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I. INTRODUCTION

For directional wireless channel modeling, a number of techniques exist to estimate the power azimuth spectrum (PAS)
from multiple-antenna measurements. Beamforming is a typical method to estimate PAS directly from array data,
but resolution limitations arise from the finite aperture of the array, which can be partially overcome by applying
deconvolution [1, 2]. Another approach finds double-directional multipath components via CLEAN, ESPRIT, or SAGE
and then extracts PAS from empirical directional probability density functions (pdfs) [3, 4], but potential difficulties
arise due to calibration sensitivity [5] and the existence of dense multipath [6]. Another shortcoming of previous
methods is that they do not necessarily represent PAS with few parameters, which is useful in many applications.

In this work, a novel technique for PAS estimation is presented, referred to as sparse power azimuth spectrum estimation
(SPASE). Although some of the particulars have already been presented in previous work [7, 8], the purpose of this paper
is to present the method in a complete, cohesive form. The method is based on minimum `1-norm representations of the
PAS, which produce very sparse representations of signals and operators, in contrast to minimum `2-norm solutions.

II. SPARSE POWER AZIMUTH SPECTRUM ESTIMATION (SPASE)

Tensor notation is sometimes used in this work where A is an N th order tensor with elements ai1i2...iN
and i` ∈

{1, . . . , I`}. The tensor A may be reshaped into a matrix A with elements a[i1i2...iM ][iM+1...iN ] = ak1k2 where the
indices in brackets denote stacking (like in MATLAB). A repeated index not appearing on the left-hand side of an
equation implies summation. The inner product of two tensors is denoted < A,B >= ai1,i2,...,iN

b∗i1,i2,...,iN
. Outer

product of an N th order tensor A and an M th order tensor B is {A ◦ B}i1i2...iN j1j2...jM
= ai1...iN

bj1...jM
.

A. Channel Statistics

Consider a communications system with a single transmit antenna and NR receive antennas. Assuming a set of L
discrete multipath arrivals (L can be arbitrarily large), the narrowband channel transfer function can be written as
hi = 1/

√
L

∑L
`=1 α`gi(φ`) where α` is the complex amplitude of the `th path, gi(φ) = ei(φ) exp[jψi(φ)] is the

steering vector, ei(φ) is the complex azimuthal far-field radiation pattern, ψi(φ) = k0(xi cosφ+ yi sinφ) is the array
factor, xi and yi are the coordinates of the ith antenna, and k0 is the wavenumber. The channel covariance matrix is
computed as

rik = E {hih
∗
k} =

1
L

L∑

`1=1

L∑

`2=1

E
{
α`1α

∗
`2

}
E {gi(φ`1)g

∗
k(φ`2)}, (1)

where independence of the arrival amplitudes and directions is assumed. If the arrival amplitudes are i.i.d. and zero
mean, we can define

E
{
α`1α

∗
`2

}
= F (φ`1)δ`1`2 , (2)

where F (φ) is the expected power of an arrival in the φ direction, in which case

rik =
1
L

L∑

`=1

∫ 2π

0

dφ` f(φ`)F (φ`)gik(φ`), (3)

where f(φ) is the pdf of multipath arrivals. Defining p(φ) = f(φ)F (φ) as the true PAS and assuming i.i.d. arrivals,
(3) becomes

rik =
∫ 2π

0

dφ p(φ)gik(φ), gik(φ) = gi(φ)g∗k(φ) exp{j[ψi(φ)− ψk(φ)]}. (4)



The development above can naturally be extended to higher dimensions, in which case the tensor notation is convenient.
For example, suppose we have arrays at both transmit and receive, the relationship becomes

ri1k1i2k2 =
∫ 2π

0

dφR

∫ 2π

0

dφT p(φR, φT )gi1k1i2k2(φR, φT ) (5)

with G = aR(φR) ◦ aT (φT ) ◦ a∗R(φR) ◦ a∗T (φT ), and aP is the single-directional steering vector with P = T (for
transmit) or P = R (for receive). For multiple independent polarizations, (4) can be extended to

rik =
∫ 2π

0

dφ p`(φ)gik`(φ), (6)

where gik` = ei`(φ)e∗k`(φ) exp{jk0[ψi(φ) − ψk(φ)]}, and ` indexes polarization. Similarly, multiple frequency bins
and elevation can also be incorporated.

