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Abstract—Reconfigurable aperture (RECAP) antennas consist
of a regular array of reconfigurable elements whose state can
be changed dynamically, supporting beamforming, null-steering,
adaptive matching, frequency agility, etc. Finding the required
state of the reconfigurable loads for a given application is difficult,
due to the non-convex and non-linear nature of the optimization
problem, and generic unstructured global optimization methods
such as genetic algorithms and particle swarm optimization have
been proposed. Although appropriate for off-line optimization,
such unstructured methods are computationally intensive and
may not be appropriate for dynamic in-situ optimization, indi-
cating the need for methods that exploit the problem structure
directly. To this end, a novel method for optimization of parasitic
RECAPs for beamforming and null-steering is presented, which
combines direct optimization of a reduced-order reflection model
of the RECAP with efficient Newton root optimization. Initial
simulations presented herein suggest that the developed method
may be orders of magnitude more efficient for beamforming and
null-steering than unstructured optimization methods.

I. INTRODUCTION

Reconfigurable aperture (RECAP) antennas can be viewed
as a generalization of reconfigurable antennas or parasitic
antenna arrays, and consist of a single feed element surrounded
by other elements loaded with programmable reactances.
RECAPs and parasitic arrays have received significant atten-
tion [1]-[3] and have many useful functions including beam-
forming, null-steering, interference suppression and adaptive
matching. Higher spectral efficiency provided by these RECAP
structures is also of high interest considering the limited
availability and expensive nature of radio frequency (RF)
spectrum. In contrast to smart antenna architectures, which
require multiple RF chains and expensive DSP capability,
RECAPs need only a single RF and DSP channel and at the
same time provide similar functionality as the smart antenna
concept.

One important challenge of RECAP structures is the prob-
lem of optimizing the reconfigurable loads, which suffers from
local minima and maxima and often requires a global search
of the domain space to find the best solution. Significant
research has been performed in using intelligent techniques
and derivative-free methods such as genetic algorithms (GAs),
particle swarm optimization (PSO), ant colony optimization,
and various other techniques to find an optimal solution for
the parasitic loads [4],[5]. Although these techniques have
been successfully implemented, they typically require exten-
sive time to find an acceptable solution. The derivative-free
methods do not directly exploit the structure of the problem

and follow an off-line optimization procedure which leads
to greater time complexity than what might be necessary.
Furthermore there is no way to ascertain whether the solution
found by these algorithms is indeed optimal or not.

Reconfigurable antennas are especially beneficial if the
array elements can be optimized dynamically [6], and in such
a scenario RECAPs can adapt in-situ to new applications and
environmental conditions that are unforeseeable in the design
stage. Due to their computational complexity, techniques such
as the GA and PSO can only be expected to have limited value
for dynamic optimization in a real system. The development of
novel methods for RECAP optimization that are significantly
more efficient than unstructured global optimization methods
is therefore an important research topic.

In this paper, a novel method for direct optimization of
RECAPs is presented which directly exploits the structure
of the EM radiation problem. By combining direct solution
of a first-order approximation of RECAP radiation with ef-
ficient local optimization, orders of magnitude reduction in
computational complexity is achieved compared to existing
unstructured optimization methods.

II. DIRECT RECAP OPTIMIZATION

This section describes the model of the RECAP antenna
and develops an efficient optimization procedure for the beam-
forming and null-steering applications.

A. Parasitic Antenna Array

Figure 1 shows an N -port antenna array where the feed
element is represented by Port 1 while Port 2 to N represent
the parasitic loads. The scalars aF, bF, eF(ŝ), represent the
input wave, output wave, and the single polarization em-
bedded radiation pattern of the feed element in direction ŝ,
respectively. The vectors aR, bR, eR(ŝ), represent the input
wave, output wave and the embedded radiation pattern of
the parasitic ports in direction ŝ, respectively. The diagonal
input reflection matrix Γ is associated with the reactive re-
configurable elements (REs) with which the parasitic ports
are terminated. The input-output relationship of the RECAP
is given by [

bF

bR

]
=

[
sFF sFR

sRF SRR

] [
aF

aR

]
. (1)

