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Sparse Power Angle Spectrum Estimation
Jon W. Wallace, Member, IEEE, and Michael A. Jensen, Fellow, IEEE

Abstract—A novel method for estimating the power angle
spectrum (PAS) is presented that decomposes the true PAS into a
small set of basis functions. The basis coefficients for this sparse
representation are found by enforcing equality to the covariance
or Bartlett PAS subject to a minimum �-norm constraint. The
method, referred to as sparse PAS estimation (SPASE), can be im-
plemented conveniently using existing linear-programming (LP)
solvers. Further, because only a few clusters are required in the
representation, the method enables reduced-complexity stochastic
models for the channel and possibly allows reduced overhead in
channel feedback schemes. Application of the method to simulated
channels and multiple-input multiple-output (MIMO) propaga-
tion data demonstrates the utility of the method.

Index Terms—Direction of arrival estimation, modeling, multi-
path channels, multiple-input multiple-output (MIMO) systems.

I. INTRODUCTION

T HE power angle spectrum (PAS) of transmitted or re-
ceived electromagnetic waves quantifies the relative

propagating power as a function of angle at a specific point
in space. Traditionally PAS is a single-directional single-po-
larization quantity, but straightforward double-directional,
multi-polarization, and joint azimuth/elevation extensions
are also possible. Although we focus on estimating PAS for
wireless communications and directional channel modeling,
knowledge of the PAS is useful in many other applications, such
as radar, radioastronomy, and spaceborne microwave imaging,
indicating targets, emissive sources, scatterers, etc.

PAS can theoretically be measured with a directional antenna
that is rotated to sense the incoming power (or to transmit
power) in a single direction, but this arrangement is often too
bulky, expensive, and slow for most applications. For direc-
tional wireless channel modeling, a number of techniques have
been developed and employed to estimate PAS conveniently
from multiple-antenna measurements. Beamforming [1] is a
typical method to estimate PAS directly from the array channel
response, with the main restrictions being the resolution lim-
itation and existence of side lobes created by the finite array
aperture that can be partially overcome by applying deconvo-
lution techniques [2]–[5].

The resolution limitation of traditional methods has been
overcome by a parametric description of the channel, where the
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channel is assumed to consist of a discrete sum of propagating
plane waves, referred to commonly as the double-directional
channel [6]. The directions and amplitudes of the propagating
waves are estimated using super-resolution techniques, such as
CLEAN, ESPRIT, SAGE and their variants [2], [7], [8], from
which the PAS can easily be extracted. A difficulty of applying
these techniques is the need for very accurate array calibration
[9], which may not be possible in practice. It has also been
shown that when too many multipath arrivals are present, the
PAS estimated using these super-resolution techniques can be
highly inaccurate [10].

For many applications it is desirable to find an accurate PAS
representation with as few parameters as possible, referred to as
a sparse representation (or “simplest explanation” according to
Occam’s Razor). For directional channel modeling, 10 s to 100 s
of multipath can be grouped into relatively few clusters, simpli-
fying the stochastic model. From the standpoint of channel feed-
back, passing fewer parameters between nodes is preferable for
conserving valuable bandwidth. Related is a growing body of
work on signal processing techniques that provide sparse repre-
sentations of signals and operators using redundant dictionaries
[11]–[13].

The purpose of this paper is to present a novel technique for
PAS estimation that is both accurate and sparse, which we refer
to as sparse power angle spectrum estimation (SPASE). Some
aspects of the method have already been presented in [14]–[16],
but a complete description has not yet appeared. The method is
based on minimum -norm representations of the PAS, which
have been shown to produce very sparse representations of sig-
nals and operators [11], in contrast to minimum -norm solu-
tions. The method requires no special array or antenna geometry
and is quite general. The technique is relatively simple to imple-
ment, since linear programming (LP) functions are available in
most commercial mathematical software packages. It should be
noted that the goals of this method are similar to those of other
methods that have been proposed for cluster estimation [10] and
estimation of arrivals with finite angular spread [17], [18].

