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Abstract—Methods for primary user detection in cognitive
radio may be severely impaired by noise uncertainty (NU) and
the associated SNR wall phenomenon. The ability to avoid the
SNR wall is proposed herein by detailed statistical modeling of
the noise process when NU is present. A Gaussian model for the
inverse noise standard deviation is proposed, and good agreement
with the more common lognormal distribution is demonstrated
for low to moderate noise uncertainty. Closed-form pdfs for a
single noise sample and the energy of multiple noise samples
are derived, allowing an optimal Neyman-Pearson detector to
be employed when NU is present, thus avoiding the SNR wall
effect. Initial measurements are presented that explore energy
detection at low SNR in a practical system, showing that the noise
distribution can be easily calibrated (learned) using a switch and
matched load in the receiver. Useful detection performance down
to -16 dB with energy detection is demonstrated, and it is found
that noise uncertainty is not significant for an instrument-grade
low-noise amplifier (LNA) for sub-minute acquisition times.

I. INTRODUCTION

Cognitive radio [1] is an interesting emerging paradigm

for radio networks, where radios are able to sense and ex-

ploit unused spectral resources, ideally improving spectrum

utilization and allowing networks to operate in a more decen-

tralized fashion. In the absence of cooperating primary users

or beacons that indicate local spectrum usage, overlay-based

cognitive radios must have sensing hardware and algorithms

that are robust in the sense of providing very low missed

detection rates at low SNR, thus impacting existing licensed

users negligibly.

Assuming an ideal noise model and given enough sensing

time, simple methods like energy detection can theoretically

discriminate the presence of a primary transmitter, even at

very low SNR. In [2] the important effect of uncertainty in

the noise distribution was identified and studied in detail,

proving that when noise variance is confined to an interval but

otherwise unknown, an SNR wall exists, below which useful

detection performance cannot be guaranteed regardless of the

observation time.

The purpose of this paper is to study whether the SNR

wall phenomenon can be eased by more detailed modeling

of the noise uncertainty (NU) and to explore the impact of

NU through direct measurement. It is argued in [2] that noise

calibration to learn the noise model is not possible in cognitive

radio since a primary may be present that corrupts any noise

measurements. However, the dominant noise in RF systems

is typically generated in the front-end amplifier and not the

antenna. Thus, the noise level can be periodically measured by

switching the receiver input to a matched load where primary

signal is not present. Even then, the noise measurement may

have error, but it is shown herein that with proper modeling

of that error, the SNR wall can be reduced dramatically.

The remainder of the paper is organized as follows. Sec-

tion II provides some background on energy detection and re-

views the SNR wall phenomenon. Section III defines the noise

uncertainty model and derives closed-form noise pdfs in the

presence of NU. Section IV provides numerical examples that

illustrate how noise calibration can provide useful detection

performance, whereas ignoring detection performance leads to

an SNR wall. Section V presents initial measurements showing

that energy detection at very low SNR is practically possible

with the noise calibration technique. Finally, Section VI pro-

vides some concluding remarks.

II. BACKGROUND

This section briefly reviews concepts on optimal detection,

energy detection, and noise uncertainty that are required for

the remainder of the paper.

The problem of primary detection in cognitive radio is

usually treated using classical detection theory [3], where a

decision must be made among two hypotheses: (H0) only noise

is present, or (H1) signal plus noise is present. The received

waveform xn under these two hypotheses is

H0 : xn = wn, n = 1, 2, . . . , N

H1 : xn = wn + sn, n = 1, 2, . . . , N
(1)

where wn and sn are the nth real noise and signal samples,

respectively, and the detector must select H0 or H1 based only

on observation of xn for n = 1, . . . , N . Given a decision

rule, Pd is the probability of detection, or the probability

that the detector correctly declares H1, whereas Pfa is the the

probability of false alarm, or the probability that the detector

declares H1 when the true hypothesis is H0.