The network analysis is similar to [7] and is treated in detail
in section III. The pattern of the radiated far-field for a single
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polarization in direction ŝ is given by

e(ŝ) =
[
eF(ŝ) + e

T
R(ŝ)Γ(I − SRRΓ)−1

sRF

]
aF. (2)

B. Beamforming and Null-steering

In this paper we restrict our attention to beamforming
and null-steering, which are two important applications of
reconfigurable structures. In order to create a main beam or a
null in an arbitrary direction ŝ we would like to maximize or
minimize |e(ŝ)|2 in (2) with respect to the diagonal reflection
matrix Γ of the reconfigurable loads. In this work it is assumed
that the reconfigurable loads are lossless reactances, meaning
that the diagonal terms have unit magnitude and are given
by ejθ , so that only the phases of the load reflections can be
varied.

Due to the presence of the inverse term in (2), direct
optimization of Γ is difficult. In order to simplify the problem
we consider the Neumann series, or

(I − SRRΓ)−1 =

∞∑
k=0

(SRRΓ)k. (3)

The first order solutions to this problem would therefore be
given by replacing (I − SRRΓ)−1 in (2) by (I).

Considering an array with aF = 1 the first order expression
of (2) can be written as

e(ŝ) = eF(ŝ)︸ ︷︷ ︸
α

+

N−1∑
m=1

eR,m(ŝ)sRF,m︸ ︷︷ ︸
βm

γm, (4)

where γm = Γmm. It can be noted from (4) that when α and
βmγm add in-phase a beam would be expected in that direction
since |e(ŝ)| would be maximized. Similarly, if α and βmγm

add out of phase such that −α =
∑N−1

m=1
βmγm a null would

be expected in that direction since |e(ŝ)| would be minimized.
As will be demonstrated, beamforming based on the first-

order expression in (4) also produces useful beamforming
solutions for the exact expression (2), which might be expected
since in-phase addition is somewhat insensitive to small phase
perturbations. In the case of null-steering, finding the mini-
mum gain for the first order solution is a useful starting point,
but obtaining optimal Γ for the exact expression in (2) requires
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Fig. 1. A general parasitic antenna array

additional effort. Although an exact cancellation of terms in
(4) represents approximate cancellation in (2), the effect of the
error from the higher order terms cannot be neglected since
the goal is to obtain zero radiated field in direction ŝ. Nulls
are therefore very sensitive to small changes in the value of
Γ and an optimal set of Γ values for (4) generally does not
result in a null for the exact expression in (2). Below we show
that near exact nulls can be found very efficiently by applying
Newton’s method to the result obtained with the first-order
solution.

In this iterative approach we first solve for the derivative of
(2) with respect to θl, where θl represents the phase of the lth
parasitic element in the array. It can be shown that

∂e(ŝ)

∂θl

= jeT
R(ŝ)(Γ−1− SRR)−1

1ll(Γ
−1− SRR)−1

sRFe−jθl

(5)
where 1ik is an elementary matrix that is all zeros except
for a 1 for the ikth element. Given the derivatives with
respect to each of the N − 1 parasitic loads, we form the
vector dl = ∂e(ŝ)/∂θl. Below we describe two methods for
efficiently finding a null using Newton’s method.

1) Separate Newton Step: The goal in the optimization is
to make both Re{e(ŝ)} = 0 and Im{e(ŝ)} = 0. Newton steps
can be applied separately to move in the direction of vanishing
Re{e(ŝ)} and Im{e(ŝ)} according to

θθθn+1 = θθθn − ere(ŝ, θθθn)dre(θθθn)

‖d(θθθn)‖2
− eim(ŝ, θθθn)dim(θθθn)

‖d(θθθn)‖2
(6)

where ere(ŝ) = Re{e(ŝ)}, eim(ŝ) = Im{e(ŝ)}, dre = Re{d},
dim = Im{d}, and θθθn = [θ1,n . . . θN,n]T . Using the first-order
solution as a starting point, it is expected that we should be
near a null, and only a few Newton steps should be required.
Alternatively, we can check whether the first order solution
provides a useful starting point by instead seeding the iteration
with a random starting point. The iteration in (6) is stopped
when the null is “deep enough” for a given application or
tolerance.