In this development, and represent a matrix and vector,
respectively, with scalar elements and . Matrix conjugate,
transpose, and conjugate transpose are represented with ,

, and , respectively. is an th order tensor with el-
ements and . The tensor may be
reshaped into a matrix with elements

where the indices in brackets denote stacking, meaning
denotes ,

which is exactly the row-order stacking operation that occurs in
mathematical software like MATLAB. A repeated index not ap-
pearing on the left-hand side of an equation implies summation,
so a matrix-vector multiply could be written as

. The inner product of two tensors is denoted
. The outer product of an th order tensor
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and an th order tensor is
.

II. SPARSE DECOMPOSITION METHODS

Providing a comprehensive survey of sparse decomposition
methods and algorithms is beyond the scope of this present
work. However, including some background material on the de-
velopment of this interesting field is important to place the cur-
rent work in the proper context, indicating room for improve-
ment in the efficiency and utility of the described methods and
highlighting future research opportunities to apply sparse de-
compositions to new antennas and propagation topics. Sparse
decomposition aims to solve [12]

(1)

where is the -norm of , defined as
. The special cases and give the

number of nonzero elements and the maximum element mag-
nitude, respectively. Typically is an observed quantity to be
decomposed into a sum of basis vectors given by the columns
of with corresponding basis coefficients . The interpretation
of (1) is that the sparsest decomposition is the one with the
fewest nonzero coefficients that matches an observation. With
noisy signals or an imperfect model, the equality constraint in
(1) cannot be strictly met, and the modified problem

(2)

is usually considered. The choice of depends on the specific
notion of “close” for a given application, and provides a
tradeoff between the solution sparseness and accuracy.

One of the oldest examples of sparse decomposition methods
is the so-called CLEAN algorithm used extensively in radioas-
tronomy [2], in which the observed scene consists of a small
set of point sources convolved with the radiation patterns of the
receiving antenna(s). One-dimensional CLEAN is described by
(2), where , ( th column of ), and are the observed
signal, antenna pattern, and point source amplitude at the th
scan angle. CLEAN successively detects peaks in the observed
scene and subtracts the antenna pattern centered at each peak,
resulting in a sparse deconvolved image of relatively few im-
pulses. CLEAN-like algorithms have also been referred to as
“matching pursuit” [19]. Although efficient and simple, a draw-
back of CLEAN is residual error at each step, leading to artifacts
and missed sources.

In [20], a synthesis method for sparse arrays is presented,
where given the desired pattern, aperture, and allowed devia-
tion from the ideal pattern, a minimum norm decomposition
yields the sparsest representation with , and a solu-
tion method similar to LP was employed.

In the methods described so far, the single basis used for re-
construction is dictated by the physical antenna pattern. In other
problems, the basis is arbitrary and should be chosen to enhance
the sparseness of the resulting decompositions. In [11], the con-
cept of atomic decomposition with “basis pursuit” is introduced,
where the difficult problem (2) is replaced with

(3)

For or , and real-valued , , and , (3) can be
solved via LP, which in standard form solves

(4)

Basis pursuit also embraces the idea that may consist of an
“overcomplete” or redundant basis whose members need not be
linearly independent, further enhancing the potential sparseness
of the solution. A rigorous mathematical treatment is given in
[12], providing necessary conditions where the solution to (3)
for , 2 is also the solution to (2).

More recently, work has appeared on applying sparse rep-
resentations for image denoising [13], where dictionaries are
learned by finding sparse reconstructions of sub-images from
a redundant discrete cosine transform (DCT) basis.

An important effort is the search for fast implementations of
sparse decomposition techniques. For example, in [21], [22] an
efficient iterative algorithm for solving (3) with is de-
scribed. Instead of the normal procedure of iterating on to find
the optimal solution, the dual problem

(5)

is solved, where the number of nonzero elements of is
searched from , and at each step, must fall within an
interval that can be directly computed. The iteration stops when
the target value of falls in that interval. This fast algorithm
requires at most steps, which can be more efficient than
standard LP methods.

III. SPARSE POWER ANGLE SPECTRUM ESTIMATION

This section provides details of the SPASE method. We ini-
tially describe the method for the single-dimensional case (i.e.
single-directional, single-polarization, azimuth-only), and later
show how to naturally extend the method to higher dimensions.
Although it is likely that improvements in efficiency are pos-
sible by applying more sophisticated techniques such as those
in [21], this present work focuses on developing the method in
a framework compatible with conventional LP solvers that are
readily available in most standard mathematical software.

