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ABSTRACT

In wireless detection scenarios such as sensor networks or

cognitive radio, “hidden nodes” can occur due to channel

fading, which can be overcome by collaborative sensing.

This work considers the performance of collaboration with

combining and fusion methods for both static and fading en-

vironments, where each node employs energy detection for

sensing an unknown source. The case of combined Rayleigh

fading and shadowing is also considered, showing that AND

fusion can have even lower performance than a single sen-

sor. Our results show that choosing a fusion rule without

considering the statistics of the fading environment can lead

to very poor performance. It also proposes a new quan-

tized equal gain combining (QEGC) method that strikes a

good balance between performance and transmission over-

head among the collaborating nodes.

1. INTRODUCTION

Source detection is an important component for sensor net-

works such as surveillance radar, sonar and many civilian

applications related to public safety, security, health care,

etc. Recently, a new cognitive radio technology has gained

significant attention due to its potential to cope with spec-

trum scarcity [1]. An important component of cognitive ra-

dio is primary source detection (sensing) which is aimed at

detecting the presence or absence of a primary user in the

spectrum of interest. Collaborative sensing has been pro-

posed as a technique to avoid the “hidden node” problem,

which arises due to fading [2]. The information from differ-

ent sensors is combined in order to make a global decision

about the presence or absence of the wireless source.

Different combining techniques have been discussed in

[3], which include equal gain combining (EGC), selection

combining (SC), and switch and stay combining (SSC).

Similarly in [4], maximal ratio combining (MRC) has been

shown to be the optimal soft combining method whose per-

formance has been compared with equal gain combining.

However, for sensing unknown signals, the weighting fac-

tor needed for MRC may not be available, due to the lack

of channel information. Recent work in [5] indicates that

the optimal sensor fusion rule, in the sense of a locally most

powerful (LMP) test, is to use EGC for the low SNR regime,

which is a reasonable worst-case assumption when signal

and channel characteristics are unknown.

In the presence of small-scale fading, the signal inde-

pendence required by these soft combining schemes is ob-

tained at sub-wavelength scale separation, allowing easy im-

plementation with nodes having multiple antennas or wired

connections. In the case of shadowing, however, fading may

be correlated for many wavelengths, requiring nodes to have

significant separation for independence, and complicating

the transmission of node parameters to the decision center

that makes the global decision. In such cases, decision fu-

sion methods can be used which take only the decisions of

the individual sensors and fuse them to obtain the global

decision.

Fusion techniques normally employ a ‘k out of n rule’

(KNR) where n is the number of sensors. The special cases

are OR (k = 1), AND (k = n) or majority gates k =
⌈n/2⌉, where ⌈·⌉ denotes rounding up to the next integer

value. There exist conflicting claims on the superiority of

OR fusion and AND fusion [6], [7]. Fefjar in [6] showed

the superiority of OR fusion, which was refuted by Stearns

in [7], claiming that OR and AND performances intersect,

AND being superior for low false alarm probabilities. In

[8], the performances of OR and AND fusion are compared,

where the decision parameters are assumed to be exponen-

tially distributed with different decay constants for sensors

that are not identical, demonstrating that the superiority and

intersection all depend upon the global false alarm proba-

bilities as well as the distributions.

As an optimal data fusion technique based on a maxi-

mum likelihood ratio test, [9] has proposed a fusion rule in

which the decisions 1 or -1 (for existence or absence of the

source) are weighted according to sensor reliability, where

reliability is a function of the probabilities of false alarm and

missed detection. A decision fusion rule with the Neyman-

Pearson (N-P) test is described in [10], showing that fusion

can provide increased global probability of detection for a

fixed or lower global probability of false alarm relative to a

single sensor, when more than two sensors are available.

This work compares the performance of different cases

of k out of n rules for the decision fusion in unknown source

detection employing conventional energy detection at each

node. The fusion techniques (hard combining) are also com-



pared with EGC (soft combining), which is the main feasi-

ble soft-combining method for an unknown source. Differ-

ent possible distributions of the energy in individual sensors

are considered in static and fading environments. Analyti-

cal results are also verified by Monte Carlo simulation for

all the cases considered.

