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Abstract—Reconfigurable aperture (RECAP) antennas can be
considered a generalization of the reconfigurable antenna con-
cept, consisting of a large array of reconfigurable elements and
supporting many applications like adaptive matching, frequency
agility, and beam- and null-formation. Although providing sim-
ilar functions to phased arrays, the non-linear and non-convex
nature of the objective function requires global search methods
such as genetic algorithms or particle swarm optimization, which
may be inappropriate for real-time, in-situ optimization. To
overcome this difficulty, a first-order model for parasitic RECAPs
is developed herein, whose simple geometric interpretation leads
to straightforward and useful solutions for beamforming and
nullsteering. It is also demonstrated how the first-order solution
can be used to seed an efficient local optimizer to find exact solu-
tions to the complicated full-order objective function. The utility
of the method is demonstrated through numerical examples and
performance is compared with a genetic algorithm.

I. INTRODUCTION

Parasitic antenna arrays were introduced by Harrington in

[1], and more recently have gained significant attention [2–4]

due to their ability to perform beamforming, nullsteering, and

dynamic matching by simple electronic tuning of the parasitic

reactive loads. These architectures have the potential to support

required smart-antenna operations with only a single radio-

frequency (RF) and digital signal processing (DSP) channel,

providing reduced cost and power consumption.

Unfortunately, a potential difficulty with reactively con-

trolled parasitic arrays is that the optimization of the parasitic

loads for a particular application is a non-linear and non-

convex optimization problem, usually requiring global search

methods [5]. Methods such as genetic algorithms (GAs),

particle swarm optimization, and ant colony optimization

have been successfully employed, but these methods usually

require a lengthy search of the domain space, making them

inappropriate for real-time, in-situ optimization of the parasitic

arrays. Although libraries of useful solutions for a parasitic

array could be generated off-line and stored for real-time

use, such methods do not allow the system to adapt to new

unforeseen conditions.
In this paper, an efficient method for optimizing recon-

figurable parasitic arrays is presented, allowing solutions for

beamforming and nullsteering to be directly computed. The

method is based on a reduced-order approximation of the

response of the parasitic array, not only allowing fast solutions

to be developed, but also useful insight on the operation

of parasitic arrays to be developed, which is typically not
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Fig. 1. A general parasitic antenna array

gained from global optimization techniques like GAs. It is

also demonstrated how the first-order solution can be used to

seed a Newton-based optimization method that efficiently finds

exact nulls of the original non-convex objective function.

The paper is organized as follows: Section II briefly presents

the network model and parameters of the parasitic antenna

array. Section III explains the reduced-order modeling strategy,

first-order solutions for beamforming and nulls, and the re-

finement procedure using a Newton-based method. Section IV

presents numerical examples and compares performance with a

genetic algorithm. Concluding remarks are given in Section V.

II. PARASITIC ANTENNA ARRAY

Figure 1 depicts the parameters of a generic parasitic

antenna array. Although only a single polarization is consid-

ered in this work, the method is easily extended to multiple

polarizations.

The depicted N -port antenna array is completely charac-

terized by the N×N S-parameter matrix (S) looking into the

array and the N Z0-terminated embedded radiation patterns of

the elements, where ek(ŝ) is the embedded pattern in direction

ŝ for the kth port [6]. For use as a parasitic array, we designate

Port 1 as the feed with input and output waves aF and bF ,

and Ports 2 through N as parasitic elements, whose input

and output waves are collected into the vectors aR and bR.

Likewise, the Z0-terminated embedded radiation pattern of the

feed is eF(ŝ) and radiation patterns of the parasitic ports are

collected into the vector eR(ŝ). The N − 1 parasitic antenna
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Fig. 2. 5×5 parasitic dipole array, where the center element is the active
feed and surrounding elements are reactive reconfigurable loads

ports are terminated with reactive elements having a diagonal

input reflection matrix Γ. To simplify notation, S is partitioned

according to

S =

[
SFF sFR

sRF SRR

]

. (1)

Network analysis reveals that the radiated far-fields for a

single polarization of the general parasitic array into direction

ŝ is [6]

e(ŝ) =
[
eF(ŝ) + e

T
R(ŝ)Γ(I − SRRΓ)−1

sRF

]
aF. (2)

The goal of this work is then to find efficient direct solutions

for Γ that maximize gain (beamforming) or minimize gain

(null steering) for arbitrary target directions.

