shown in Fig. 7(b)] for all
cases.

The secure array synthesis problem was posed assuming that
Bob and Alice know their relative angle exactly, and the solu-
tion places a null in the noise pattern and a peak in the signal
pattern in that direction. Any error in estimating that angle will
lead to leakage of synthetic noise and reduced power to the
legitimate node and therefore reduced SNR. This degradation
can be characterized by first computing the optimal signal-
ing and resulting signal and noise patterns assuming a relative

Fig. 8. Effect of nonequal gain on ISK obtained with secure array synthesis.
The gains of Alice’s antennas are randomly varied from −3 to 3 dB for each of
20 realizations.

Fig. 9. Effect of error in the relative Alice–Bob angle on ISK for assumed
angle φB = 90◦ and actual angles of φ′

B = {90◦, 91◦, 92◦, 95◦}.

Alice–Bob angle of φB, and then extending the expression in
(65) to

α(R, φE, φ
′
B) =

SNR′
Bob

1 + SNREve
(76)

=
PS(φ

′
B)

σ2
0 + PN(φ′

B)

[
1 +

PS(φE)

PN(φE)

]−1

(77)

where φ′
B is the actual Alice–Bob angle. Notice that if φB =

φ′
B, the expression reduces to (65).
Fig. 9 plots ISK using (77) for the ULA case considered

previously with NT = 10, φX = 10◦, and φB = 90◦ for φ′
B =

{90◦, 91◦, 92◦, 95◦}. The results indicate that the performance
degradation is sensitive to the error, with moderate degradation
for errors that are a small fraction of the exclusion sector.

B. Uniform Circular Array

To demonstrate that secure array synthesis can be applied to
any array topology, we demonstrate its application to a UCA.
Since the suboptimal approach is based on Dolph–Chebyshev
synthesis for a ULA, it is not considered here.

Fig. 10 plots the average achieved minimum value of ISK as
a function of NT for different values of φX, where the aver-
age is taken over φB ∈ [90◦, 180◦] with a step size of 1◦. As
expected, ISK increases with the number of antennas and the
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Fig. 10. ISK for a UCA at Alice as the size of the exclusion sector and the
number of antennas at Alice are varied.

Fig. 11. ISK for a varying number of antennas in Alice’s UCA and different
transmit directions to Bob for φX = 40◦.

exclusion sector angle. Fig. 11 plots ISK as a function of Bob’s
location for φX = 40◦ and several values of NT. These results
show that the relative variation with φB is significant for small
arrays and less significant as NT increases. Finally, Fig. 12
analyzes the optimal solution using signal and noise patterns.
Although the ISK ripple with angle is less regular for the UCA
than for the ULA, the synthesized array still ensures that ISK
remains above a minimum value. Within the exclusion sector,
the behavior of the signal and noise patterns follow the trends
previously observed for the ULA.

C. Computational Complexity of SDP Optimization

SDP is a powerful but computationally complex optimization
technique. While the secure array synthesis problem proposed
here can naturally be extended to large arrays, wideband oper-
ation, and 3-D radiation, such extensions increase the size of
the optimization. We explore the issue of complexity by exam-
ining the SDP (MAXDET) run time for secure array synthesis
with an exclusion sector of 10◦ with ULAs consisting of 5, 10,
or 20 antennas and for the sampling of Eve’s position rang-
ing between 50 and 1000 angles. Fig. 13 plots the result when

Fig. 12. ISK, PS, and PN with respect to Eve’s location for a UCA at Alice
with NT = 12 elements, φX = 40◦, and φB = 270◦.

Fig. 13. Run time for SDP (MAXDET) solution of secure array synthesis for
various array sizes at Alice and number of quantized Eve angles.

the single-threaded code is run on a 3.6-GHz Intel i7 proces-
sor with 32 GB of RAM (usage remained below 1 GB for all
cases). Although run time increases moderately with the num-
ber of constraints (Eve angles), it increases quite dramatically
with the number of antennas. This is partially due to the num-
ber of SDP unknowns increasing quadratically with the number
of antennas (M = N2

T + 1), which for 5, 10, and 20 antennas
gives 26, 101, and 401 unknowns, respectively. This suggests
that more efficient optimization methods are needed to extend
secure array synthesis to wideband or large arrays.

VI. CONCLUSION

This paper poses the problem of secure array synthesis that
maximizes the information transmitted to a desired location
while minimizing the information leaked to an eavesdropper
at all possible locations outside a specified exclusion sector.
Whereas traditional array synthesis focuses on a single pat-
tern, secure array synthesis involves joint optimization of two
radiation patterns: one that transmits useful signal and another
that transmits artificial noise. The synthesis problem is solved
by casting the problem into a form suitable for existing SDP
solvers.

This paper also formulates a simple yet suboptimal pattern
synthesis approach that creates a Dolph–Chebyshev pattern for
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the signal and transmits noise on the orthogonal complement
to the signal pattern. Numerical examples for a ULA reveal
that although in some cases, the performance of the subopti-
mal approach is similar to that achieved with the optimal secure
array synthesis, in other cases, the performance of the sub-
optimal approach is dramatically inferior. Application of the
method to a UCA demonstrates the generality of the secure
array synthesis approach.
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