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Abstract—Minimal missed detection rate of primary users is
critical for adoption of cognitive radio networks, underlining the
need for robust collaborative sensing combined with near-op-
timal single-node detection methods. Although correlation-based
detection methods potentially provide needed per-node perfor-
mance improvements for correlated signals, their performance
for realistic blind sensing is unclear since the type and extent
of correlation may be unknown in practice. Although standard
Neymon–Pearson (NP) based detection can be applied when cor-
relation is perfectly known, difficulty arises when the correlation
is random, which is the focus of this paper. A tighter bound for
the performance of correlation-based methods is developed herein
based on a signal with random correlation and NP detection under
the assumption of correlation distribution information (CDI).
Simulations of existing ad-hoc correlation-based detectors are
compared to the upperbound using a simple uniform random
correlation model (RCM). Additionally, a measurement campaign
is presented where radio-frequency (RF) spectra in many bands of
interest are measured throughout a large sub-urban environment,
generating realistic models for the random signal correlation. The
measurement-based model indicates limits on performance gains
possible with correlation-based detection and how well existing
ad-hoc techniques can be expected to perform in practice.

Index Terms—Cognitive radio, correlation, Neyman–Pearson
(NP) criterion, signal detection.

I. INTRODUCTION

I T IS WELL recognized that possible adoption of cogni-
tive radio [1] technologies that overlay existing licensed

services will require extremely robust sensing with vanishing
missed detection rates in order to incur negligible impact on
primary users. An obstacle to robust sensing that is most prob-
lematic for simplex (broadcast) and frequency-division duplex
(FDD) primary systems is the “hidden node” problem [2], where
due to primary signal shadowing, the cognitive radio believes
a primary transmitter is not present, and subsequent utilization
of the band interferes with a primary receiver that is not shad-
owed. A promising solution for robust detection in the presence
of hidden node is collaborative sensing or cooperative sensing,
where sensor fusion is performed on information collected at
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multiple distributed cognitive nodes [3]–[5]. In this case, seem-
ingly modest improvements in the per-node detection perfor-
mance (10%–20%) can have dramatic impact on the missed-de-
tection performance of the network, fueling interest in devel-
oping near-optimal detection methods at the cognitive nodes.
Although energy detection (ED) [6]–[8] is a classical method
that is typically used in practice for blind sensing, increased per-
formance is possible by exploiting additional signal parameters.

The focus of this paper is correlation-based detection (CBD)
methods for unknown (random) correlation that exploit po-
tential signal autocorrelation arising from pilot tones, signal
guardbands, partially occupied spectrum, frequency-selective
propagation channels, etc., for improved detection perfor-
mance. One ad-hoc CBD technique is the covariance absolute
value (CAV) method [9], which exploits the sample covariance
matrix to provide a constant false alarm rate detector. In [10],
we presented analytical expressions for the performance of an
alternative ad-hoc detector that exploits both energy and corre-
lation (the CorrSum method), but the optimality of the detector
was not considered and only theoretical results were presented
without any experimental assessment. Although significant
performance improvements are possible with the ad-hoc CBDs,
a tight upperbound for these methods has been impeded by the
dependence of detection rates on the actual nature and level of
correlation present, which is unknown (random) in practice.

In this paper, we propose random correlation models (RCMs),
where correlation is a random variable whose distribution can
be exploited, allowing the performance of CBD methods to be
precisely assessed. Although the optimal detector for known
correlation is given by the well-known Neyman–Pearson (NP)
detector, resulting in the estimator correlator [11], the perfor-
mance of this detector provides only a loose upperbound for
unknown correlation. To obtain a tighter upperbound on CBD
performance, this work considers optimal NP detection when
only the parameters of the RCM are known a priori, as opposed
to knowing the realizations of the RCM that are required for a
standard NP-based estimator-correlator. Two RCMs are consid-
ered in this work: (i) a simple uniform correlation model, appro-
priate when correlated signals are present, but the exact level is
unknown and (ii) a realistic model based on actual radio-fre-
quency (RF) spectrum measurements taken throughout the city
of Bremen, Germany.