The rest of the paper is organized as follows: Section 2

introduces the problem of spectrum sensing, reviews energy

detection, and discusses the effect of fading on signal sens-

ing. Section 3 describes different collaborative approaches,

such as equal gain combining and fusion methods. Sec-

tion 4 compares the performance of different combining and

fusion techniques in static and fading environments using

closed form expressions and Monte Carlo simulations. Con-

clusion and some future extensions are discussed in Sec-

tion 5.

2. SINGLE SENSOR DETECTION

2.1. Energy Detector-Based Sensing

First we review energy detection, being the most common

method of spectrum sensing, due to its low computational

complexity and ease of implementation [3], [11], [12].

Considering the bandpass noise within a fixed sensing

bandwidth to have flat power spectral density (PSD), the

noise is represented as

η (t) = ηc (t) cos 2πfct − ηs (t) sin 2πfct, (1)

where fc is the reference frequency, and ηc (t) and ηs (t)
are the in-phase and quadrature modulation components,

respectively. If the bandpass noise in (1) has bandwidth

W , ηc (t) and ηs (t) have bandwidth W/2. The variance

of ηc (t), ηs (t) and η (t) are all equal to the noise power.

The energy in a continuous sample of finite duration T
is often approximated as [11]

U =

∫ T

0

η2 (t) dt ≈ 1

2W

TW
∑

i=1

(a2
ci+a2

si) = N0

TW
∑

i=1

(b2
ci+b2

si),

(2)

where aci and asi are the ith discrete samples (at a rate of

1/W ) of ηc (t) and ηs (t), respectively, bci = aci/
√

σ2
i ,

bsi = asi/
√

σ2
i , σ2

i = V ar(aci) = V ar(bsi) = 2N0W ,

and N0 is a two-sided PSD. Scaling U in (2) by defining

U ′ = U/N0,

U ′ =

TW
∑

i=1

b2
ci +

TW
∑

i=1

b2
si, (3)

which follows a central chi-square
(

χ2
)

distribution with

degree of freedom 2TW .

When the signal is present, U ′ follows non-central chi-

square distribution with 2TW degrees of freedom and a

non-centrality parameter γ′, which is the ratio of source sig-

nal energy to noise PSD (two-sided) [11]. In terms of SNR

(γ), which is the ratio of source signal to noise power, γ′

can be expressed as 2TWγ . The decision statistic for this

detector can be described compactly as

U ′ ∼
{

χ2
2TW H0,

χ2
2TW (γ′) H1,

(4)

where hypotheses H0 and H1 refer to the absence or pres-

ence of the source, respectively. The probability of false

alarm Pf and the probability of correct detection Pd for this

scheme can be calculated as [3]

Pf = Pr (U ′ > λ|H0) =
Γ
(

u, λ
2

)

Γ (u)
(5)

and

Pd = Pr (U ′ > λ|H1) = Qu

(

√

γ′,
√

λ
)

, (6)

where λ is the decision threshold, Γ (. , .) is the incomplete

gamma function, u = TW , and Qu (. , .) is the generalized

Marcum Q-function. As expected, Pf is independent of γ′

since under H0 there is no transmission from the source. For

longer sensing duration the distributions in both hypotheses

can be approximated as Gaussian. The decision statistic can

be described as

U ′ ∼
{

N
(

µn, σ2
n

)

H0,
N
(

µsn, σ2
sn

)

H1,
(7)

where

µn = 2TW,

σ2
n = 4TW,

µsn = 2TW (1 + γ) ,

and

σ2
sn = 4TW (1 + 2γ), (8)

respectively. For this Gaussian-distributed case, Pf and Pd

can be calculated as

Pf = Pr (U ′ > λ|H0) =
1

2
erfc

[

(λ − µn)

σn

√
2

]

(9)

and

Pd = Pr (U ′ > λ|H1) =
1

2
erfc

[

(λ − µsn)

σsn

√
2

]

, (10)

where λ is the decision threshold and erfc(·) is the compli-

mentary error function.

2.2. Sensing in a Fading Channel

In practice, the sensing problem involves both small-scale

(multipath) and large-scale (shadow) fading. These two ef-

fects are commonly treated as independent processes that



combine to produce the overall fading effect [13], and this

effect usually degrades the performance of spectrum sens-

ing methods. The hidden node problem in cognitive radio,

for example, poses a challenge to spectrum sensing, which

happens when the primary source is not detected by a cog-

nitive radio receiver due to fading, but the transmit power

from this cognitive radio interferes with a primary receiver.