When the pdfs of the received waveform xn under hy-

potheses H0 and H1 are known, the Neyman-Pearson (N-P)

detector provides optimal detection performance in the sense

of providing maximum Pd for fixed Pfa. The N-P detector

employs a likelihood ratio test (LRT), given by

L(x) =
fH1

(x)

fH0
(x)

, (2)
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where fH(x) is the joint pdf of the observed samples for

hypothesis H . For a selected threshold λ, the detector declares

H1 when L(x) ≥ λ, otherwise it declares H0. The threshold

can be computed by fixing Pfa and inverting the cdf for the

H0 (noise only) hypothesis.

When noise and signal are both i.i.d. Gaussian, the energy

of the signal, given by

p =

N∑

n=1

x2
n, (3)

is a sufficient statistic. Detection based on p is known as

energy detection, and the distribution of p is given by the

Chi-Squared distribution, allowing the required LRT threshold

and resulting detection performance to be computed in closed

form. Given that the variance σ2
0 = Var(wn) is known, the

energy detector can eventually provide near-perfect detection

if N is made large enough, even at very low SNR.

Unfortunately, a practical system will only have an estimate

of σ2
0 , and this imperfect knowledge is referred to as noise

uncertainty (NU). The NU concept was identified and studied

in detail in [2], where noise variance is assumed to be confined

to the interval [σ2
lo, σ

2
hi] but otherwise unknown. In this case,

worst-case detection performance for the N-P detector can be

computed by assuming

σ2
0 =

{
σ2

hi, under H0,
σ2

lo, under H1,
(4)

thus providing the minimum separation of the H0 and H1 pdfs.

For a given noise interval, as the SNR is lowered a threshold is

reached below which the worst-case energy detector exhibits

Pd < Pfa regardless of the number of samples. This complete

detection failure is referred to as the SNR wall.

III. NOISE UNCERTAINTY MODELING

The main idea of this paper is to overcome the SNR

wall phenomenon by more detailed modeling of the noise

uncertainty. In this work, noise and signal are modeled as

conditional Gaussian processes where a single real sample xn

has the conditional distribution

f(xn|α) =
α√
2π

exp{−α2x2
n/2}, (5)

α = 1/σ, and σ2 is the variance. Note that the choice of

using α rather than σ as the modeled noise parameter in this

work avoids having integration variables in the denominator,

thus simplifying closed-form analysis. Given an i.i.d. process

where α is fixed for a short time consisting of N samples, the

marginal pdf of the vector x is

f(x) =
1

(2π)N/2

∫
∞

0

f(α)αN exp

{

−α2

2

N∑

n=1

x2
n

}

dα, (6)

where f(α) is the pdf of the unknown noise parameter α. Since

the energy p =
∑N

n=1 x2
n is a sufficient decision statistic here,

we concentrate on this parameter.

The distribution of p conditioned on α is given by the Chi-

Squared distribution, or

f(p|α) =
α2

2N/2Γ(N/2)
(α2p)N/2−1 exp{−α2p/2}, (7)

and the marginal distribution f(p) therefore becomes

f(p) =
1

2N/2Γ(N/2)

∫
∞

0

f(α)α2(α2p)N/2−1 exp{−α2p/2} dα.

(8)

The idea of this paper is to choose a distribution for the inverse

noise level f(α) that not only can be used to calibrate a

practical system, but also has a simple form allowing (8) to

be derived in closed form.

The lognormal distribution is often proposed for modeling

the variance of fading and noise processes, in which case f(σ)
is expressed as

fLN(σ) =
1

σ
√

2πσLN

exp

{

−1

2
(log σ − µLN)2/σ2

LN

}

. (9)

where µLN and σLN are the mean and standard deviation of

log σ. Expressed in dB units µLN = δµdB and σLN = δσdB,

where δ = log(10)/20. Letting α = 1/σ, (9) can be

transformed to

fLN(α) =
1

ασLN

√
2π

exp

{

−1

2
(log α + µLN)2/σ2

LN

}

,

(10)

which differs from (9) only in the sign of µLN. A major draw-

back of the lognormal distribution, however, is that closed-

form analysis is often difficult.

