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Abstract—Due to the complexity of multiple-input–multiple-
output (MIMO) wireless channels, direct measurement is the
main viable option for accurate characterization. Details on a
new low-cost wideband channel sounder are presented, which was
mainly constructed from conventional instruments and compo-
nents. This switched architecture system is similar to commer-
cial channel sounders and has modest cost (< US$ 50 000). The
sounder operates in the 2- to 8-GHz range with up to 100 MHz
of instantaneous bandwidth and supports eight transmitters and
receivers, which are sufficient to support the development and
assessment of current and future MIMO wireless systems. In
this “open-hardware” project, the hardware design and software
components are openly available to other researchers interested
in developing or enhancing the MIMO measurement capability.
The actual systems built at the University of Pretoria, Pretoria,
South Africa, and Brigham Young University, Provo, UT, are
presented, as are some example studies.

Index Terms—Measurement, multiple-input–multiple-output
(MIMO), wideband.

I. INTRODUCTION

THEORETICAL and experimental investigations have
demonstrated the ability of wireless systems with multi-

ple transmit (TX) and receive (RX) antennas to dramatically
increase the spectral efficiency in environments with high mul-
tipath. These multiple-input–multiple-output (MIMO) wireless
systems exploit the multiple transmission directions (or modes)
afforded by a rich multipath. The highest capacity gains are
possible when the fading coefficients of the MIMO channel
transfer matrix are Rayleigh independent identically distributed
(i.i.d.), which is accomplished by having rich multipath with
widely separated antennas. Real environments and systems tend
to exhibit a much more complicated MIMO behavior, and such
channels are only captured by direct measurement (see [1] and
references therein).
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Although the theoretical channel capacity may be insensitive
to the exact structure of the channel, a realistic system may
heavily depend on this structure. For example, the double-
directional clustering observed in measured channels suggests
the advantage of directional elements [2]. Space–time codes
designed with an understanding of the channel structure can
outperform codes designed with the i.i.d. assumption [3].
Furthermore, multiuser communication performance may de-
pend more heavily on the channel structure than single-user
situations [4]. Since a detailed understanding of the channel
is required for optimal system design and accurate perfor-
mance assessment, direct measurement of MIMO channels con-
tinues to be important.

To partially fill the gap between the high cost of commercial
channel sounders and the significant development time required
to develop an instrument in-house, we present a new low-
cost wideband MIMO channel sounder (operationally similar to
commercial sounders [5]) that can be constructed at moderate
cost by leveraging conventional off-the-shelf (COTS) instru-
ments and modules. Details on hardware design and software
components are openly available to other researchers interested
in developing or enhancing the MIMO measurement capability.
We hope that this “open-hardware” approach will lead to more
cooperation in the area of MIMO channel measurement and
modeling and simplify sharing and comparison of results. As
much detail as possible is included in this paper to allow
the system to be designed and deployed. However, due to
space limitations, the reader is referred to other sources [6] for
detailed schematics, software components, etc.

II. OPERATIONAL OVERVIEW

To support current and future MIMO studies, a system that
supports eight TX and eight RX antennas, a center frequency
from 2 to 8 GHz, and 100 MHz of instantaneous bandwidth is
considered. Additional goals of short development time (less
than six months) and low cost (< US$ 50 000) resulted in
the system depicted in Fig. 1. The popular switched-array
technique is employed, where antenna elements are connected
to the TX and RX via high-speed microwave switches. Al-
though simultaneous true array architectures exist, these tend
to be expensive, require longer development, and complicate
maintenance and calibration.

At the TX, a radio-frequency (RF) module mixes the wide-
band signal from the arbitrary waveform generator (AWG) with
the local oscillator (LO) to up-convert to the microwave carrier.

0018-9456/$25.00 © 2008 IEEE
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Fig. 1. High-level diagram of the wideband MIMO channel sounder.

Fig. 2. Block diagram of the transmit subsystem.

This signal is power amplified and fed to a single-pole eight-
throw (SP8T) switch, routing the signal to one of the eight TX
antennas. At the RX, the signals on the antennas are routed
via another SP8T switch to an RF module, consisting of low-
noise amplification (LNA), single-stage down-conversion to an
intermediate frequency (IF), and low-pass filtering (LPF). The
IF signal is amplified by an automatic gain control (AGC)
circuit and stored with a high-speed PC-based A/D card.

The coordinated switching of TX and RX arrays is accom-
plished by a custom-designed synchronization (SYNC) unit.
The timing in the system is referenced to highly stable 10-MHz
rubidium time/frequency oscillators, ensuring proper timing
and phase coherence.

III. SYSTEM COMPONENTS

This section provides details on the specific hardware com-
ponents shown in Fig. 1.

A. Transmit Components

Fig. 2 depicts a block diagram of the TX subsystem, which
sequentially excites one of the NT antennas with a wideband
signal. After generating a baseband probing signal on the AWG,
the RF module up-converts this signal to the microwave carrier
frequency by mixing with the LO. After amplification with a
power amplifier (PA), a microwave switch routes the signal to
one of the eight TX antenna elements, optionally followed by
parallel PAs. The TX power level, with and without external
PAs, is 5 W and 200 mW, respectively, which is appropriate for
outdoor and indoor measurements. Note that small to moderate

Fig. 3. Transmit RF module.

Fig. 4. Block diagram of the receive subsystem.

differences in the parallel PAs and switch branches are removed
by the calibration procedure in Section III-F.

