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Abstract—Two methods are developed that can be applied
to generate secret keys automatically from fading propagation
channels that are reciprocal but have arbitrary (i.e. non Gaus-
sian) statistics. Such methods may be necessary for physical-
layer key generation in cases where the line-of-sight (LOS)
component produces Rician channel statistics, not only because
channel quantization based on Gaussian statistics will not provide
equally probable symbols, but also because the symbol error rate
(SER) and efficiency analysis based on Gaussian channels does
not reflect true performance. An improved channel quantization
method compared to [1], [2] is developed, where the empirical
cumulative distribution function (cdf) of the channel is used
directly to ensure equal probability of the key symbols. The
results show that LOS channels can have slightly better SER
performance than strictly Gaussian channels, especially at low
SNR. Second, the idea of positional coding is developed, where
a secret key can be transmitted by dividing empirical channel
observations into multiple codewords and conveying a secret
message from Alice to Bob in the sequence of channels fed
forward from Alice to Bob. Analysis of the method illustrates
that key mismatch rate can be made arbitrarily low by properly
selecting the codeword length.

[. INTRODUCTION

This work considers a wireless communications scenario
identical to that in [1], [2], consisting of Alice and Bob
that are legitimate nodes that wish to communicate securely,
where Eve is a potential eavesdropper. A theoretical analysis
on reciprocal channel key generation (RCKG) in a MIMO
context has been considered in [3], [4], whereas [1] and [2]
study the limits of RCKG from an experimental perspective,
where information theoretic expressions and RCKG protocols
are applied to three-node MIMO measurements. However, key
generation schemes for non-Gaussian channels have not yet
been considered.

The purpose of this paper is to develop methods for physical
layer key generation that can be applied when the channel is
non-Gaussian, which is important for practical channels that
may have arbitrary fading statistics. Non-Gaussian fading may
arise from such factors as the presence of a line-of-sight (LOS)
component or the superposition of multipath and shadowing.
The first part of the paper studies improved channel quanti-
zation that directly exploits empirical cumulative distribution
functions (cdfs) of the channel snapshots to ensure equal
probability of generated key symbols. The utility of the method
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is demonstrated by application to actual propagation data taken
from three-node indoor measurements. In the second part of
the paper, a new method for conveying a secret key from Alice
to Bob based on positional coding is developed, which not only
may be applied to channels with arbitrary fading statistics,
but also allows the key mismatch rate to made arbitrarily low
without the need for separate error control coding.

II. EMPIRICAL CDF-BASED CHANNEL QUANTIZATION

In [1] and [2], the performance of key generation based
on channel quantization is studied from an analytical and
experimental perspective, where it is assumed that channels
have Gaussian statistics, which may not be appropriate for real
scenarios. To ensure maximum security of generated keys, the
propagation channel should should have equal probability of
being observed in different quantization sectors, requiring a
method that can adapt to the current channel distribution.

We consider a straightforward solution to this problem,
which discards the use of the Gaussian assumption for defining
the quantization intervals, and instead chooses them based
on the empirical cumulative distribution function (cdf) of
measured channel data. The samples for each record of
measurement data are divided into several blocks, where the
fading statistics for a single block can be considered stationary.
For each block the boundaries for equiprobable sectors in a
single real dimension are determined for a desired number of
quantization sectors (M,). SER and efficiency graphs for the
method can be computed using a Monte-Carlo analysis as is
demonstrated below.

The performance of the new cdf-based method is now
assessed in terms of SER and efficiency for CQG and CQA
by application to the same propagation data as was presented
in [2]. The data in a single measurement run is divided into
8 equal-length temporal segments (blocks). Since the cdfs
for each block vary, the quantization intervals that are used
are time-varying, and an example is shown in Fig. 1 for a
single block assuming 8 quantization sectors for a single real
dimension (M, = 8). The data of two LOS measurements
(scenarios 1-A and 1-C discussed in [2]) are considered and
results shown reflect the average performance of the two
measurements. The SNR in this work is defined as the ratio of
the channel variance and the variance of estimation error as in
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Fig. 1. Quantization intervals and boundaries for a single block of
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Fig. 2. SER performance (real dimension) of CQG for M, = 2 and varying
guardbands for the quantization intervals obtained from the distribution of
measured data

[2]. It is observed in Fig. 2 and 3 that the SER in the measured
data is slightly lower than the Gaussian which is found for all
values of guardbands g in CQG and low SNR and M, = 2
in CQA. Although surprising, this effect appears to be due to
the combination of the Rician channel statistics with the usual
power normalization that does not remove the channel mean,
and this has been verified by simple Monte-Carlo simulations
of a Rician channel.