A. Channel Statistics

Consider a system with a single transmit antenna and
receive antennas. Assuming discrete multipath arrivals ( can
be arbitrarily large), the narrowband channel transfer function
for the th receive antenna can be written as

(6)

where is the complex amplitude of the th path,
is the th element of the steering vector,

is the complex azimuthal far-field radiation pattern for the th
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antenna, , and are the
coordinates of the th antenna, and is the wavenumber. The
channel covariance is

(7)

where independence of the arrival amplitudes and directions is
assumed. If the arrival amplitudes are i.i.d. and zero mean,

(8)

where is the expected power of an arrival in the direc-
tion. This result leads to

(9)

(10)

where is the probability density function (pdf) of multi-
path arrivals. Defining as the true PAS and
assuming i.i.d. arrivals, (9) becomes

(11)

The development above can naturally be extended to higher
dimensions, where the tensor notation is convenient. Given ar-
rays at both transmit and receive, the relationship becomes

(12)

with , and is the
single-directional steering vector with (for transmit) or

(for receive). For multiple independent polarizations,
(11) can be extended to

(13)

where , and
indexes polarization. Similarly, multiple frequency bins and el-
evation can also be incorporated.

B. Element-Space Solution

Given an estimate of the channel covariance and consid-
ering the relationship (11), our task is to invert the relationship
to find a suitable estimate of . To accomplish this, we ex-
pand the unknown true PAS using basis functions or

(14)

where is the th basis function. Based on the fact that
the PAS represents power (a real, non-negative quantity), it is
also desirable that the basis functions and coefficients
be real and non-negative, thus appealing to physical intuition.
Substituting (14) into (13) yields

(15)

which can be stacked to obtain

(16)

or . Estimating the using the pseudoinverse is ar-
guably the most obvious way to solve this relationship. How-
ever, the resulting power coefficients in , which should be pos-
itive and real, are estimated as complex values in general. The

can be forced to be real by splitting real and imaginary parts
according to

(17)

which may be written as . Although solving for
with a pseudoinverse will now yield only real coefficients, they
may still be negative. Another problem is that this is a minimum

-norm solution that tends to distribute energy among all of
the basis coefficients, inconsistent with our desire for a sparse
solution.

These difficulties are overcome by solving the real-valued re-
lationship (17) using linear programming (LP) given in (4) with

, , and . The use of LP ensures
that power is non-negative and the minimum -norm favors a
sparse representation [11].

We have assumed that relation (16) holds exactly when we let
be a sample covariance matrix, but this may not be possible

due to imperfect estimates of or imperfect array calibration.
We can avoid this difficulty by replacing the strict equality con-
straint with , and two different methods for treating
the residual error are considered: soft and hard limiting.

In the case of soft limiting, is assumed to be an unknown
quantity to be jointly minimized with , transforming the mini-
mization problem to

(18)
The choice of residual error cost requires some care. For very
high quality data with careful calibration, large values of may
be advisable to make the match as close as possible. However,
when aberrations are present in the data, forcing such a close
match may actually make the model order much higher for only
slight improvement in the fit.

Hard limiting constrains to be below some threshold ,
identical to (3). In this work, has been considered, which
constrains the maximum residual to lie below . Although
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the choice also requires care, it appears that hard-limited
solutions are less sensitive with respect to than soft-limited
solutions are with respect to .

When enforcing the condition , we may not
wish to include all of the rows in this equality for two important
reasons: redundancy and uncertainty. First, redundancy means
that the covariance matrix may contain duplicated information,
leading to inefficiency in the LP solution. Consider the Toeplitz
covariance matrix for a uniform linear array (ULA). Since only
a single row is unique, including all of the covariance matrix
elements is wasteful. Second, uncertainty implies that elements
of the covariance matrix may not be available, or our estimates
may be very poor. For example, suppose we form a virtual array
with 360 of view by rotating an array of directional patch an-
tennas. We could include the element positions at each rotation
as an additional set of virtual array elements. However, if the
movement is not precise, the exact phase relationship between
elements at different rotations is unknown. Also, consider co-
variance computation for a ULA. Due to the Toeplitz (shift in-
variant) structure, we can compute covariance for small antenna
spacings with high accuracy by averaging over all appropriate
shifts. For large spacings, however, we will have effectively less
sample points for covariance computations, which we may wish
to exclude. Removing elements from that are either redundant
or uncertain and discarding the corresponding elements of
and removes equations from the optimization constraints.