Before proceeding, we note that cyclostationary detection
[12], [13] is a generalization of CBD methods, since the
cyclic spectrum comprises the same information as the signal
autocorrelation at the zero cyclic frequency shift. An advan-
tage of cyclostationary detection is the ability to operate at
very low SNR due to inherent immunity to noise uncertainty
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(NU) [14]. On the other hand, either a priori knowledge of
modulation-specific peak locations in the cyclic spectrum or a
scanning algorithm is required. Since performance depends on
the type of signals present, the random cyclic spectrum must
be modeled, which is even more complicated than the simple
RCMs considered in this work. Furthermore, cyclostationary
methods can have some practical issues, such as the need for
very long observation times with high computational com-
plexity [15], and ultrastable synchronization [14]. For these
reasons, cyclostationary detection is not treated in this current
work and is left as the subject of future investigations.

The remainder of this paper is organized as follows:
Section II provides background on the system model, reviews
energy detection, outlines two ad-hoc correlation-based detec-
tion methods (CAV and CorrSum) that are to be assessed, and
ends with a concise example of collaborative sensing that mo-
tivates the search for near-optimal sensing methods. Optimal
sensing is treated in Section III, where random correlation
modeling allows NP detection with perfect correlation infor-
mation (NP-PCI) to be generalized to the optimal detector with
correlation distribution information (NP-CDI). A measurement
campaign used to generate an RCM for a realistic sub-urban
environment is presented in Section IV. Section V assesses the
performance of existing ad-hoc CBD methods based on the
developed RCMs in light of the NP bounds, and concluding
remarks are given in Section VI.

II. SYSTEM MODEL AND PRIMARY SIGNAL DETECTION

This section provides the signal model and important re-
sults from detection theory that are needed for later analysis.
Boldface lowercase and uppercase letters denote vectors and
matrices, respectively. Vector transpose and conjugate trans-
pose (Hermitian) are indicated by and , respectively.
The imaginary unit is indicated by , and and take the
magnitude and phase of a complex argument. The notation

indicates that the random vector (or variable) has the
probability distribution . The distribution is the
multivariate complex Gaussian distribution with mean vector
and covariance matrix having the corresponding probability
density function (pdf)

(1)

where is the length of and is determinant.
denotes the usual multivariate real Gaussian distribution with
mean and covariance , and is the uniform distribu-
tion on the interval . Additional notation will be introduced
as necessary.

A. Signal Model

Considering a single cognitive radio node that samples re-
ceived RF waveforms limited to bandwidth by an ideal band-
pass filter, the vector of complex baseband samples is

, where and are the real (in-phase) and imagi-
nary (quadrature) components, respectively, each having band-
width . Further, we assume that efficient Nyquist sampling
is employed, or that the sample frequency , such that

for sensing time , complex baseband samples are
collected.

Receiver noise is modeled as a vector of complex Gaussian
random samples , having a flat power spectral density (PSD)

in the baseband sensing bandwidth. When Nyquist sampling
is employed, noise samples are uncorrelated, since the autocor-
relation for sample lag is

(2)

where , total noise variance is
, is the Kronecker delta function, and the last equality

comes since is an integer. Thus, when only noise is present
(referred to as hypothesis ) we have ,
and the pdf for this case is denoted .

When signal is present (hypothesis ), the receiver mea-
sures signal plus noise , where is a vector of
signal samples confined to bandwidth having autocorrelation

. The correlation-based detectors studied
in this work exploit the fact that can differ significantly
from . Normalized autocorrelation will be denoted

with . The pdf of for the case of signal
present is denoted .

B. Primary Signal Detection

The optimal NP detector [11] forms the likelihood ratio

(3)

and compares to a threshold , declaring (signal present) if
and (noise only) otherwise. Probability of false

alarm ( ) and probability of detection ( ) are defined as

(4)

(5)

The performance of detectors is routinely plotted in the form
of receiver operating characteristics (ROCs) showing versus

. Note that NP detection is optimal in the sense of giving
maximum for an arbitrary fixed value of , and NP de-
tectors will be applied in this work for the case of unknown
(random) correlation. In the following, we discuss different cor-
relation based detectors which are also summarized in Table I
for convenience.