For small levels of noise uncertainty, we consider a much

simpler model, where f(α) is assumed to be Gaussian which

is fit to (10) using closed-form expressions for the mean and

variance of (10) given by

µα = E {α} = exp{−µLN + σ2
LN/2}, (11)

σα = Std{α} = [exp(σ2
LN) − 1] exp(−2µLN + σ2

LN), (12)

where Std(·) denotes standard deviation. The pdf f(α) is then

given by

f(α) =







1

Cα

√
2πσα

exp

{

−1

2

(α − µα)2

σ2
α

}

, α > 0,

0, otherwise,
(13)

where the rescaling constant Cα = erfc[−µα/(
√

2σ2
α)]/2

results from the truncation of the left tail of the Gaussian at

α = 0 and erfc(·) is the complementary error function. Note

Cα ≈ 1 is omitted from later derivations, but it should be

included if exact expressions are required.

A. Single Sample: Marginal Distribution

Assuming the Gaussian model for f(α), the marginal distri-

bution of a single real sample is f(x) =
∫
∞

0
f(α)f(x|α)dα,

or

f(x) =
1

2πσα

∫
∞

0

αe−α2x2/2e−(α−µα)2/(2σ2

α
) dα, (14)

=
1

2πσα

∫
∞

0

αe−[aα2
−bα+c] dα, (15)
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where

a =
x2

2
+

1

2σ2
α

, (16)

b = µα/σ2
α, (17)

c = µ2
α/(2σ2

α). (18)

The integral is of the form of the error function, which can

be obtained by completing the square, resulting in

f(x) =
e−c3

4πσα

[

e−c1c2

2

c1
+

√
π

c1
erfc(−√

c1c2)c2

]

, (19)

where

c1 = a, (20)

c2 = µα/(σ2
αx2 + 1), (21)

c3 =
1

2

µ2
α

σ2
α

[

1 − 1

σ2
αx2 + 1

]

. (22)

B. Multiple Samples: Energy Distribution

For multiple independent samples, we will consider only

the distribution of the energy p, which is a sufficient statistic

whose distribution (8) becomes

f(p) =
1

2N/2Γ(N/2)
(23)

×
∫

∞

0

1√
2πσα

e−(α−µα)2/(2σ2

α
)α2(α2p)N/2−1e−α2p/2 dα,

(24)

= c0

∫
∞

0

αNe−(aα2
−bα+c) dα, (25)

= c0

∫
∞

0

αNe−c1(α−c2)
2
−c3 dα, (26)

= c0e
−c3

∫
∞

−c2

(α + c2)
Ne−c1α2

dα, (27)

= c0e
−c3

N∑

k=0

(
N
k

)

ck
2

∫
∞

−c2

αN−ke−c1α2

dα

︸ ︷︷ ︸

I

, (28)

where

a = c1 =
p

2
+

1

2σ2
α

, (29)

b = µα/σ2
α, (30)

c = µ2
α/(2σ2

α), (31)

c0 =
pN/2−1

2N/2Γ(N/2)
√

2πσα

(32)

c2 = µα/(σ2
αp + 1) (33)

c3 =
1

2

µ2
α

σ2
α

[

1 − 1

σ2
αp + 1

]

. (34)

The integral I = I1 + I2 can be evaluated by letting I1 and I2

be the contribution from α on the negative and positive axes,

respectively, followed by the substitution u = c1α
2:

I1 = (−1)N−k

∫ c2

0

αN−ke−c1α2

dα, (35)

=
(−1)N−k

2cLk

1

∫ c1c2

2

0

u(N−k−1)/2e−u du

︸ ︷︷ ︸

Γ(Lk, c1c
2
2)Γ(Lk)

, (36)

where Lk = (N + 1 − k)/2, and

Γ(a, x) =
1

Γ(a)

∫ x

0

e−tta−1 dt (37)

is the incomplete Gamma function. Similarly,

I2 =

∫
∞

0

αN−ke−c1α2

dα =
1

2cLk

1

Γ(Lk). (38)

Combining results in

f(p)=
c0e

−c3

2

N∑

k=0

(
N
k

)
ck
2

cLk

1

Γ(Lk)
[
1+(−1)N−kΓ

(
Lk, c1c

2
2

)]
.