2) Joint Newton Step: A more rigorous approach is to
model e(ŝ) with the Taylor series

ere(ŝ, θθθn+1) = ere(ŝ, θθθn) + d
T
re(θθθn)(θθθn+1 − θθθn) (7)

eim(ŝ, θθθn+1) = eim(ŝ, θθθn) + d
T
im(θθθn)(θθθn+1 − θθθn). (8)

Setting ere(ŝ, θθθn+1) = eim(ŝ, θθθn+1) = 0, we have

[ere(ŝ, θθθn) eim(ŝ, θθθn)]︸ ︷︷ ︸
B

T = − [dre(θθθn) dim(θθθn)]︸ ︷︷ ︸
A

T (θθθn+1 − θθθn)

(9)
which can be solved as

θθθn+1 = θθθn − (AT )+B
T , (10)

where (.)+ is the pseudo-inverse.
Although somewhat more complex, this method has the

advantage of moving in the jointly optimal and minimum norm
direction to make both the real and imaginary radiated fields
in the specific direction tend to 0.

Having developed two methods for finding a single null, the
methods can be naturally extended to find multiple nulls. In
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(6) we simply extend the Newton step to be

θθθn+1 = θθθn−
∑

k

[
ere(ŝk)dre(ŝk)

‖d(ŝk)‖2
+

eim(ŝk)dim(ŝk)

‖d(ŝk)‖2

]
, (11)

where e(ŝ) and d are always evaluated at the current step θθθn.
Alternatively, in (10) additional columns are added to A and
B for the additional directions. In this case, it is clear that if
too many directions are added, an exact solution to (9) may
not be possible, but the method will still find the best step in
the least square sense.

It is interesting to also consider how the method can be
used to jointly form a main beam and null(s). Experience
indicates that a main beam created with the first-order solution
is relatively insensitive to small perturbations in Γ. Therefore
a useful approach is to find a main beam using (4), followed
by Newton steps to find nulls in the desired directions. Note
that the reverse procedure of finding nulls followed by local
optimization to find a main beam is very problematic, since
nulls are very sensitive to error.

III. NUMERICAL EXAMPLES

This section provides some illustrative examples for the
developed techniques.

A. Simulation and Network Analysis of RECAPs

Consider a 5×5 square dipole array where the half-wave
dipoles are spaced at a distance of λ/4, similar to that in
[7]. We use a single method-of-moments (MOM) simulation
for each port to obtain network characteristics and embedded
radiation patterns of the antennas. Using the Numerical Elec-
tromagnetic Code (NEC) to perform the MOM simulation,
we supply unit voltage to the excited antenna with all other
ports short circuited and thereby find the admittance matrix
Y and the short circuit radiation patterns e

sc(ŝ). Matched
(Z0-terminated) embedded patterns e

mc are then computed by
connecting a source to the kth port and terminating all other
ports by the normalizing impedance Z0 = 72Ω to obtain

e
mc(ŝ) =

e
sc(ŝ)√
Z0

Z(I − S). (12)

The scattering matrix is given by S = (I+Z0Y)−1(I−Z0Y).
Network analysis using (1) is applied to find the array

radiation pattern for arbitrary loads. By observing Figure 1 we
see that aR = ΓbR. Using (1) along with this information,

aR = Γ(I − SRRΓ)−1
sRFaF. (13)

The matched patterns of the ports are partitioned as e
mc(ŝ) =

[eF(ŝ) eR(ŝ)]T , and using superposition the radiation pattern
of the complete array is

e(ŝ) = aFeF(ŝ) +

N−1∑
k=1

aR,keR,k(ŝ). (14)

Substituting (13) into (14) we obtain

e(ŝ) = [eF(ŝ) + e
T
R(ŝ)Γ(I − SRRΓ)−1

sRF]aF , (15)

which is identical to (2).