The purpose of this discussion is to highlight the flexibility
of the method in specifying which covariance elements are
matched and how error is constrained. The variant giving an
optimal tradeoff between complexity and accuracy likely de-
pends on the application and the quality of the data. Also, future
investigations are needed to explore under what conditions each
method gives optimal performance.

C. Beamspace Solution

For a large number of sensors (antennas and frequency bins),
it may be more efficient to solve the problem in beamspace
rather than element space. Any linear transformation of (11)
will remain a linear system, where only the values for are
transformed. Consider applying a simple Bartlett beamformer
to (11), or

(19)

We can project both sides of (19) onto a set of test functions.
Using point matching, we sample both sides at angles to
obtain

(20)

The solution of this equation mirrors that of the element-space
equation, except that the dimensionality of will typically be
significantly reduced. Also, note that is the
output of a Bartlett beamformer at look-angle for a plane
wave arriving at , which is a real, non-negative number. Since

is real and non-negative, the elements of are also real
and non-negative.

D. Choice of Basis Functions

The analysis has not yet specified the basis functions used to
represent the true PAS. Examples of unstructured basis func-
tions are pulse or triangle functions, leading to piecewise con-
stant and piecewise linear PAS, respectively. These unstructured
basis functions assume no a-priori information about the source
distribution.

On the other hand, a structured basis uses functions known
to represent the PAS characteristics. For example, in indoor and
outdoor environments, it has been observed that each multipath
cluster in a PAS has a Laplacian shape [23], [24], suggesting
a basis consisting of Laplacian functions with different angular
spreads and mean angles. Also, with the LP method, there is no
restriction that the basis be orthogonal. If desired, we can form
an overcomplete basis that has Laplacian, Gaussian, von Mises,
Dirac delta functions, etc., and let the LP solution choose the
most sparse representation.

IV. EXAMPLE APPLICATIONS

Due to space limitations, it is not possible to explore all facets
of the new method, nor to compare it with all other existing
methods. Instead, we have chosen to provide a few illustrative
examples. First, simulations are used to explore the performance
of the method for some ideal cases. Second, application of the
method to real multiple-input multiple-output (MIMO) mea-
surements indicates that the method can give meaningful results
in even non-ideal situations. In this work, LP solutions are ob-
tained with the freely available PCx package [25]. PCx has the
added benefit of operating very efficiently when the coefficient
matrix is sparse.

A. Single-Directional SPASE

First, we consider an ideal example to explore some prop-
erties of SPASE. Consider a very rich scattering environment
where multipath components arrive in Laplacian-shaped clus-
ters with angular spread. In this example, the ideal
covariance matrix is found by computing the integral (11) nu-
merically with 500 equi-spaced points on the interval .
The simulated channel is probed with a ULA at the receiver con-
sisting of -separated directional antennas, each having a 3
dB beamwidth of 120 and azimuthal gain pattern. We can
obtain 360 of azimuthal view by rotating the array to 3 different
positions depicted in Fig. 1.

Fig. 2 depicts the results for two conventional PAS estimation
techniques (ESPRIT and the Capon beamformer), where these
methods are applied repeatedly to each of the three orientations
of the receive array. The true spectrum (solid line) has been gen-
erated using a single realization of the single-directional SVA
model [26] with parameters and . ESPRIT cannot
resolve all arrivals, since the number of multipath components is
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Fig. 1. Directional 8-element array assuming three possible orientations.

Fig. 2. Example illustrating difficulty of PAS estimation using conventional
techniques for environments with rich multipath. Also shown is SPASE with a
piecewise-constant basis.

larger than the number of antennas, and the maximum number of
7 arrivals (per orientation) has been chosen as the model order.
ESPRIT tends to produce arrivals at the spectral peaks and addi-
tional arrivals that mostly follow the PAS shape. However, most
of the detail cannot be deduced from the ESPRIT estimates. Al-
though the Capon beamformer gives meaningful results, there is
some smoothing of the peaks and smaller arrivals are lost. Also,
decomposition of the Capon PAS to a sparse form in terms of
clusters would require an additional processing step.