The distribution of the envelope of received signal in

small-scale fading is commonly taken to be Rayleigh dis-

tributed, making the received power distribution exponen-

tial [14]. The Rayleigh probability density function (pdf)

is

fR (r) =
r

σ2
r

e
−

r2

2σ2
r , r ≥ 0, (11)

where 2σ2
r is the average power and r is the faded envelope

of the signal.

The slow varying local mean power due to shadowing is

commonly assumed to follow the lognormal distribution

fPo
(po) =

1√
2πσpo

e
−

(ln po − µ)
2

2σ2 , po ≥ 0, (12)

where µ and σ2 are the mean and variance of the logarithm

of local mean power. If the power is expressed in dB, the

distribution becomes Gaussian, with the mean and standard

deviation reflecting the average power and shadowing vari-

ation, both expressed in dB.

The Pf and Pd we discussed in 2.1 do not consider the

fading effects. If the channel gain is varying due to shadow-

ing or multipath, (6) gives the probability of detection con-

ditioned on the instantaneous SNR γ′. The average prob-

ability of detection is obtained by averaging (6) over the

fading statistics [2], which is given as

Pd =

∫

∞

0

Qu

(

√

γ′,
√

λ
)

f (γ′) dγ′, (13)

where f (γ′) is the pdf of γ′ under fading. For a Rayleigh

fading channel f (γ′) is given as

f (γ′) =
1

γ′
e
−

γ′

γ′

, (14)

where γ′ is the average value of γ′. Letting x =
√

γ′, we

obtain

Pd =
2

γ′

∫

∞

0

Qu

(

x,
√

λ
)

x e
−

x2

γ′

dx. (15)

This can be derived in closed form, using (12) from [15], as

Pd = e−
λ
2

u−2
∑

m=0

1

m!

(

λ

2

)m

+

(

2 + γ′

γ′

)u−1
[

e
−

λ

2+γ′ − e−
λ
2

u−2
∑

m=0

1

m!

(

λγ′

2
(

2 + γ′

)

)m]

.

(16)

A similar result is also obtained in [2] and [3]. However,

note that due to our definition of SNR (a two-sided PSD is

used), the expression is slightly modified. Also note that

[3] appears to have a missing exponent, which is corrected

in [2] and in (16). The analytical expression for Pd in the

combined fading environment, consisting of both Rayleigh

fading and lognormal shadowing, is not yet available in the

literature, and simulation studies on the effect of this com-

bined fading is an important contribution of this work, pro-

viding additional insight on the sensing problem for realistic

environments.

3. MULTIPLE SENSOR DETECTION

3.1. Fusion (Hard Combining Methods)

Fusion techniques normally employ k out of n rule (KNR),

where n is the number of sensors. In this fusion rule the

global decision is 1 if any k or more sensor has output 1,

where the decisions 1 or -1 refer to presence or absence of

the source. Therefore, KNR fusion is represented mathe-

matically as

F (u1, · · ·, un) ∼
{

1,
∑n

i=1
ui ≥ 2k − n,

−1, otherwise.
(17)

For OR fusion, at least one output must be 1 to have the

global decision 1, so the decision rule is given as

F (u1, · · ·, un) ∼
{

1,
∑n

i=1
ui ≥ 2 − n,

−1, otherwise.
(18)

Similarly, in AND fusion the decision is 1 only if all sensors

have output 1, or

F (u1, · · ·, un) ∼
{

1,
∑n

i=1
ui = n,

−1, otherwise.
(19)

It is obvious that OR and AND cases are the special cases

of KNR with k = 1 and k = n, respectively. In the majority

gate rule, k is taken to be ⌈n/2⌉.