Energy detection (ED) performance will be considered as a
base reference in this work, which operates by forming the test
statistic and comparing this
to a threshold . Under , we have with the real and
imaginary part of each sample having variance , meaning

, where is a central chi-squared distri-
bution with degrees of freedom.

Under , there are two possible distributions for de-
pending on the way is modeled. In the first case, is assumed
to be a fixed (nonrandom) signal, leading to ,
such that is distributed as non-central chi-squared
with degrees of freedom and non-centrality parameter ,
denoted as , with , where
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TABLE I
SUMMARY OF THE CONSIDERED DETECTION METHODS

is the signal-to-noise ratio (SNR) [8]. In the second case, is
modeled as an uncorrelated zero-mean Gaussian random vector,
meaning , leading to

[11]. Probability of false alarm (4) and detection
(5) for ED with a threshold can be computed in closed form
[6], [8], [11], where numerical values of are nearly identical
for both signal models for sufficiently large .

C. Ad-Hoc Correlation-Based Detectors

The performance of two existing ad-hoc correlation-based
detectors will be assessed in this work: (i) the covariance
absolute value (CAV) method and (ii) the correlation sum
(CorrSum) method. Although expected to be suboptimal, both
methods are attractive, since they have low complexity and
require no a priori information about SNR or correlation.

The CAV method [9] forms a test statistic based on the abso-
lute value of the receive covariance matrix according to

(6)

where is trace, and is the sample covariance
matrix and .

A feature of the CAV method is that normalization by the
trace in (6) yields a test statistic under that is independent of
the noise power, placing it in the class of constant false-alarm
rate (CFAR) estimators [11]. In the case of NU [16], where accu-
rate knowledge of is not available, CFAR estimators can ex-
hibit improved performance compared to their non-CFAR coun-
terparts. Since the goal of this work is to develop near-optimal
sensing methods, we mainly focus on the assumption where ac-
curate noise estimates are available, but the case of NU is also
considered briefly. The trace normalization in (6) unfortunately
spreads the distribution of , leading to seemingly poor per-
formance when noise is known, but one should keep in mind
that relative performance can change dramatically when NU is
an issue.

A critical consideration in CAV is the choice of (referred
to as the smoothing factor in [9]), which can have a strong
impact on the performance. No optimal choice for is given
in [9], likely because this depends on the level of correlation
present, which is assumed to be unknown. One finding in our
work is that for moderate correlation ( ), a value

of (exploiting only the first lag) yields the best per-
formance, whereas larger values of are only beneficial for
high correlation. Although [9] requires that the receive noise
be prewhitened, this operation is avoided in our analysis by as-
suming ideal filtering and Nyquist sampling at rate , such that
noise is always uncorrelated.

In [10] and [17], we proposed the simple correlation sum
(CorrSum) detector that exploits both energy and correlation for
improved performance, which forms the test statistic

(7)

which can be generalized to

(8)

for arbitrary maximum lag .
Conceptually, the method measures deviation of the autocor-

relation function from the noise-only case, whether this is due
to increased energy or nonzero correlation, corresponding to the
first and second terms in (7), respectively. Closed-form expres-
sions for the performance of CorrSum are available in [10] for
the Gaussian (large ) approximation on .

For a signal with nearly real correlation (symmetric PSD),
CorrSum can outperform CAV for two reasons: (i) For limited
sample size, both real and imaginary parts of the noise autocor-
relation are nonzero. Since signal autocorrelation is known
to be real, discarding useless information in the imaginary part
of is beneficial. (ii) Under and limited sample size, the
real noise autocorrelation is positive or negative, yet the abso-
lute value in CAV forces this to always be positive, causing more
overlap of and and reducing potential perfor-
mance.