B. Element-space Solution

Given an estimate of the channel covariance R̂ and considering the relationship (3), a method similar to method-of-
moments (MOM) can be used to find p(φ), by expanding in terms of a basis, or

p(φ) =
NB∑
n=1

anfn(φ), (7)

where now fn(φ) is the nth basis function (not a pdf), and NB is the number of basis functions, yielding

rik =
NB∑
n=1

an

∫ 2π

0

dφ gik(φ)fn(φ)
︸ ︷︷ ︸

qikn

, or r[ik] =
NB∑
n=1

q[ik][n]an, (8)

where the latter stacked version can be written as r = Qa. The obvious way to solve this relationship is to estimate
the a directly using a pseudoinverse. One problem with this approach is that it is a minimum `2-norm solution that
will not be sparse. Even worse, the pseudoinverse will not produce real, positive a, which is necessary for the PAS.

These difficulties can be overcome by using linear programming (LP), which in standard form solves the real-valued
minimization problem

x̂ = arg min cT x subject to y = Mx, xi ≥ 0 ∀i. (9)

In this work, LP solutions are obtained with the freely available PCx package. To transform the present problem into
standard LP form, we can split real and imaginary parts of r and Q to obtain[

rR

rI

]
=

[
QR

QI

]
a, (10)

which may be written as r′ = Q′a. To set equal cost for our basis coefficients, we let c = [1 . . . 1]T . Our problem is
now a standard LP problem where the solution minimizes the `1-norm of a, favoring a sparse solution.

We have assumed that relation (8) holds exactly, which may not be possible due to imperfect estimates of r or imperfect
array calibration. Slack in the match is allowed with r′ = Q′a + εP − εM , where ε = εP − εM is the error vector.
The expanded LP problem becomes

y = r′ x =

[
a
εP

εM

]
M =

[
Q′ I −I

]
, (11)

where I is the M×M identity matrix with M = 2N2
R. The cost coefficients become cn = 1 for 1 ≤ n ≤ N and

cn = cε otherwise, jointly minimizing the `1-norm and the absolute error. For very high quality data with careful
calibration, large values of cε may be advisable to make the match as close as possible. However, when aberrations
are present in the data, forcing such a close match may actually make the model order much higher for only slight
improvement in the fit.

In some circumstances it may be useful to put a hard bound on the allowed error in the match of the covariance, or
0 ≤ εPi ≤ ε+i and 0 ≤ εMi ≤ ε−i . The LP problem in standard form becomes

y =




r′

ε+

ε−


 x =




a
εP

εM

p
m


 M =

[
Q′ I −I 0 0
0 I 0 I 0
0 0 I 0 I

]
, (12)
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Fig. 1. Example PAS estimation with (a) conventional techniques and SPASE with either the (b) correct or (c) incorrect basis

where p and m are vectors of slack variables and 0 is a zero matrix. The cost vector is identical to the previous case,
except it is padded with zeros (slack variables have zero cost). Hard limiting the error appears to have the benefit of
making the solution less sensitive to the exact choice of cε.

We may not wish to include all of the equations in (11) or (12) due to either redundancy (repeated elements in the
covariance matrix) or uncertainty (high error or missing covariance terms). Pruning the vector r back by removing
elements that are either redundant or uncertain and discarding the corresponding elements of y and M reduces the
number of equations in (11) or (12).

C. Beamspace Solution

In the case that we have a large number of sensors (antennas and frequency bins), it may be more efficient to solve the
problem in beamspace rather than element space. Any linear transformation of (3) will remain a linear system, where
only the values for Q are transformed. Consider applying a simple Bartlett beamformer to (3), or

B(φ) = <G(φ),R> = <G(φ),
NB∑
n=1

an

∫ 2π

0

dφ′ G(φ′)fn(φ′)> =
NB∑
n=1

an

∫ 2π

0

dφ′ fn(φ′)<G(φ),G(φ′)>. (13)

As with MOM, we can project both sides of (13) onto a set of test functions. Using point matching, we sample both
sides at K angles φk to obtain

bk = B(φk) =
NB∑
n=1

an

∫ 2π

0

dφ′ fn(φ′) < G(φk),G(φ′) >
︸ ︷︷ ︸

qkn

. (14)

This equation can be solved just like the element-space equation, but in this case Q is already purely real (and non-
negative). Also, the number of elements of Q can be greatly reduced compared to the case when all covariance elements
are retained.

D. Choice of Basis Functions

The PAS can be represented with an unstructured basis (pulse functions, triangle functions, etc.) when no a-priori
information about the PAS is available. A structured basis may be chosen that corresponds to PAS shapes that are
known to fit well from previous analysis with unstructured techniques. Also, there is no restriction that the basis be
orthogonal, and an “overcomplete” super basis can also be formed, containing Laplacian, Gaussian, von Mises, Dirac
delta functions, etc., together, and the LP solution then chooses the sparsest representation.