F (u1, · · ·, un) ∼
{

1,
∑n

i=1
ui ≥ 0,

−1, otherwise.
(20)

The decision fusion rules discussed above do not consider

the distribution of the decision statistics, the individual Pf

and Pd, nor the global desired false alarm probability Pf,T

when making the global decision. The global receiver oper-

ating characteristics (ROC) obtained from theses rules may

not be optimal for all values of Pf,T . The optimal data fu-

sion rule given in [9] is

F (u1, · · ·, un) ∼
{

1, a0 +
∑n

i=1
aiui > 0,

−1, otherwise,
(21)



where the optimum weights are given by

a0 = log
P1

P0

(22a)

ai =



















log
Pd,i

Pf,i

, ui = +1,

log
1 − Pf,i

1 − Pd,i

, ui = −1,

(22b)

where P0 and P1 are the a-priori probabilities of the two

hypotheses. If the a priori probabilities are unknown, then

the optimal decision scheme should be based on an N-P test

which has been discussed in [10], obtaining a similar result

as that in (17), except for the a0 term. This optimal data

fusion rule is different from the majority gate rule in the

sense that the value of k here changes according to the Pf

and Pd pairs under consideration. The global false alarm

and detection probabilities with KNR are given as

Pf,T =
n
∑

i=k

(

n
i

)

P i
f (1 − Pf )n−i , (23)

and

Pd,T =

n
∑

i=k

(

n
i

)

P i
d (1 − Pd)

n−i
, (24)

respectively, where

(

n
i

)

=
n!

(n − i)!i!
is the number of

combinations of the sensor outputs.

3.2. Decision Parameter Combining (Soft Combining)

Methods

Several combining techniques for iid Rayleigh environments

are developed in [3], where for the case of equal gain com-

bining, the sum of Rayleigh-distributed random variables is

modeled as a Nakagami distribution with suitable parameter

values. The important results are also derived here, which is

necessary due to our specific definition of SNR. Also, since

the threshold after combining should clearly change, we ac-

count for this in our derivation.

When equal gain combining is used with n independent

sensors, the energy is increased as γ′

T =
∑n

i=1
γ′

i . Here the

concept of equal gain combining is different than that used

in multiple antenna diversity schemes. The decision pa-

rameter (energy in our case) of the individual nodes is sim-

ply added here instead of co-phasing and adding the signals

from different antennas in conventional diversity. Diversity-

like maximum ratio or equal gain combining is usually not

possible for unknown source detection since SNRs are typ-

ically very low and there is no cooperation from the source.

Considering energy detection, the total output energy of

the combiner again has a non-central chi-square distribution

with degree of freedom 2nTW and non-centrality parame-

ter γ′

T . Similarly when no signal is present, the combiner

output has a central chi-square distribution with degree of

freedom 2nTW . The Pf,T and Pd,T at the equal gain com-

biner output for the AWGN channel can be evaluated in a

manner analogous to (5) and (6) as

Pf,T = Pr (U ′

T > λT |H0) =
Γ
(

nu, λT

2

)

Γ (nu)
(25)

and

Pd,T = Pr (U ′

T > λT |H1) = Qnu

(

√

γ′

T ,
√

λT

)

, (26)

where λT is the decision threshold of the combiner. In the

Rayleigh fading channel, the distribution of γ′

T is that of

the sum of n independent exponentially distributed random

variables, each having a mean of γ′, which is represented as

f (γ′

T ) = γ′n−1

T

e

−γ′

T

γ′

Γ (n)γ′
n , (27)

where Γ (n) = (n − 1)! for integer n. The average Pd,T for

Rayleigh fading can then be obtained as

Pd,T,Ray =

∫

∞

0

Qnu

(

√

γ′

T ,
√

λT

)

f (γ′

T ) dγ′

T . (28)

Changing the variable x =
√

γ′

T , we obtain

Pd,T,Ray =
2

Γ(n) γ′
n

∫

∞

0

Qnu

(

x,
√

λT

)

x2n−1 e
−

x2

γ′

dx

= α











Ψ1+ β

nu−1
∑

i=1

(

λT

2

)i

2 × i!
1F1

(

n; i + 1;
λT

2

γ′

2 + γ′

)











,

(29)

where α = 2/[Γ(n)γ′
n
], 1F1 is the confluent hypergeomet-

ric function defined as

1F1 (a; b; z) =

∞
∑

i=1

(a)i zi

(b)i i!
(30)

with (a)i given as (a)i = a (a + 1) (a + 2) ... (a + i − 1) ,

β = Γ (n)