The efficiency of the CQG and CQA methods based on
the cdf of measurement-based data is also compared with that
obtained from Gaussian statistics which is plotted in Fig. 5
and 6. The results are close to each other except that for
M, = 2 the measurement-based result gives slightly better
performance. However, for the higher M, and large SNR the
measurement-based efficiency is slightly smaller.

Fig. 4 shows the observed probability of the key symbol
indices generated by Alice for CQA with M, = 8 and SNR
of 30 dB. It is seen that all the symbols are almost equally
probable making the key generation secure and efficient.
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Fig. 3. SER performance of CQA for the quantization intervals obtained

from the distribution of measured data
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Fig. 4. Observed frequency of symbols for symbol indices 1-8 for a single
block of measured data and 30 dB SNR

III. POSITIONAL CODING OF FADING CHANNELS

Although the quantization method developed in the previous
section overcomes the difficulty of non-Gaussian statistics
causing non-uniform coverage of the key symbols, it does not
solve the problem of key mismatch. Quantization methods like
this and those presented in [2] that encode individual channel
observations separately require separate error control coding in
addition to the quantization to achieve keys that are robust to
mismatch. Error control coding complicates the key generation
procedure and transmitted error control bits reveal information
about the key that diminish the effective key length.

An interesting alternative to channel-by-channel key quanti-
zation and separate error control coding is to encode multiple
channel observations jointly. By assigning key symbols to
different sequences of channel observations, the probability
of mistaking one symbol for another (or one sequence for
another) can be made arbitrarily low, as is known from basic
coding theory. However, an important question is how to create
a codebook for a given set of measured channels having
arbitrary fading statistics.

This section considers a novel way of using observations
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of the propagation channel to convey secret information from
Alice to Bob that exploits the order of the observed channels.
As will be demonstrated, by choosing the length of each
keyword to be long enough, the probability of a mismatch
in the transmitted information (key) can be made arbitrarily
low.

A. Principle of Channel Positional Coding

First we give a simple analogy that demonstrates the idea of
positional coding and then we explain precisely how this can
be accomplished with a fading reciprocal propagation channel.
Consider Alice and Bob as having two copies of a photograph
that cannot be seen by Eve. Alice cuts her copy of the photo
horizontally into M pieces and numbers them logically from
1 to M going from left to right. Alice creates a table of
all possible sequences of the M pieces and numbers these
1 through M!, and this sequence enumeration table is given
to Bob and Eve. Alice picks a number between 1 and M!
(the message) and using the table puts the M pieces in that
sequence before handing them to Bob. Finally, Bob can match
the received pieces with his photo to determine the indices of
the pieces and which sequence (or message) was sent. Note
that even if Eve observes the pieces transmitted from Alice
to Bob, the order to her is random, and since she does not
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Fig. 7. Example demonstrating positional coding using a Rayleigh propaga-
tion channel

have access to the original photo, she can only determine the
order by matching the pieces at the edges (much like a jigsaw
puzzle with no reference picture!). However, if the photo is
sufficiently random, matching at the edges will not be possible.

This same principle can be applied to send a secret message
using a reciprocal propagation channel. Fig. 7 shows a simple
example of a Rayleigh fading channel at Alice, Bob, and
Eve. Alice and Bob observe the channels in Fig. 7(a) and
(b), respectively, which are reciprocal and highly correlated.
The observed block of channels is decimated into samples
that are nearly uncorrelated in time (x’s in the figure) and
divided into M = 4 codewords of N = 5 samples each, where
2™ is the nth uncorrelated sample of the mth codeword.
Next, Alice picks the sequence [2], [1], [3],[4] to send to Bob,
and transmits her observed channels to Bob in this order as
shown in Fig. 7(c). Bob can then match the codewords x’ (m)
received with his own estimated channels y(m) to determine
the numbering of the codewords and obtain the message. In
Fig. 7(d), Eve’s channel is shown that is weakly correlated
with that of Alice and Bob, but it should be clear that
similarities are insufficient to perform the match, and the
decimation procedure has removed the possibility of edge
matching.