On the other hand, when the signal PSD is not symmetric,
will be complex, and only exploiting the real autocor-

relation discards useful information in the imaginary part,
reducing detection performance. However, deviation from
real autocorrelation due to a small frequency offset has
negligible performance impact. Frequency offset is mod-
eled by considering RF transmit signal centered at , or

, where translation to complex baseband
using a different frequency and Nyquist sampling leads
to a discrete signal , where

. Although the term (offset) has no impact
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Fig. 1. ROC performance curves for ED and CorrSum methods. (a) Analytical
models compared with Monte Carlo simulations. (b) Effect of carrier offset on
CorrSum where � � ���� .

Fig. 2. Performance of ED, CorrSum, and CAV for (a) high correlation and
(b) low correlation.

on the energy, the first-lag modified signal autocorrelation is
. Even assuming that the original

spectrum is symmetric ( positive real), the frequency offset
leads to a small phase rotation in the complex plane.

In all numerical examples, we take and
SNR for static channels or average SNR
for fading channels. Fig. 1(a) compares ROC curves for ED and
CorrSum methods using Monte Carlo simulations, as well as
closed-form expressions given by (5), (6), (35), (36), and (37)
in [10] for exponential correlation ( ) with

. This result shows the performance improvement
possible with correlation-based methods and also confirms that
our Monte Carlo framework is correct. Fig. 1(b) demonstrates
the effect of nonzero phase due to frequency offset, indicating
that small offsets have negligible impact on performance.

Fig. 2 demonstrates the sensing performance of CAV and
CorrSum for real correlation (guided sensing) in the presence
of high and low correlation and explores the effect of including
more lags in the test statistic. For high correlation (left) CAV
and CorrSum have similar and better performance, respectively,
compared to ED, and including many lags is beneficial. For low
correlation, the CBD methods have lower performance than ED,
and using more lags ( ) is detrimental.

D. Collaborative Sensing Example

Collaborative sensing, where cognitive nodes communicate
detection decisions to a fusion center that makes a global deci-
sion, provides highly robust sensing in the presence of hidden
node and low SNR [3], [4]. Fig. 3 shows the detection perfor-
mance of single-sensor and eight-sensor fusion using “OR” and
“majority” rule [18] for ED compared to the optimal correlation-
based NP-CDI detector assuming that the channel between each
sensor node and fusion center (also termed reporting channel
[4]) is error-free, achieved in practice by robust link budget and
error control coding in the reporting channel. Fig. 3(a) and (b)
plot ROC curves for an idealized AWGN channel with a uni-
form RCM and a more realistic Rayleigh-fading channel with
an empirically measured RCM, respectively. Details required
to obtain the plotted single-sensor performance curves, such
as the definition of the optimal NP-CDI detector (Section III)
and the experimental random correlation model (Section V), are
treated later in the paper. Nonetheless, this example illustrates
that the seemingly modest improvement possible with correla-
tion-based methods can lead to order of magnitude reduction in
the missed detection rate of the overall cognitive radio network
for eight-sensor fusion, strongly suggesting that refinement of
existing algorithms to provide modest performance improve-
ments, such as what is possible with correlation-based methods,
is well worth the effort.

III. MODELING AND OPTIMAL DETECTION FOR CBD METHODS

As stated previously, a rigorous definition for the perfor-
mance of correlation-based detectors has not yet appeared, since
it depends on the level of correlation present, which is unknown
a priori. In this section, we present a new random-correlation
framework that allows the performance of ad-hoc correla-
tion methods to be assessed. Also, the upperbound on the
performance of correlation-based detectors is found by consid-
ering an NP detector with correlation distribution information
(CDI).

A. Random Correlation Modeling

For zero-mean complex Gaussian signal with fixed covari-
ance matrix , the pdf of is given by

under
under

(9)

Since signal correlation is not assumed to be known for corre-
lation-based detectors, we model the random signal covariance
as , where is a vector of random parameters, and
under must now be represented by the modified expression

(10)

where is the (possibly multivariate) pdf for the vector of
covariance-based random parameters.

The vector is defined to contain all unknown (random) pa-
rameters that affect the signal covariance. For example, in the
trivial case that correlation and SNR are known, is simply an
empty vector. For the case of fading with known correlation,
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Fig. 3. Performance comparison of single-node and collaborative detection assuming error-free reporting channel: single sensor (1), eight-node OR fusion (OR8),
eight-node majority fusion (M8) in (a) uniform real RCM in static sensing channel and (b) measured RCM in Rayleigh-fading sensing channel. Indicates a signif-
icant network-wide impact with CBD methods.