SPASE is now applied to the same example with an unstruc-
tured piecewise-constant basis consisting of 36 non-overlapping
10 pulse functions on the interval . Note that for this
and following SPASE examples in this section, soft-limiting of
the error is used with . Also, the covariance is nor-
malized by the mean of its diagonal (mean unit power) and the
basis functions are normalized to have mean unit power. The re-
sult of SPASE is plotted in Fig. 2, indicating a good match for
the simple basis assumed.

Fig. 3 shows the results of applying structured SPASE to the
same example, where the true cluster arrivals (angle/power) and
corresponding true PAS are plotted with boxes and solid lines,
respectively. For SPASE, a basis consisting of Laplacian clus-
ters was chosen with angular spreads of and
arrival angles of . Clusters (basis coefficients)

Fig. 3. Example application of SPASE with full basis and a reduced basis
(SPASER). Lines represent spectra and symbols represent cluster arrival angle
and power.

TABLE I
EXAMPLE RUN-TIMES OF METHODS IN SECONDS

and the PAS estimate are plotted as crosses and dotted lines, re-
spectively.

Although the SPASE solution is almost the same as the true
PAS, a discrepancy exists between the estimated and actual
cluster amplitudes and angles. This problem arises because the
actual clusters arrive at angles that are between the specified
basis functions, and a nonzero coefficient arises on each side.
A reduced basis is obtained by only keeping the basis function
with the highest power when two or more adjacent nonzero
basis coefficients arise, after which the optimal coefficients are
recomputed by rerunning the SPASE algorithm. SPASE with
this reduced basis (SPASER) generates cluster arrivals and the
PAS estimate shown by X’s and the dashed line, respectively.
Although the spectrum only changes slightly, the cluster pa-
rameters are much closer to the true values.

Due to the higher complexity of the SPASE method compared
to simple techniques like ESPRIT or conventional beamforming,
knowledge of the added computational burden is of interest.
Table I lists the total computational time of the methods
in this example in seconds for a laptop with an Intel Core
Duo 1.2 GHz processor and 1 GB RAM. Also listed are the
portion of time required for computing the matrix and
performing LP for SPASE(R). Compared to the sub-second
times of ESPRIT or the Capon beamformer, the LP-based
SPASE method takes around 7 seconds to complete. Also
tabulated is the additional execution time required for SPASER
after a SPASE run, which is quite small since very few basis
functions are retained. Finally, note that most of the time
for SPASE(R) is taken computing numerical integrations for
the matrix. This time could be eliminated by using the
same matrix from one run to the next or using closed-form
solutions for (where possible). Also hybrid techniques might
be useful, where candidate basis functions are first identified
using the Capon beamformer.
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Fig. 4. Example application of SPASE when the actual clusters are Laplacian,
but the estimation procedure assumes Gaussian clusters.

So far, we have assumed that both the true PAS clusters and
the assumed cluster shapes are the same. Fig. 4 depicts the result
when the true clusters are Laplacian, but we assume Gaussian-
shaped clusters in the estimation procedure (with the other pa-
rameters the same). Notice that SPASE still faithfully represents
the PAS, except the peaks are clipped and the representation is
not as sparse. When a reduced basis is used, the number of re-
tained clusters is similar to that in the initial case, but the error
in the PAS is larger.

These results suggest potential methods for PAS modeling.
For example, data could be processed separately with many dif-
ferent basis shapes, and the shape providing the optimal tradeoff
between sparseness and low error could then be declared the
“true” shape. Another idea is to use a super-basis as suggested
in Section III-D and let SPASE choose the most sparse and ac-
curate combination of basis shapes.

B. Unstructured Double-Directional PAS Estimation

This second example considers using an unstructured version
of SPASE for double-directional PAS estimation. Such a method
could be useful, for example, in ad-hoc networking scenarios,
where multi-antenna nodes communicate simultaneously on the
same RF spectrum, and the joint PAS is used to avoid interfer-
ence using space-division multiple access. Sparse estimates of
the PAS are desirable, since these would require less transmis-
sion overhead.