(39)

C. Comparison of Gaussian and Lognormal

It is instructive to consider in what situations the Gaus-

sian assumption for f(α) provides a reasonable model. Fig-

ure 1 plots f(α) side-by-side with f(x) (single sample) for

µdB = 0 dB and different values of σdB ∈ {0.5 dB, 1.0 dB,

2.0 dB}. A log scale is used for f(x) to highlight the small

differences in the distribution tails. For small and moderate

levels of noise uncertainty, the Gaussian approximation for

f(α) is very close to the lognormal model. Also, for low noise

uncertainty, the small mismatch in f(α) results in negligible

error in the marginal density f(x). For larger noise uncertainty,

significant differences in the two models can be seen.

IV. DETECTION WITH NU

In this section we demonstrate with a simple example how

having a model of the noise uncertainty can increase detection

performance and remove the SNR wall. In this example,

α is considered to be an unknown parameter following a

lognormal distribution with µdB =0 dB and σdB=1 dB, which

is subsequently fit using a Gaussian distribution. Signal and

noise variance are assumed to be equal (SNR=0 dB) and

N = 20 samples are used for detection.

First, a worst-case analysis like that presented in [2] is

considered. Here, only bounds are set on the noise level, and

the structure of the noise variation is ignored. It is assumed

that the worst-case values for α are µα ± 1.5σα, which is

conservative since the α will sometimes fall outside of these

bounds. Figure 2 shows the Chi-Squared pdfs for the worst

case assumption (4), indicating that detection is not possible

since the H0 curve is actually to the right of the H1 curve.

Next, the structure of the noise error in (39) is taken into ac-

count, producing the pdfs in Figure 3 and indicating sufficient

separation for useful detection. Figure 4 shows the detection

performance from the worst case analysis and the case that
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Fig. 1. A comparison of the lognormal distribution on α and a Gaussian approximation of the same distribution for different levels of noise uncertainty:
σdB ∈ {0.5 dB, 1.0 dB, 2.0 dB}. The noise uncertainty pdf f(α) is plotted on the left, and the corresponding marginal single sample pdf f(x) is plotted
on the right for each level of noise uncertainty. MC gives the results of Monte-Carlo simulations of the exact distribution with lognormal NU, compared with
the Gaussian NU approximation (Gauss), and no noise uncertainty (No NU).

exploits the noise error pdf. In the worst-case analysis, the

SNR wall has clearly been crossed, since Pd < Pfa. On the

other hand, exploiting the known statistics of the noise error

allows useful detection even when the exact noise level is

uncertain.

V. NOISE CALIBRATION MEASUREMENT

In this section we present the results of an experiment that

tests the possibility of energy detection at low SNR using

practical hardware. As indicated in [2], noise calibration can be

difficult in traditional wireless receivers where it is unknown if

the primary is present or not. However, since most of the noise

in a true receiver comes from the front-end low-noise-amplifier

(LNA), the simple architecture depicted in Figure 5(a) can be

used for noise calibration. To learn the noise distribution, the

cognitive radio node periodically switches the receive channel

away from the antenna to the matched termination to sample

and learn the noise distribution.

This idea was tested using the experimental setup shown

schematically in Figure 5(b). The setup employs a custom

multiple-input multiple-output (MIMO) channel sounder that

is basically equivalent to that presented in [4], with the
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assuming a worst-case model on the noise variation
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Fig. 3. Distribution of f(p) for noise (H0) and signal plus noise (H1) using
the proposed Gaussian NU model

exception that custom FPGA-based data acquisition is used

in the present system.