(

2γ′

2 + γ′

)n

e−
λT
2 ,

and

Ψ1 =

∫

∞

0

Q1

(

x,
√

λT

)

x2n−1 e
−

x2

γ′

dx, where Q1 (·, ·)
is the first order Marcum Q-function. Ψ1 can be evaluated



U ′

U ′
2

= λ U ′
3

U
′
3U

′
2U

′
1U

′
0

f(U ′)

U ′
max

U ′
4

= ∞U ′
1

U ′
0

= 0

Figure 1: Computation of parameters for two-bit energy

quantization using the energy distribution of noise

using [15] as

Ψ1 =
(n − 1)!γ′

n+1

2
(

2 + γ′

) e
−

λT

2 + γ′

×








n−2
∑

k=0

(

2

2 + γ′

)k

Lk

(

−λT

2

γ′

2 + γ′

)

+

2n

γ′

(

2 + γ′

)2−n
Ln−1

(

−λT

2

γ′

2 + γ′

)






, (31)

where Lk (x) is known as the Laguerre polynomial of de-

gree k defined as

Lk (x) =
ex

k!

dk

dxk

(

e−x

xk

)

. (32)

The values of L0 (x) and L1 (x) are 1 and −x + 1, respec-

tively. Using these values, the value of Lk (x) can be com-

puted using the recursive formula [16]

Lk+1 (x) =
1

k + 1
[(2k + 1 − x) Lk (x) − kLk−1 (x)] .

(33)

3.3. Decision Parameter Combining with Quantization

(QEGC) Method

To improve the performance of fusion techniques without

large investment in the cooperating bandwidth, an equal gain

combining scheme with quantized decision parameters is

proposed. Here the energy of each sensor is quantized us-

ing four levels as depicted in Figure 1, where two levels are

used above and below the threshold. The identical quanti-

zation levels are known by all sensors as they are chosen

based only on the noise distribution.

After choosing a suitable maximum energy level U ′

max,

below which most of the probability falls (for the noise-only

case), the midpoints below and above the threshold are com-

puted as U ′

1 = λ/2 and U ′

3 = (U ′

max + λ)/2. When a node
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Figure 2: ROC curves comparing the analytical and simu-

lated results in different scenarios

observes the energy on the interval [U ′

i , U
′

i+1], the two-bit

binary representation of i is transmitted, which is decoded

as the quantized level U
′

i = (U ′

i + U ′

i+1)/2 at the com-

biner. As with EGC, the combiner adds these quantized

values from all nodes and compares to a threshold. Due

to the combinations of the four levels with different sensors

the output of the combiner has a distribution having a larger

number of possible outcomes, which can improve perfor-

mance significantly compared to one bit fusion.

4. RESULTS

The analytical performance of energy detection is compared

to Monte Carlo simulations for single sensor and 2-sensor

parameter combining (EGC) for static and Rayleigh fading

channels. The results are shown in Figure 2 in the form

ROC curves. It is seen that the analytical model and simula-

tions are in excellent agreement. It is interesting that when

Pf tends to zero, the Pd for Rayleigh fading is better than

in the case without fading. The reason is that for a given

SNR, no signal is received above threshold in the static en-

vironment, but due to occasional constructive Rayleigh fad-

ing, there are still some events where the received signal is

above the threshold.

In the following results, the performance of the various

sensing methods is obtained both from closed-form expres-

sions (when available) as well as Monte-Carlo simulations.

Since the results are virtually identical in all cases, only

the analytical results are plotted, except for combined fad-

ing, where no analytical expression is available. Since it

is speculated that the relative performance of the methods

will change as the distribution changes, various distributions

of the signal energy are considered, ranging from 20 (low)

to 160 (sufficiently high) degrees of freedom, having chi-

square and approximately Gaussian distributions, respec-

tively. Note that the degree of freedom depends directly on

the sensing time available for a given application.