The beamspace formulation in Section III-C can be extended
to the joint MIMO case by letting

(21)

where the two-dimensional (2D) pulse functions are

otherwise
(22)

with and .
Analogous to (19), the joint Bartlett spectrum is

(23)

where and
, and is the channel transfer ma-

trix. Using point matching on a rectangular grid of and
discrete angles at receive and transmit, denoted as and
to obtain and making the required substi-
tutions

(24)

Stacking the dimensions appropriately leads to

(25)

which is again solved with LP techniques.
In the simulations that follow, full covariance matrices are

generated for 100 realizations of the narrowband Saleh-Valen-
zuela angular (SVA) model [26], assuming Laplacian-shaped
clusters with angular spread at both transmit and
receive, unit arrival rate, and decay rate , consistent
with measurements of indoor MIMO channels [23]. Arrays at
transmit and receive are 8-element ULAs of ideal dipoles with

interelement spacing.
For the directional channel model,
with corresponding angles angles .

Note that for the ULA, only angles on one side of the symmetric
array need to be considered. The Bartlett spectrum is matched
at discrete angles given by

.
Fig. 5 plots a single realization of the true spectrum from

the SVA model along with the SPASE estimate. Note that soft-
limiting of the error is used with the same parameters as in
Section IV-A. Although the basic shapes of the spectra are sim-
ilar, some of the detail is lost due to the stairstep approximation.
For this same example Fig. 6 compares the joint Bartlett spectra,
indicating that SPASE matches the Bartlett spectra very closely.

The error in the estimated PAS (either true or Bartlett PAS)
compared with the actual value is quantified with

(26)

Considering the 100 random realizations, average and max-
imum values of were 0.73% and 2.3% for the Bartlett PAS,
respectively, which is considered to be a very good fit. The
corresponding average and maximum error in the underlying
true PAS were 25% and 37%, respectively, indicating the
difficulty of exactly representing sharp Laplacian clusters with
the piecewise-constant basis.

The sparseness of the basis decompositions can be judged
by how many basis functions were required to capture 90% of
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Fig. 5. Comparison of joint double-directional PAS, where (a) is the true PAS
generated with the SVA model and (b) is the piecewise-constant SPASE esti-
mate.

Fig. 6. Comparison of joint double-directional Bartlett PAS for (a) true model
and (b) SPASE estimate.

the total energy. For this example, the average and maximum
number of basis coefficients was 69 and 114, respectively. This
can be compared to the full covariance tensor that has

real parameters.

C. Application to Measured Data

Now we apply the SPASE method to measured indoor wire-
less data at 5.2 GHz, demonstrating that useful results can be
obtained under practical conditions.

1) Channel Measurements: Channel matrices were mea-
sured in the electrical engineering building at the Vienna

University of Technology at 5.2 GHz [27], [28]. The trans-
mitter consisted of a positionable monopole antenna on a 20

10 grid with inter-element spacing. The receiver
used a directional 8-element ULA provided by T-Systems
Nova GmbH, having inter-element spacing and 3 dB
beamwidth of 120 . The channel was probed at
equi-spaced frequency bins covering 120 MHz of bandwidth.
The transmitter assumed a single fixed location in a hallway.
The receive array assumed many different locations in several
offices connected to this hallway, as well as three possible
orientations: (1) 0 (hallway axis), (2) , and (3) .
The data set for location and orientation is referred to as

. The transfer coefficient from the th transmitter to the
th receiver at the th frequency for orientation is .

Transmit covariance and receive covariance for
receive orientation were estimated as

(27)

(28)

where and are the number of transmit and receive
antennas, respectively. To allow 360 of angular view at the re-
ceiver, a virtual receive array was created by generating a block
diagonal covariance matrix ,
where creates a block diagonal matrix from its ar-
guments. Setting off block-diagonal elements to zero is fine,
since these equations were pruned during estimation. A single
transmit covariance matrix for 360 of view at the receiver
was obtained by averaging the three receive orientations, or

.
Since ULAs were involved in the measurement, we improve

covariance estimates by enforcing the shift-invariance condi-
tion. Specifically, the shift invariant covariance is obtained
from the standard covariance as

(29)

where is the number of elements in the sum for the th
element. After shift invariance is enforced, only a single row of
the covariance matrix (per orientation) needs to be retained.