The transmit (TX) node simulates the primary user, where a

baseband Gaussian signal with a flat W = 20 MHz bandwidth

is generated in 100 µs frames with the arbitrary waveform

generator (AWG), up-converted to 2.55 GHz, power amplified

to 23 dBm, and fed to either the active transmit channel (TX1)

or a matched load (TX0). The channel is a simple direct cable

connection from the transmitter to receiver, where different

fixed attenuators are inserted giving loss L and producing

different SNR levels at the receiver.

The receive (RX) node simulates the cognitive radio that

employs a switch to feed its single receive chain either from

the channel (RX1) or from a matched load (RX0). The receive

chain consists of a 40 dB wideband LNA, down-conversion

to a 50 MHz IF, followed by FPGA-based fs = 200 MS/s
data-acquisition. For this experiment, the raw IF samples are

stored, passed to a PC, down-converted to complex baseband,

and filtered (20 MHz bandwidth) using MATLAB before

performing energy detection.

A total of M data records are acquired during each mea-

surement, where the mth record is depicted in Figure 5(c).

0
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0.6
0.7
0.8
0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
d

Pfa

Modeled NU
Worst Case NU

Fig. 4. Probability of detection Pd versus probability of false alarm Pfa for
the worst-case assumption and the proposed NU model

Fig. 5. Measurement setup for experimental study: (a) envisioned cognitive
radio employing noise calibration, (b) channel sounder based acquisition
system for experiment, (c) acquisition frame structure

Four phases are used in each record to probe all four switch

combinations. Within a single phase, the channel is acquired

for T = 100 µs followed by a delay of TD, where TD = 0 can

be used for back-to-back acquisition. During post-processing,

only Ns samples within each acquisition window are used,

thus spanning time Ts = Ns/fs in order to simulate different

integration windows in a cognitive radio energy detector. We

will denote the nth filtered complex-baseband sample, of the

kth phase, in the mth record as xm,k,n. The four phases are

denoted symbolically as k ∈{TX1 RX1, TX0 RX1, TX1 RX0,
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M = 800 realizations. Fitted stationary Chi-Squared distributions are also
shown (dashed lines).

TX0 RX0}.

The energy in each record is computed using a variable

window size Ns according to simple integration, or

pm,k =

N1+Ns∑

n=N1+1

|xm,k,n|2, (40)

where N1 = 50 samples are always skipped at the beginning

of each frame to avoid artifacts from the switching operations.

Empirical distributions of the noise and signal plus noise

energy are finally computed with a histogram using the M
energy snapshots in (40).

Empirical signal and noise pdfs are also compared with ideal

Chi-Squared pdfs with N = 2WNs/fs degrees of freedom

with sample variance estimated according to

σ2
k =

1

NsM

M∑

m=1

pm,k. (41)

The SNR (ρ) in dB is estimated at an attenuation level of

L =80 dB (high SNR) using

ρ(L = 80 dB) = 10 log10

(
σ2

TX1RX1

σ2
TX1RX0

)

, (42)

and SNR at lower attenuation levels is computed using ρ(L) =
ρ(L = 80 dB) + 80 − L. Note that for convenience, pdfs

are normalized with respect to the expected noise energy

σ2
TX1RX0Ns.

Figure 6 plots empirical noise/signal pdfs for the four phases

compared with Chi-Squared pdfs for TD = 0 (back-to-back ac-

quisition), L = 110 dB (ρ = −6 dB), and Ns = 100 samples

(N = 40). First, the simple Chi-Squared distribution (no noise

uncertainty) provides a good fit to the empirical pdfs for all

cases, suggesting that the noise parameter α is fairly constant

over the total acquisition time of 4TM = 320 ms. Also, there

is no apparent difference in the energy pdfs for the three noise-

only (H0) phases, indicating that having the RX connected to

a matched load (TX1 RX0 and TX0 RX0) is equivalent to
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Fig. 7. Probability of detection (Pd) versus probability of false alarm (Pfa)
for TD = 0, L = 110 dB (ρ = −6 dB), and Ns ∈{100,800,6400}.
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Fig. 8. Empirical pdfs (solid lines) for the four measurement phases with
parameters: TD=24 ms, L=110 dB (ρ = −6 dB), Ns = 100, and M =
600 realizations. Fitted stationary Chi-Squared distributions are also shown
(dashed lines).

measuring the channel with the transmitter not present (TX0

RX1). Finally, good separation of the pdfs for the H0 phase

and H1 phase (TX1 RX1) is demonstrated, indicating that

useful detection with the direct noise measurement is possible.