The specific parasitic array that will be considered in

Section IV is depicted in Figure 2, consisting of 5×5 dipoles

with λ/4 inter-element spacing, where λ is the free-space

wavelength, similar to the array presented in [7]. The center

dipole is the feed and the other dipoles are terminated with

lossless reactive loads. S-parameters and embedded patterns

of the dipoles are found using the Numerical Electromagnetics

Code (NEC) assuming dipole length 0.475λ and radius 0.001λ
with 21 wire segments per dipole.

III. REDUCED-ORDER PARASITIC RECAP MODEL

A basic problem with minimizing or maximizing radiated

power given by |e(ŝ)|2 based on (2), is the non-convex

dependence on Γ, which leads to many local minima or

maxima and typically necessitates a global search procedure

such as a GA. This section describes a simple reduced-order

representation of a parasitic array that not only allows simple

direct optimization, but also provides valuable insight on the

operation of the array.

Consider a parasitic array with aF = 1 and low mismatch

(SRR ≈ 0) of the parasitic antennas, such that the inverse

term in (2) representing multiple reflections among the REs

can be treated as identity. This approximation leads to a first-

order model where the radiation pattern depends linearly on

the loads, and considering a single radiation direction ŝ, the
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Fig. 3. Geometrical interpretation of vector alignment for first-order (a)
beamforming and (b) nullsteering

first-order model is

e(ŝ) = eF(ŝ)
︸ ︷︷ ︸

α

+

N−1∑

m=1

eR,m(ŝ)sRF,m
︸ ︷︷ ︸

βm

Γm, (3)

where we define Γm = Γmm. Visualizing the phasors α, βm,

and Γm in the complex plane, there is a simple geometric

interpretation for the dependence of radiated field in direction

ŝ on the load reflection coefficients Γm as illustrated in Fig-

ure 3. Assuming losses reconfigurable elements (|Γm| = 1),

changing the phases of the Γm simply rotates the vectors βm

in the complex plane, and the sum of all the rotated vectors

gives the radiated field due to the reconfigurable elements.

Figures 3(a) and (b) illustrate how the vectors can be aligned

for beamforming or nullsteering for the simple case of a 2-

element RECAP, and the general procedure is explained below.

A. Beamforming Solution

Beamforming is perhaps the simplest application of the

RECAP, and the maximization of (3) is accomplished by

choosing the phases of Γm to align the phases of the βm with

the phase of α. This ensures that all waves from the REs in the

direction ŝ will add coherently with the radiated wave from

the feed. The general solution is Γm = exp[j(∠α − ∠βm)].
Figure 3(a) illustrates the principle for a single feed and two

REs.

The geometrical solution also yields insight on the gain

limitation of the RECAP, since the magnitude of the field in

direction ŝ has a maximum value of |α| +
∑

n |βn|.

B. Nullsteering Solution

Consider now creating a single null in direction ŝ. In this

case, the phases of the Γm should be chosen to cancel the wave

due to the feed in direction ŝ. However, care should be taken

since simply aligning the vectors in direction −α may lead

to overshoot. Figure 3(b) depicts an arrangement for two REs

that will generate a null. For a large number of reconfigurable

elements, the best strategy for creating a null is not obvious,
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since there may be many possible vector-alignment solutions,

and parameterizing all of these solutions appears to be non-

trivial.