. In an extreme case, each element of the covariance
matrix could be considered a separate random variable, such that

, where is the vector operation. Thus, the
choice of depends on the modeling strategy and the knowl-
edge available to the cognitive radio. In this work we consider
a simple model where the random covariance is exponential, or

(11)

providing a three-parameter model ap-
propriate for this initial study.

Although ( is the SNR) is assumed to be fixed
for a simple static channel model, we consider a few different
models for . The uniform correlation model assumes

with either zero phase (real cor-
relation) or uniform phase , which models
the case where we expect correlation, but have no information
about how it might be distributed. We also consider an RCM
based on empirical distributions of and obtained by
direct spectrum measurements in the city of Bremen, which is
described in Section IV. To obtain the detection performance
based on the measured RCM, the channel is modeled to be
Rayleigh-fading such that (or equivalently for constant

) is exponentially distributed, or

(12)

where is the average value of .
Computing the detection performance of the various CBD

methods for an arbitrary RCM is complicated since
can only be evaluated numerically. We adopt a Monte Carlo
approach for computing performance, where the empirical
distribution of the test statistic is found separately for
hypotheses and . For the case of , random noise
vectors are generated and substituted into to
obtain random samples of . For the case of , each
realization requires (and hence ) to be generated
according to the RCM, a random waveform to be realized
assuming , after which is

computed. From the realizations of under and
, the distributions and are obtained, after

which we can compute

(13)

(14)

for arbitrary threshold .
When a closed form expression for for a CBD method with

fixed correlation is available, performance under the assumption
of an RCM can be obtained using the average

(15)

For example, for the CorrSum method assuming fixed
, and only is random,

, where as given by (37) in [10]
is to be taken as .

B. Optimal Detection Methods (NP-PCI and NP-CDI)

First, we consider an optimal detector that has perfect cor-
relation information (PCI) referred to as the NP-PCI detector.
This assumes an adaptive sensing algorithm that somehow
always knows and . Although the NP-PCI detector is
somewhat unrealistic for cognitive radio, it serves as a loose
upperbound on performance and also indicates how much
performance is gained by exactly knowing correlation as op-
posed to only knowing its distribution. Assuming a correlated
complex Gaussian signal, where noise power and signal co-
variance are exactly known, the pdfs and
are given by (9), and a sufficient test statistic for the NP detector
is the so-called estimator-correlator , or

(16)

which corresponds to correlating the received waveform with
a Wiener filter estimate ( ) of the signal . Evaluating and
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Fig. 4. Top view of the receive antenna mounted on the car used in the mea-
surement campaign.

require either Monte Carlo simulation or numerical evalua-
tion of Fourier-type integrals [11].

A more practical upperbound for correlation based detection
is possible by assuming that the cognitive radio has knowledge
of the distribution of random correlation, but no knowledge of
any particular realization of that process. We refer to this de-
tector that optimally exploits correlation distribution informa-
tion (CDI) as the NP-CDI detector. CDI is possible by con-
sidering what modulations and bandwidths may exist and with
what likelihood in a particular band of interest. In this case,
the optimal detector observes , forms in (3),
and compares to a threshold, where
is computed in closed-form and is computed numer-
ically using (10). By applying the above procedure in Monte
Carlo simulations for realizations of , the pdfs
and are obtained and and are computed using
(13) and (14) with .

IV. RCM MEASUREMENT CAMPAIGN

This section presents a measurement campaign that was per-
formed to develop realistic RCMs, allowing us to judge the ac-
curacy of the uniform correlation model and assess performance
of CBD methods for practical scenarios.