Figure 7 plots probability of detection Pd versus probability

of false alarm Pfa for the same case, computed directly

from the empirical pdfs, where phase TX1 RX0 is used to

estimate hypothesis H0. The result shows that when the noise

distribution is measured, near perfect detection is possible if

the sample size is made large enough.

Figure 8 plots the empirical pdfs of the four phases for

the same case, but with a longer delay between acquisitions

TD = 24 ms. Although we expected that increased noise

uncertainty would result and spread the pdfs for the longer

acquisition time of 4(TD + T )M = 58 s, they still exhibit

an excellent fit to the simple Chi-Squared distribution with

no noise uncertainty. Possible reasons that the noise process

is so stable is that an instrument-grade LNA is used and the

temperature in the channel sounder was likely very constant.

In the future, we intend to study inexpensive consumer-grade

292



0

2

4

6

8

10

12

14

16

18

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

P
ro

b
.

D
en

si
ty

Norm. Energy

TX1 RX1
TX0 RX1
TX1 RX0
TX0 RX0

Fig. 9. Empirical pdfs (solid lines) for the four measurement phases with
parameters: TD=24 ms, L = 120 dB (ρ = −16 dB), Ns = 6400, and
M = 600 realizations. Fitted stationary Chi-Squared distributions are also
shown (dashed lines).
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for TD = 0, L = 120 dB (ρ = −16 dB), and Ns ∈{100,800,6400} samples

LNAs under varying environmental conditions, where noise

uncertainty is more likely to occur and noise calibration is

more challenging.

Figure 9 shows pdfs for the case of lower SNR L = 120 dB
(ρ = −16 dB), TD = 24 ms, and Ns = 6400 samples.

Even though the separation of the pdfs is poorer in this case,

the detection performance plotted in Figure 10 indicates that

the SNR wall effect is avoided, and useful detection is still

possible with a long enough integration time.

In the future, the system will be modified to allow longer

integration times where the effects of noise uncertainty are

more likely to be observed. However, these results suggest

that detection at SNRs of -16 dB or lower should be possible

using simple noise calibration.

VI. CONCLUSION

Although noise uncertainty can be a severe impairment to

robust detection in cognitive radio at low SNR, this paper

has shown that the SNR wall effect can be overcome by

proper specification of the noise variation. A closed-form pdf

that assumes a Gaussian distribution for the inverse noise

standard deviation was derived and it was shown that the

model provides a good fit to the more commonly assumed

lognormal pdf for low to moderate noise uncertainty. A

simulation example was presented, confirming that by properly

modeling the noise uncertainty, the SNR wall phenomenon can

be avoided, providing useful energy detection performance at

very low SNR.

Initial experimental measurements were also presented that

explore energy detection performance in a true receiver using

practical hardware. Detection performance based on empir-

ically measured pdfs indicated that useful detection down

to at least -16 dB is possible with energy detection using

sufficient integration time. Measured noise distributions over

short (0.3 s) and moderate (58 s) acquisition times showed

negligible deviation from a Chi-Squared distribution, suggest-

ing that the noise level in our system is very stable and that

detailed modeling of the noise uncertainty is unnecessary for

sub-minute integration times.

Since only an expensive instrument-grade LNA was consid-

ered in this work, future work will explore noise variation in

low-cost commercial-grade amplifiers that may exhibit noise

statistics that are much less stable. Additionally, due to existing

limitations of the system acquisition firmware, we could not

explore the performance of very long acquisition times, which

will also be the subject of future investigations.
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