We propose a simple heuristic approach for vector-

alignment for null formation, where the βm are first sorted

according to descending magnitude. The phases of the loads

are then computed sequentially, where at step m, we have

∠Γm = angle(−α −

m−1∑

n=1

βnΓn) − βm. (4)

The basic idea is to use the longest βm vectors first to move

coarsely in the direction of the goal. As m increases and we

are progressively closer to the goal, shorter βm vectors should

be used to allow movements in smaller increments.

Note that like beamforming, the geometric interpretation

lends insight on the limits of the parasitic array for the

nullsteering application. A perfect null can be created in a

single direction as long as
∑

n |βn| ≤ |α|, which indicates

the minimum number of elements that are needed for null

formation.

C. Multiple Goals

For real applications, we will typically have multiple goals,

such as the formation of multiple nulls or a null in one

direction and high gain in another direction. The geometric

interpretation of the first-order expression still holds for K
goals, where the kth goal is concerned with direction ŝk, and

e(ŝk) = eF(ŝk)
︸ ︷︷ ︸

αk

+

N−1∑

m=1

eR,m(ŝk)sRF,m
︸ ︷︷ ︸

βkm

Γm. (5)

Now, however, we have K plots like Figure 3, and the single

set of Γm needs to be chosen to rotate βkm in each plot to

enhance (for beamforming) or cancel (for nulling) the αk on

those plots. Obviously, we usually have competing goals where

optimal alignment for one goal will move in sub-optimal

directions for other goals.

Developing methods for satisfying joint goals on the basis of

the first-order model appears to be difficult, especially for nulls

that are sensitive to very small errors. Since beamforming is

mostly insensitive to error, in this paper we only consider using

the first-order model for beamforming and use an efficient

Newton-based optimizer to modify that solution to find one or

more nulls. However, methods for directly exploiting reduced-

order models to find useful solutions for multiple goals re-

mains an important aim of this research.

D. Newton-Based Local Optimization

An obvious drawback of the first-order solution is that

multiple reflections cause (3) to not be precisely equal to (2).

Although beamforming is somewhat insensitive to this effect,

even small amounts of error can destroy null formation. Here

we provide a local optimization approach based on Newton’s

method that allows exact nulls to be found in an efficient

manner.

Our goal is to develop a first-order approximation of (2)

within the neighborhood of the reflection coefficient matrix Γ,

which can be accomplished using a multidimensional Taylor

series. Considering lossless reconfigurable elements, Γℓℓ =
exp(jθℓ), and using the identities for matrix derivatives

∂A
−1

∂x
= −A

−1 ∂A

∂x
A

−1, (6)

∂a
T
Ab

∂x
= a

T ∂A

∂x
b, (7)

the derivative of (2) with respect to the phase of the ℓth load

can be evaluated as

∂e(ŝ)

∂θℓ

=−e
T
R(Γ−1−SRR)−1∂(Γ−1−SRR)

∂θℓ

(Γ−1−SRR)−1
sRF.

(8)

Evaluating the inner derivative in (8),

[
∂(Γ−1 − SRR)

∂θℓ

]

mn

=
∂(Γ−1 − SRR)mn

∂θℓ

(9)

= −j δmℓδnℓ
︸ ︷︷ ︸

(1ℓℓ)mn

exp(−jθℓ) (10)

where 1ik is an elementary matrix that is all zeros except for

a 1 for the ikth element. Combining (8) and (10),

∂e(ŝ)

∂θℓ

= jeT
R(ŝ)(Γ−1− SRR)−1

1ℓℓ(Γ
−1− SRR)−1

sRFe−jθℓ ,

(11)

and the (N −1)×1 gradient vector d is formed with elements

dℓ = ∂e(ŝ)/∂θℓ. Next, the first-order Taylor series for real

and imaginary parts of (2) is formed by expanding about the

point θθθn to obtain the solution at a new point θθθn+1 according

to

ere(ŝ, θθθn+1) = ere(ŝ, θθθn) + d
T
re(θθθn)(θθθn+1 − θθθn), (12)

eim(ŝ, θθθn+1) = eim(ŝ, θθθn) + d
T
im(θθθn)(θθθn+1 − θθθn), (13)

where

dre(θθθ) = Re
{
d|Γ(θθθ)