A. Measurement System

Signal correlation in many bands was obtained by performing
PSD measurements with a Rohde and Schwarz FSP7 spectrum
analyzer in the 27 MHz to 7 GHz range. The antenna was a log-
periodic antenna (HyperLOG 7060) with a nominal frequency
range of 700 MHz to 6 GHz, horizontal polarization, and a fairly
wide radiation pattern (5 dBi gain). Although the antenna had
low efficiency (approximately 10 dB of additional loss) for fre-
quencies below 700 MHz, we found that the FM and DVB-T
signals of interest were sufficiently intense to be measured with
high SNR using the antenna. The antenna was mounted on top
of a car with the direction of maximum gain pointed perpendic-
ular to the direction of travel, as depicted in Fig. 4. A global-po-
sitioning system (GPS) receiver was also available in the car,
which was used to log position information over the entire mea-
surement, allowing us to correlate our results with location. A
laptop was used to both control the spectrum analyzer and log
data during the measurement via a LAN interface. The laptop
and spectrum analyzer were powered using a 12 V DC to 110 V
AC power inverter.

To avoid influencing the measurements, the 802.11 card in
the laptop was disabled and cellular telephones were turned off.

Fig. 5. The driving route during the measurement.

Fig. 6. Captured spectrum over the frequency range of 27 MHz to 3 GHz in
dB relative to measured noise floor.

The noise floor for each band was found by replacing the an-
tenna with a terminator and performing a measurement. We also
checked the interference imposed by the inverter and/or car by
running the equipment in a stationary car either with the inverter
(car ON) or a long extension cord (car ON and OFF). We found
that the running car alone had little effect on the bands of in-
terest, but that the inverter did cause some small additional inter-
ference at the lower frequency bands, but insufficient to change
any results.

B. Measurement Scenario

Measurements were performed in and around the city of
Bremen, Germany, and the driving path reconstructed from
GPS data is shown in Fig. 5. Many snapshots of all the spectrum
bands were obtained by driving for approximately 3 h along
the route. More time was spent in the highlighted areas A
(downtown Bremen), B (near airport), and C (shopping mall),
since more RF activity was expected to be present. Signals of
interest were identified using the frequency assignment infor-
mation for Germany found in [19], provided by the German
Bundesnetzagentur.

Fig. 6 Depicts the PSD measurements for the whole
driving track, where activity in FM (87.5–108 MHz), DVB-T
(3 channels in 470–606 MHz band and four channels in
614–790 MHz band), GSM-900, DCS-1800, fixed wireless ac-
cess (FWA) and UMTS downlink (2110–2170 MHz), and ISM
(2400–2483.5 MHz) bands is evident. Significant white spaces
are also seen in the spectrum. Spectrum in the 3–7 GHz range
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Fig. 7. Correlation magnitude pdf of �� � for random sensing.

was only occupied in a few isolated cases: 3400–3475 MHz
(near the Telecomm tower), 5230–5250 MHz (near the air-
port), 4610 MHz (military band sporadically present), and
5685–5690 MHz (single snapshot near downtown). The ap-
parent horizontal lines in spectrum near snapshots 26 and 110
occurred when the receiver was near the Telecomm tower,
where extensive RF activity was present.

C. Measurement-Based RCM

Measured PSD data was analyzed to obtain the distribution
of the correlation for a sensing bandwidth in two different
ways: (i) guided sensing where correlation is computed using
spectrum centered at known carrier frequencies and (ii) random
(blind) sensing where bandwidth about a randomly (uni-
form) selected center frequency is taken. In both cases only
spectrum that was at least partially occupied (signal 5 dB above
the noise floor was present) within the sensing bandwidth was
used as a correlation sample for the RCM. Choosing guided or
random sensing is expected to have a significant impact on CBD
methods, since in the former case correlation is real, while in
the latter it is likely to have uniform phase. The PSD in sensing
bandwidth is converted to correlation by shifting to base-
band, performing an inverse Fourier transform, and normalizing
to obtain .

The pdf of for random sensing obtained from the mea-
surement data is shown in Fig. 7, where sensing in the FM bands
with kHz yields a bimodal distribution with peaks
near 1 and 0.07. For the case of larger and random sensing
in the full spectrum, the pdf is flatter with a small peak at low
correlation and no peak near . The pdf of phase
for random sensing is given in Fig. 8, which is similar to a uni-
form distribution.