2) Example Location: Next, we show the performance of
the new technique and compare to the Capon beamformer. The
basis was the same as in Section IV-A. The PAS was estimated
separately at transmit and receive to provide better covariance
estimates and allow faster convergence of the LP algorithm.

Here, only receive location 9 will be considered. For transmit,
a 7 7 element cross array (superposition of two 7-element
ULAs) was formed. Spatial smoothing was performed in and

within a 10 10 grid to improve the covariance estimates. For
receive, a virtual 24-element array was formed by considering
all orientations as a single array and creating a block diagonal
covariance matrix as explained in Section IV-C-1.

When analyzing the data, the element-space solution with
hard-limited error was used, since soft-limiting did not work
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Fig. 7. Estimated transmit PAS for receive location 9 obtained with the Capon
beamformer and SPASE.

Fig. 8. Estimated receive PAS for receive location 9 obtained with the Capon
beamformer and SPASE.

reliably for all scenarios with a fixed . Here, the sample co-
variances were normalized by the average power (mean of the
diagonal), a hard error limit of 0.2 was used for the real and
imaginary parts, and (unit error at the limit). These
choices seem to provide a good tradeoff between the error and
the number of clusters chosen.

Fig. 7 compares spectra obtained with SPASE and the Capon
beamformer for the transmit side. The main discrepancy be-
tween the Capon beamformer and SPASE occurs in the direction

. This artifact appears to be due to aliasing in the end-
fire directions when element spacing is . In other words, the
strong energy in the direction tends to alias into the

direction. Over the range , the Capon
beamformer and SPASE look similar, with SPASE providing a
sharper response.

Fig. 8 shows the comparison at the receive side. Here, the
Capon beamformer has been applied separately to the three
ULA orientations, and small discontinuities are present. PAS
estimates for Capon’s beamformer and SPASE/SPASER have
similar trends.

3) Statistical Performance: The goodness of fit of the ex-
tracted PAS estimates at the different locations for the transmit
and receive covariances is quantified as

(30)

where is Frobenius norm. Over the 24 locations, average
and worst-case fractional errors were 15% and 20% for transmit
and 17% and 30% for receive, respectively. Also, for four of
the 24 locations, the LP solution for the receive PAS estimation
failed to find a feasible solution, probably because of the very
simple shape used for the antenna reception pattern. The av-
erage number of basis functions required to capture 90% of the
total energy was only 3.5 for transmit and 4.2 for receive, indi-
cating good sparseness. It should be noted that covariance error
appears to be a very sensitive metric, and therefore error around
20% is considered good, especially considering that measured
data with imperfect knowledge of calibration and radiation pat-
terns was used.

V. CONCLUSION

This paper has presented a novel method for power angle
spectrum (PAS) estimation based on minimum -norm solu-
tions that can be found numerically with linear programming
solvers. The -norm solutions are convenient, since they favor
sparse representations, allowing the PAS to be represented with
as few basis functions (or clusters) as possible. Sparseness not
only allows more tractable models but also may reduce the feed-
back required for systems that need transmit-side channel state
information. The utility of the method was demonstrated by ap-
plying the method to both simulated channels and actual MIMO
propagation data.

APPENDIX

In this appendix, details required to transform the minimiza-
tion problems to LP standard form given in (4) are provided, al-
lowing the methods to be used with most available LP solvers.

In the case of soft-limited error and the element-space solu-
tion, standard form requires the unknown to be divided into
positive and negative error according to , so that

. The expanded LP problem becomes

(31)

where is the identity matrix with , and
is the number of rows or columns in . The elements of the cost
vector become for and otherwise.

For the case of a hard limit on the error, or an -norm
constraint, an LP solution is possible by using the constraint

. Adjusting the constraint to be
and again dividing according to , we have the
constraints and . The LP problem
in standard form becomes

(32)
where and are vectors of slack variables and is a zero
matrix. The cost vector is identical to the previous case, except
it is padded with zeros (slack variables have zero cost).
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