}
ere(ŝ, θθθ) = Re

{
e(ŝ)|Γ(θθθ)

}
(14)

dim(θθθ) = Im
{
d|Γ(θθθ)

}
eim(ŝ, θθθ) = Im

{
e(ŝ)|Γ(θθθ)

}
. (15)

To find a null, we set ere(ŝ, θθθn+1) = eim(ŝ, θθθn+1) = 0, or

[ere(ŝ, θθθn) eim(ŝ, θθθn)]T
︸ ︷︷ ︸

b

= − [dre(θθθn) dim(θθθn)]
︸ ︷︷ ︸

A

T(θθθn+1 − θθθn)

(16)

which can be solved as

θθθn+1 = θθθn − (AT )+b, (17)

where (.)+ is the pseudo-inverse. A near-exact null can then

be found by obtaining an initial guess with the first-order

solution, and then solving (17) iteratively. The method is easily

extended to multiple nulls by including additional columns in

A and elements in b in (16) for each additional direction ŝk,

analogous to those for the first null.

IV. ILLUSTRATIVE EXAMPLES

This section provides some examples of the methods that

were developed in the previous section.
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Fig. 4. Example application of geometrical solution showing synthesized
beams for a steering angle of φ0 = 45

◦ for random search and the direct
solution. For the direct solution, both the approximate reduced-order and exact
radiation patterns are plotted.

A. Beamforming

As an example application of the method, we present

beamforming for a rectangular parasitic dipole array shown

in Figure 2. Figure 4 plots the gain of the parasitic antenna in

the azimuthal plane for a steering angle of φb = 45◦. In this

plot, “Random” denotes the gain of the best solution found

with a random search of 1000 candidate RE configurations

(results averaged over 100 trials). For the “Direct” solution

curves, load reflection coefficients (in Γ) are found using the

simple geometric solution, where the curves for “Reduced-

order” and “Exact” give the patterns computed for the same

solution Γ, but using (3) and (2), respectively, corresponding

to the reduced-order pattern and the exact pattern.

The result shows that the direct method is able to find a

better solution on average than the random search with 1000

candidates. Also, note that the run-times of the two algorithms

with a MATLAB implementation are approximately 9.5 s and

12 ms for the random search with 1000 candidates and the

direct method, respectively, indicating that the direct method

is much more suitable for real-time implementation than

unstructured search methods.

B. Joint Beamforming and Nullsteering

In this section, we consider joint beamforming and null

steering with the 5×5 array, where the first-order approxi-

mation is used to find a main beam, which is subsequently

refined with the Newton-based method to find one or more

nulls.

Figure 5 shows the direct first-order solution for a main

beam in direction φ = 45◦. As indicated in the plot, beam-

forming tends to be insensitive to small errors, and the first

order solution provides a useful beamforming solution for the

exact expression (2) as well. Next, from 1 to 8 nulls are formed

by applying (17) iteratively until a minimum main-beam to

null gain (Gb−n) separation of 60 dB is achieved. The method

was run for 200 realizations consisting of a random main

beam and random null positions having a minimum angular

separation of 10◦, and average performance is given in Table I

for different numbers of nulls. The result indicates that near

exact nulls can be created with relatively few iterations (M )
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Fig. 5. Azimuthal gain pattern of the RECAP for the first-order and exact
expression using the first-order beamforming solution for ΓΓΓ

TABLE I
PERFORMANCE OF DIRECT-NEWTON METHOD

Nnull 1 2 4 8

Gb 8.7 dB 6.0 dB -1.4 dB -17.5 dB
Gb−n 88 dB 88 dB 87 dB 87 dB
M 3 4 7 45
t 39 ms 53 ms 85 ms 489 ms

of the algorithm and low average run times per realization

(t), but that for increasing numbers of nulls the gain in the

specified main-beam direction (Gb) is significantly degraded.