For M codewords, the length of the generated key is
Ly = logy(M?!). Thus, the efficiency of the positional coding
strategy is given by

1 = logy(M!)/(MN) (bits/channel), (1)

which is somewhat less efficient than normal channel coding
that would have an efficiency of log, (M) /N bits per channel
use. Note also that the N samples do not need to represent
temporal samples, but could be from N different OFDM bins
or N different antennas in a MIMO system.

B. Decoding Strategies for Positional Coding

In our work, we have considered three possible strategies
for decoding positionally coded messages. All of the methods
are based on the Euclidean distance of two channel codewords

d(x,y) = I|x —y|[*. )
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1) Parallel Decoding: In this case, Bob computes the
distance matrix elements dy,, ., = d(x'™), y(™2)) and
declares the mth received codeword to have index

idx,, = argmin du, m.,- 3)
ma
Note that this operation can be performed fully in parallel for
all codewords.

2) Min Distance Ordered Decoding: Here, Bob uses the
fact that he is more certain about some codewords than others
and chooses the decoding order according to this confidence.
Bob decodes the M codewords sequentially, by letting M <
{} and My « {} be empty sets and at step k he declares

idx,, = arg min dm, m., 4)
mo
mao g Mo
my =arg min = min  dpy, m,, 5)
2

mq m
migEMi magMa

and lets Mj < M; Umy and Mo < Mo Uidx,,, .

3) Min-Max Distance Ordered Decoding: Instead of only
considering the codeword that is closest to one of his own
channels, Bob can base his confidence on minimizing the
distance of the best match and simultaneously maximizing
distance to the second closest match. This potentially avoids
mismatches where codewords are not strongly separated and
saves decoding these codewords until the end. This is similar
to the Min distance decoding, except the chosen index is

my, = arg max | min®@d,,, ., — minMd,,, ., (6)
mi mo ma

myEMy mag Mo mag¢ Mo

where min () means the ith smallest value.

C. Performance Analysis

To see the performance of positional coding based on a
shared reciprocal channel, simulations were performed using
independent complex Gaussian channels with SNR=10 dB at
Alice and Bob, where SNR is the ratio of channel variance
to channel estimation error as defined in [2]. Monte Carlo
simulations were run for various values of M and N for the
different decoding methods, where the number of realizations
was varied from 100 to 107 in order to obtain enough error
events for smooth curves. Fig. 8 depicts the resulting proba-
bility of key error P, which occurs if there is a mismatch
in the position of any of the estimated codewords.

As can be seen, the probability of having a mismatch of
the sent message (or key) can be made arbitrarily small by
either increasing the number of samples per codeword N or
by reducing the number of codewords M (which also would
mean a shorter key). If K keys are to be concatenated to
form a longer key, the probability of having the total key be
correct is 1—[1— Py (M, N)]¥. As an example, using the best
decoding strategy a key mismatch rate of P, = 0.1 can be
obtained with N = 3, M = 10 (Ly; = 22 bits), N =4, M =
30 (Lar = 108 bits), or N =5, M = 60 (Lys = 272 bits).
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Fig. 8. Performance of positional coding for the three decoding methods

versus the number of codewords M. Multiple curves for each decoding
method are for N = 2,3, ...,8 moving from top to bottom.

IV. CONCLUSION

In this paper we have considered methods for physical
layer key generation that can exploit common random fading
of reciprocal wireless channels, with a focus on methods
for channels having arbitrary (possibly non-Gaussian) fading
statistics. First, the quantization methods in [2] were extended
to arbitrary fading channels by generating quantization maps
based on empirical cumulative distribution functions cdfs of
the data at hand, ensuring equal probability coverage of the
generated key symbols. Application of the method to measured
indoor channels indicated that symbol error performance sim-
ilar to the quantization of Gaussian channels is obtained, even
in indoor LOS environments.

Second, the idea of positional coding, where a secret key can
be transmitted from Alice to Bob in the sequence of channels
fed forward from Alice to Bob was explored. The method
is not only applicable to arbitrary fading channels, but also
can provide robustness of the generated keys to mismatch.
Analysis of the performance of the method for Gaussian
channels indicated that low key mismatch rate can be obtained
for useful key lengths and moderate complexity.
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