Fig. 9 plots the case of guided sensing for the full spectrum,
where for each center frequency is chosen to be equal to the
known channel bandwidth. Additionally, cases of DVB-T being
included or excluded are considered to check the impact of very
flat (uncorrelated) transmissions. Correlation magnitude has a
sharp peak for high correlation as well as significant support at
low correlation values, which is largely due to the DVB-T bands.
As expected, correlation phase is nearly zero for known carrier
frequencies.

Fig. 8. Measured pdf of � for random sensing.

Fig. 9. Measured pdfs of � for guided sensing: (a) magnitude and (b) phase.

V. PERFORMANCE ASSESSMENT

Having developed the framework for random correlation
modeling, this section gives numerical examples of perfor-
mance upperbounds and the performance of ad-hoc methods,
indicating where correlation-based detectors are advantageous.

A. Upperbounds: NP-PCI and NP-CDI

Here we consider the NP-PCI and NP-CDI bounds applied
to the uniform RCM, indicating the maximum performance im-
provement that is available for methods that exploit signal cor-
relation. We also consider how robust theoretical detection per-
formance is in the presence of error in the estimated SNR.

1) Bounds for Guided Sensing: Fig. 10 presents detection
performance of ED, NP-PCI, and NP-CDI for guided sensing,
where and . The bottom bar groups
show that CDI provides a 10%–20% performance improvement
compared to ED. Encouragingly, detection performance of
NP-CDI is only about 5%–10% less than NP-PCI, suggesting
that a large fraction of the potential benefit from correlation can
be captured with distribution knowledge.

Since SNR is a parameter used in both the NP-PCI and
NP-CDI detectors, the upper four bar groups in Fig. 10 indicate
the loss in detection performance when an incorrect assumption
about this parameter is made, where negative ( ) and
positive ( ) error is considered. We note that although
NP-CDI is fairly robust to both positive and negative SNR
error, the NP-PCI detector loses significant performance when
SNR is overestimated. Although not plotted, results for the
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Fig. 10. Bounds for guided sensing (real correlation) under uniform RCM.

Fig. 11. Performance comparison for random sensing (complex autocorrela-
tion) for CDI under uniform RCM.

measurement based RCM with guided sensing are similar to
this zero-phase uniform correlation model case.

2) Bounds for Random Sensing: Next, Fig. 11 considers
random sensing . Although
NP-PCI still provides a 10%–20% improvement in detec-
tion performance, NP-CDI provides very little improvement
(3%–6%), indicating that exploiting correlation for unknown
transmission center frequency is not very fruitful.

B. Performance of CAV and CorrSum

This section studies several important aspects of the ad-hoc
methods (CAV and CorrSum) using the developed RCMs.

1) Constant Correlation Versus Random Correlation:
Fig. 12 explores the difference of having a fixed correlation

versus random uniform correlation
for guided sensing . We see that the performance of
CorrSum and CAV for the RCM is very similar to the perfor-
mance for a fixed correlation at the mean value, suggesting that
a rough estimate of performance is possible by just using the
average expected correlation value, rather than very detailed
RCM simulations. We also observe that using an additional
lag ( ) has very little impact on performance. Although
CorrSum has higher performance than CAV due to the reasons

Fig. 12. Comparison of ad-hoc CBD methods for (a) constant correlation and
(b) random correlation assuming a simple uniform RCM.

explained in Section II-C, we have found that if the trace nor-
malization in (6) is removed, CAV has performance near ED.

2) Real Versus Complex Autocorrelation: Fig. 13 compares
real autocorrelation (guided sensing) to the case of complex
autocorrelation (random sensing) for the uniform correlation
model and an optimal value of , where energy detection
has also been considered for comparison. CAV performance is
insensitive to nonzero phase, but CorrSum performance suffers
and drops below ED. It is also interesting that the NP-CDI bound
indicates that around 7% performance improvement relative to
the best practical method is still possible.