The table suggests that when the amount of reconfigurability

is high relative to the number of nulls, there are numerous roots

of (2) available in search space and “excess reconfigurability”

allows nulls to be found very efficiently with minimal impact

on the first-order solution for the main beam. However, as

the number of nulls increases and approaches the limits

of the structure, the number of required iterations increases

dramatically and the impact on the main beam is significant.

C. Comparison with a Genetic Algorithm

Genetic algorithms are well suited for difficult optimization

problems with multiple goals such as RECAP optimization.

Here, we compare the joint beamforming and nullsteering

solution from the previous section with solutions obtained by

a genetic algorithm (GA).

The GA here is similar to that employed in [7], and operates

on a population of 100 candidate individuals, where the best

10 individuals are retained in each iteration (elitism). The

chromosome vector consists of genes that are the real-valued

phases θθθ, where the 5×5 array is scanned in a raster-like

fashion. For each iteration, parents are selected randomly from

the 10 best individuals, and the child chromosome is generated

by copying element-by-element from one parent, where for

each copy there is a probability of 0.2 of switching (crossing

over) to the other parent, allowing multiple cross-overs to

occur. Finally, each gene of the children is mutated with a

probability of 0.2, and a mutation causes that element to

assume a random phase uniformly distributed on [0, 2π]. The

fitness function is the minimum gain separation from the main

beam to nulls, given by

Gb−n = GdB(φbeam) − max
k

GdB(φnull,k), (18)
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TABLE II
COMPARISON OF GENETIC ALGORITHM AND DIRECT METHOD

Nnull 1 2 4 8

Gb GA 8.7 dB 5.9 dB 7.7 dB 9.9 dB
Direct 11.4 dB 10.0 dB 9.1 dB 1.1 dB

Gb−n GA 67 dB 60 dB 48 dB 23 dB
Direct 96 dB 95 dB 73 dB 102 dB

t GA 33 s 133 s 554 s 554 s
Direct 0.033 s 0.049 s 0.084 s 0.336 s

where φbeam is the direction of the desired main beam,

φnull,k is the direction of the kth desired null, and the genetic

algorithm is stopped when Gb−n reaches 60 dB or 1000

iterations have been performed.

Figures 6(a)-(d) compare the direct solution with a single

run of the genetic algorithm for a desired main beam at 45◦

and from 1 to 8 nulls at fixed angles 100◦, 130◦, . . . , 310◦.

The direct solution uses the same approach as in the previous

section, where a main beam is found with the first-order

solution and refined with the Newton-based method to find

the nulls. From 1 to 4 nulls, there is remarkable similarity in

the solutions found by the two distinct methods, with the direct

method providing slightly higher gain and deeper nulls. For 8

nulls, the performance of the two methods diverges, since the

GA is not able to find a suitable solution after 1000 iterations.

Table II gives the numerical performance of the genetic

algorithm and direct method. As indicated, for relatively few

nulls, the performance of the two methods is similar, except

that the direct method is over 1000 times faster than the GA.

V. CONCLUSION

This paper has presented a direct method for optimization of

reconfigurable parasitic antenna arrays using a reduced-order

method that not only allows solutions for beamforming and

nullsteering to be found very efficiently, but also provides valu-

able insight on the operation of the RECAP antenna. Numeri-

cal examples demonstrated that the proposed method strongly

benefits from excess reconfigurability, providing many nulls

in the search space that can be found rapidly with a Newton-

based local optimizer. Comparison with a simple genetic

algorithm indicated that the direct method can provide a

factor of 1000 reduction in computational complexity. In future

work, we will demonstrate how to extend the method to

true in-situ cases where the optimizer does not have access

to directional information like the antenna gain pattern or

interferer directions, and must operate directly from SINR

estimates. Future goals also include extension of the Newton-

based method to constrain the main beam gain and incorporate

practical limitations of the reconfigurable elements.
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