III. EXAMPLE APPLICATIONS

Due to space limitations, just two examples will be provided. First we consider single-directional estimation. The true
PAS is a sum of Laplacian-shaped clusters with σ = 15◦ angular spread. The simulated channel is probed with a ULA
at the receiver consisting of 0.4λ-separated directional antennas, each having a 3 dB beamwidth of 120◦ and sinφ
azimuthal gain pattern. The array is rotated to 3 different orientations to get 360◦ of view. Figure 1(a) depicts the
results for two conventional PAS estimation techniques (ESPRIT and the Capon beamformer). ESPRIT cannot resolve
all arrivals, since the number of multipath components is larger than the number of antennas. The Capon beamformer
gives meaningful results, but there is some smoothing of the peaks, smaller arrivals are lost, and the solution is not
sparse. Figure 1(b) depicts the solution with SPASE, showing true clusters (angle/power) and PAS with boxes and solid
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Fig. 2. Comparison of joint double-directional PAS: (a) true PAS generated with the SVA model, (b) piecewise-constant SPASE estimate, (c) true
Bartlett spectrum, (d) SPASE estimated Bartlett spectrum

lines, respectively, along with the SPASE estimate where a Laplacian basis with angular spreads of 5◦, 10◦, ..., 35◦ and
arrival angles of 0◦, 2.5◦, ..., 360◦ is assumed. The SPASE solution is nearly identical to the true PAS, but there is
discrepancy in the cluster coefficients. SPASE with a reduced basis (SPASER) gives much better results, where only the
strongest basis coefficient in each “cluster” of coefficients is kept. Figure 1(c) shows the result when the assumed basis
shape is not correct (Gaussian). SPASE still gives meaningful results, but the peaks are clipped and the representation
is not as sparse.

The second example uses an unstructured version of SPASE for double-directional PAS estimation, which may be
useful for interference avoidance and suppression in ad-hoc networking. The beamspace formulation in Section II-C
can be extended to the joint MIMO case where

p(φR, φT ) =
NBR∑
m=1

NBT∑
n=1

amnfmn(φR, φT ) and B(φR, φT ) =< R,G(φR, φT ) > (15)

are the basis expansion (pulse functions are used for the fmn) and Bartlett spectrum, respectively, ri1k1i2k2 =
E

{
hi1k1h

∗
i2k2

}
, G(φR, φT ) = aR(φR) ◦ aT (φT ) ◦ a∗R(φR) ◦ a∗T (φT ), and H is the channel transfer matrix. Using

point matching on a grid of KR×KT points denoted φR,k and φT,k to obtain bk` = B(φR,k, φT,`), we have

bk` =
NBR∑
m=1

NBT∑
n=1

amn

∫ 2π

0

dφR

∫ 2π

0

dφT fmn(φR, φT )<G(φR, φT ),G(φR,k, φT,`)>
︸ ︷︷ ︸

qk`mn

.

Stacking the dimensions appropriately, b[k`] =
∑

[mn] q[k`][mn]a[mn], which can be solved using the LP techniques
described previously.

Figures 2(a) and (b) plot a single realization of the true spectrum from the SVA model (σ = 26◦, Γ = 2) and the
SPASE estimate, respectively, using 12×12 basis functions point-matched at 32×32 points. Although the basic shape
of the spectra is similar, some of the detail is lost due to the stairstep approximation. Figures 2(c) and (d) compare the
joint Bartlett spectra, indicating nearly an exact match. Averaging the performance over 100 random realizations gives
an average error of 0.73% and 25% for the Bartlett spectrum and true PAS, respectively. The average number of basis
coefficients used was 69, which is small compared to the full covariance tensor (4096 real parameters).

REFERENCES

[1] J. Tsao and B. D. Steinberg, “Reduction of sidelobe and speckle artifacts in microwave imaging: the CLEAN technique,” IEEE Trans. Antennas
Propag., vol. 36, pp. 543–556, Apr. 1988.

[2] M. J. Gans, R. A. Valenzuela, Y.-S. Yeh, and N. Amitay, “Antenna pattern deconvolution for precise incident power density pattern measurement,”
in Proc. 2000 IEEE 51st Veh. Technol. Conf., vol. 3, Tokyo, Japan, 15-18 May 2000, pp. 2532–2535.

[3] B. H. Fleury, M. Tschudin, R. Heddergott, D. Dahlhaus, and K. Ingeman Pedersen, “Channel parameter estimation in mobile radio environments
using the SAGE algorithm,” IEEE J. Selected Areas Commun., vol. 17, pp. 434–450, Mar. 1999.

[4] Q. H. Spencer, B. D. Jeffs, M. A. Jensen, and A. L. Swindlehurst, “Modeling the statistical time and angle of arrival characteristics of an indoor
multipath channel,” IEEE J. Selected Areas Commun., vol. 18, pp. 347–360, Mar. 2000.
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