3) Effect of Noise Uncertainty: Noise uncertainty of
the various detection methods is analyzed using the ap-
proach from [16]. Here, the noise variance under NU is

, where is the uncertainty factor
expressed in dB, and robust sensing assumes and

under and , respectively. The SNR wall
[16] is the SNR below which and for
the SNR wall for ED and CorrSum ( ) are found to be

and , respectively. Similarly, the SNR wall
for NP-CDI for real uniform RCM and is found to
be . Note that SNR wall does not exist for CAV.

Fig. 13(a) plots the effect of NU for the real correlation sce-
nario, where NU degrades the performance (with increasing
severity) of NP-CDI, CorrSum, and ED, while CAV perfor-
mance remains unchanged. With increasing , ED degrades to
the performance of CAV at , followed by CorrSum
at . Also shown is that the SNR wall for ED and
CorrSum is (the simulated SNR) for
and , respectively. Although not plotted to re-
duce clutter, NP-CDI performance for reaches the

SNR wall for a noise uncertainty of 0.52 dB. Similarly
for complex correlation in Fig. 13(b), CorrSum and NP-CDI are
degraded by NU, where CorrSum performance degrades to CAV
at and fails near . Note that NP-CDI
performance for reaches the SNR wall for a
noise uncertainty of 0.35 dB.

4) Experimental RCM With Guided Sensing: Fig. 14 now
considers guided sensing in a Rayleigh fading environment for
RCMs that were derived from the measurement, where we ex-
clude or include the DVB-T bands. Including DVB-T transmis-
sions reduces the performance of both the CorrSum and CAV
methods, as well as the NP-CDI bound, due to reduced correla-
tion from these flat noise-like OFDM transmissions. CorrSum
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Fig. 13. Comparison of ad-hoc CBD methods for (a) real autocorrelation (guided) and (b) complex autocorrelation (random) sensing. The number inside the
parenthesis for each method is the NU (�) in dB.

Fig. 14. Performance of guided ad-hoc CBD methods computed using experi-
mental RCMs and Rayleigh-fading, where noise-like DVB-T transmissions are
(a) excluded or (b) included in the model.

detection is about 10% better than ED without DVB-T, but only
about 4% better when DVB-T transmissions are included. In
both cases, the NP-CDI bound indicates that significant im-
provements are still possible.

5) Experimental RCM With Random Sensing: Fig. 15 con-
siders the same experimental RCM in Rayleigh-fading, but now
for the case of random (blind) sensing. On the left, sensing with

in the FM bands only is considered, while on the
right for the whole spectrum (27 MHz–7 GHz)
is considered. The basic result is that CorrSum performance is
degraded and is lower than ED. Also, the NP-CDI bound indi-
cates that although slight performance improvement with CBD
relative to ED is possible in the FM bands, negligible improve-
ment is possible when the whole spectrum is considered.

Fig. 15. Performance of ad-hoc CBD methods computed using experimental
RCMs and Rayleigh-fading for random sensing: (a) only FM bands, (b) entire
27 MHz–7 GHz spectrum.

VI. CONCLUSION

Correlation-based detection has been identified as a method
for increasing performance and robustness of primary user de-
tection in cognitive radio networks. This work has provided a
rigorous framework for studying the performance of correla-
tion-based detectors by introducing the concept of random cor-
relation models (RCMs). A measurement campaign was pre-
sented where spectral measurements in Bremen, Germany, were
taken, demonstrating how realistic RCMs can be derived. This
effort also led to the natural development of an NP detector
that exploits correlation distribution information (CDI) as op-
posed to the instantaneous correlation, which is not expected
to be known by uninformed cognitive radios. The NP-CDI per-
formance serves as the upperbound on the performance of all
methods that exploit signal autocorrelation.
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Subsequent analysis indicated that the main improvements
with correlation-based detection are available when the trans-
mission center frequencies are known (guided sensing). For
completely blind sensing, methods that exploit only real cor-
relation (like CorrSum) are degraded, and methods that ignore
correlation phase (like CAV) are unaffected. In many cases,
however, the NP-CDI bound exhibited higher performance than
the existing methods, even in the case of blind sensing, indi-
cating that some improvement in the ad-hoc sensing methods is
still possible.
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