In all of the environments, the performance of EGC is

found to be the highest. For a 2-sensor system in a static

environment, OR and AND intersect each other with OR

performing better for high Pf,T values and AND perform-

ing better for lower Pf,T (Figure 3). For a higher num-

ber of sensors, the performance of OR and AND show the

same behavior (Figures 4 and 5), which becomes more pro-

nounced for higher degrees of freedom (Gaussian approxi-

mation) as seen in Figure 6. Among the fusion techniques

with more than 2 sensors, the performance of majority rule

is the best for both the chi-square and Gaussian distributed

cases (Figures 4, 5 and 6). For the similar sensors, the op-

timal (Chair) rule proposed in [9] ensures performance im-

provement compared to a single sensor giving the best per-

formance in particular value of Pf,T , but it does not give

the best performance for all global false alarm probability

(Pf,T ) values.

An interesting outcome of this study is that the detection

performances are quite different for Rayleigh fading com-

pared to the static case, which results from the difference

in the distributions of the energy. In Rayleigh fading, OR

fusion gives the best performance for almost all Pf,T val-

ues, whereas AND fusion performs the worst (Figures 7, 8,

and 9). Moreover, ROCs of AND and OR never intersect in

Rayleigh fading, OR being far better than AND for all Pf,T

values. Also, in Rayleigh fading the performance of OR fu-

sion is the best of all fusion rules and this approaches that of

EGC when sensors are decreased to two. At the same time

the AND fusion loses its performance and does not help at

all when sensors are reduced to two.

The poor performance of AND fusion is higher when

there is shadowing in addition to Rayleigh fading. This is

apparent from Figure 10 where the collaboration with AND

fusion degrades the performance rather than improving.

These results suggest that it is inappropriate to choose

any fusion method without knowledge of the distribution of

the decision parameter (energy in our case) in the collabo-

rating sensors and the desired global false alarm probability

Pf,T .

The performance improvement to fusion by implement-

ing EGC with 2-bit quantization is shown in Figures 11

and 12, where U ′

max = 45 was chosen such that Pr(U ′ >
U ′

max) = 0.001. This simple choice of the quantization re-

gions gives performance much closer to optimal EGC than

the best performing fusion rule. This result is encouraging

given the simplicity of the method, and further gains are

likely to be possible by optimizing the quantization regions.

Note that for three sensors, the same false alarm probability

was obtained for more than one threshold, and the threshold

giving larger detection probability must be chosen.

5. CONCLUSIONS

This work presented different collaboration techniques for

signal sensing in fading environments. Comparisons were
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low degree of freedom with 2-sensors
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Figure 4: Performance of EGC and fusion techniques for

low degree of freedom with 4-sensors
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Figure 5: Performance of EGC and fusion techniques for

higher degree of freedom
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Figure 6: Performance of EGC and fusion techniques for

sufficiently high degree of freedom (Gaussian distribution

for energy)
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Figure 7: Performance of EGC and fusion techniques in a

Rayleigh fading environment with 4-sensors and low degree

of freedom
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Figure 8: Performance of EGC and fusion techniques in a

Rayleigh fading environment with 2-sensors and higher de-

gree of freedom
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Figure 9: Performance of EGC and fusion techniques in

Rayleigh fading environment with 8-sensors
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Figure 10: Performance of EGC and fusion techniques in a

combined fading environment (σ = 5 dB) with 2-sensors
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Figure 11: Comparison of the performance of 2-bit quan-

tized EGC with other combining and fusion methods for 2-

sensor collaboration
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Figure 12: Comparison of the performance of 2-bit quan-

tized EGC with other combining and fusion methods for 3-

sensor collaboration

made of the various techniques for both analytical and sim-

ulation results. The results indicated that the superiority of a

particular fusion method fully depends upon the distribution

of the decision parameter at the sensors. Since this distribu-

tion in turn depends on the fading environment, a method

that is superior for one environment may actually be infe-

rior for a different environment. It appears that in general,

AND fusion does not help in a Rayleigh fading environ-

ment. As the number of sensors is reduced to two, AND

fusion does not give any performance gain, whereas OR

fusion performs the best, approaching equal gain combin-

ing. Since OR fusion is simpler than EGC, it should be pre-

ferred for Rayleigh fading environments with two sensors.

This result is even more pronounced for combined fading

with increasing levels of lognormal shadowing. Finally, the

fusion performance is significantly improved using a quan-

tized EGC method.

In future work, we plan to investigate extending the fu-

sion methods to find optimal performance with small in-

crease in the data overhead. We also plan to study the per-

formance of the these methods with more realistic path-

based propagation channel models and actual measured

channel data.
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