B. Illustrative Results

Figure 2 shows the application of the joint Newton method
seeded with the first-order solution, where the 5×5 square
array with inter-element spacing of λ/4 is considered. The plot
shows the antenna gain in dB for a steering angle of φ = 120◦.
Three iterations were required to achieve a null in direction
φ = 120◦ with gain lower than the threshold of −25 dB. It
should be noted that the optimization time required for the
proposed method is much shorter than unstructured methods.
Our Matlab implementation requires only 122ms for the three
iterations, whereas a GA or PSO would take 10s of seconds
or more to find a similar solution.
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Fig. 2. Application of the joint Newton method seeded with first order
solution. A null is created for an angle of φ = 120◦ .
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Fig. 3. Joint Newton method is applied with random seeding to create
multiple nulls at steering angles φ1 = 70◦ , φ2 = 120◦ and φ3 = 170◦ .

Using the same array topology, we also consider forming
multiple nulls. Although we are developing methods for mul-
tiple null formation based on the first-order expression in (4),
these are beyond the scope of the present paper. Instead we
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form multiple nulls with random seeding for steering angles
φ1 = 70◦, φ2 = 120◦, φ3 = 170◦ using the joint Newton
method as shown in Figure 3. Finding multiple nulls below
the threshold of −25 dB takes slightly longer, amounting to
a total of 116 iterations taking 8.2 seconds. The increased
simulation time and number of iterations result not only from
the conflicting constraints, but also due to random seeding
which does not fully exploit the problem structure. Note,
however, that finding multiple nulls with a GA or PSO using
a similar Matlab implementation may require several minutes
to find an acceptable solution.

0 50 100 150 200 250 300 350 400
−30

−25

−20

−15

−10

−5

0

5

10
Linear Array

φ (degrees)

A
nt

en
na

 G
ai

n 
(d

B
)

Fig. 4. Joint optimization of a beam and a null using the separate Newton
method with the first order solution as the starting point

Joint optimization of beamforming and null-steering is illus-
trated in Figure 4. In this case the separate Newton method is
tested with the first-order solution as the seed. A uniform linear
array with 9 elements having inter-element spacing of 0.1λ is
used. Steering angles of φb = 150◦ , φn = 90◦ are chosen for
the beam and null respectively. The separate Newton method
also provides acceptable performance in finding a null and the
Γ value does not change so much during null optimization so
as to effect the beam in direction φb = 150◦.

Figure 5 considers the same uniform linear array and
compares the number of iterations needed by the joint and
separate Newton methods with random seeds as well as first-
order solution as starting points, where the goal is to find a null
at a steering angle φ = 180◦. As can be seen the combination
of the joint Newton method with first-order solution seeding is
the fastest to converge with a null at −55 dB after only three
iterations. The slowest convergence rate is exhibited by the
separate Newton method with random seeding which requires
10 iterations to find a null lower than the threshold of −25 dB.
It is also interesting to note that the separate Newton method
with the first-order solution as a starting point outperforms the
joint Newton method with random seeding, thus illustrating
the value of using the first-order approximation over a random
starting point.

IV. CONCLUSION

In this work we have presented a novel method for direct op-
timization of reconfigurable aperture (RECAP) antennas which
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Fig. 5. Gain in null direction φ = 180
◦ versus number of Newton steps for

the joint Newton method and separate Newton method with either first-order
solution or random seeding. The search is terminated when the goal of -25 dB
is obtained.

directly exploits the structure of the EM radiation problem.
The first-order approximation of the RECAP radiation was
combined with local optimization based on two variations
of Newton’s method to achieve efficient optimization of the
reconfigurable loads. The optimization procedure was applied
on a single null, multiple nulls, and a joint null and main beam
problem, illustrating that relatively few iterations are required
to find suitable solutions, which may be orders of magnitude
more efficient than unstructured global search methods. The
separate and joint Newton methods with first-order and random
seeding were also compared, indicating that the first-order
initial solution is valuable for speeding up null formation.
These results indicate that the proposed method should be
useful for dynamic in-situ RECAP optimization.
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