Fig. 3 depicts the TX RF module, consisting of COTS RF
blocks connected via semi-rigid sub-miniature-A (SMA) ca-
bles, which is housed in a 5.25-in PC disk-drive frame and pow-
ered via 12 V to allow mounting inside a computer or disk-drive
chassis. The SYNC unit (see Section III-C) supplies transistor-
transistor logic (TTL) enable lines to the microwave switches
and an event trigger that releases each burst on the AWG.

B. Receive Components

Fig. 4 shows a block diagram of the RX subsystem, which
samples the received wideband signal for all NT × NR antenna
combinations. The RX RF module routes the signal from one
of the NR RX antennas to a broadband 40-dB LNA (NF =
2.5 dB) and a mixer for down-conversion to a convenient IF.
The IF signal is low-pass filtered, fed to the AGC module with
0–40 dB of gain, and sampled on a high-speed 8-bit 500-MS/s
A/D card. The VGain signal of the AGC is a power detector
output whose voltage is proportional to the signal level in
decibels. This signal is sampled at 1 MS/s with 16-bit resolution
by an inexpensive low-speed multifunction input–output board.
The maximum number of back-to-back snapshots is limited
by the memory on the high-speed A/D card (512 MB) and
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Fig. 5. Receive RF module.

the sample rate. For the maximum bandwidth, only 1 s of
channels can be acquired before dumping to disk. For narrower
bandwidths, the limitation is 1 min, resulting from the low-
speed A/D board.

The RX switching rate is 1/NT times that of the TX sub-
system to allow the channel from all NT transmitters to be
measured for each of the NR receivers. The high- and low-
speed A/D boards (for measuring the wideband IF waveform
and gain level, respectively) are simultaneously triggered by
the Event2 signal that is asserted for each complete scan of
the NR antennas. Simultaneous triggering of the two A/D cards
is accomplished by the Gate signal that inhibits trigger events
until both A/D cards are armed. Synchronized sample clocks
are provided to both A/D cards (500 and 5 MHz for high- and
low-speed A/D, respectively).

Fig. 5 shows the interior of the RX RF module, again
consisting of COTS RF blocks.

C. Synchronization Module

Key to the operation of switched-array MIMO sounding is
coordinated switching at the TX and RX and triggering of TX
bursts and RX acquisition windows. This is accomplished by
a simple custom-designed SYNC unit, since no COTS solution
was available.

Fig. 6 shows a simplified schematic of the SYNC unit,
consisting of three 8-bit decrementing counters, where two
counters form a 16-bit interval counter and the remaining
8 bits form an antenna counter. The interval counter controls
the dwell time on each antenna, and this duration is set by
rotary hex dials from 1 to 65 536 10-MHz clocks (100 ns to
6.55 ms). The antenna counter controls how many antennas
must be cycled through (1–256).

The SYNC unit also provides critical event timing pulses.
The Event1 signal, which is asserted when the interval counter
reaches 0, triggers the transmission of the wideband signal for
each pair of selected antennas. The Event2 signal, which is
asserted when the antenna counter reaches 0, triggers the RX
acquisition of data at the beginning of each switching cycle.

The timing between the separate TX and RX SYNC units is
synchronized by clocking each unit with a 10-MHz rubidium
oscillator. A simple trigger switch simultaneously connected to
the two SYNC modules initially resets both units at the begin-

ning of a measurement campaign. With well-tuned rubidium
oscillators, the relative drift of timing events at TX to RX is
approximately 50–100 ns/h.

D. AGC Module

In many communications environments, a large change in the
RX power level with movement or time is possible due to fading
and shadowing, and measurement sensitivity is enhanced using
an AGC circuit. For this system, a simple AD8367-based circuit
provides 0–40 dB of IF gain. The time constant of the AGC loop
is approximately 5 μs, so that the gain can adapt for each new
TX/RX pair. The low-speed A/D board samples the AGC loop
output voltage, from which the gain can be computed and used
to recover the true waveform from the recorded data.

E. Wideband Probing Signal

To enable the assessment of the channel response over a
broad frequency range, the system uses a multitone excitation
signal, where the number and spacing of tones can be con-
trolled. The baseband multitone signal is of the form

x(t) =
NF −1∑
i=0

cos(2πfit + φi) (1)

where fi and φi are the frequency and phase of the ith tone,
respectively. For equally spaced tones, fi = (i + 0.5)Δf . Note
that each term in (1) actually represents two tones, so that
the probing signal produces 2NF tones with a total probing
bandwidth of (2NF − 1)Δf . Postprocessing is simplified if
each tone corresponds to a single fast Fourier transform (FFT)
bin, which is guaranteed when Δf = 2kfs/N , where fs is the
sample rate, N is the number of samples in each record, and k
is an integer.

An advantage of multitone signaling is that the channel
response is directly obtained by selecting the appropriate FFT
bins. One drawback, however, is that the envelope is not con-
stant, and care must be taken to ensure that the linearity of TX
PAs and switches is sufficient to avoid corruption of the mea-
surements. The signal peak-to-average ratio is minimized by
adjusting the phase on each of the tones. Here, the phases were
optimized by simply realizing a large set of signals, each with a
unique randomly generated phase weighting on the tones, and
retaining the signal with the lowest peak-to-average ratio.

Since most p-i-n diode switches are not designed for hot
switching (high level present during a switch operation), and
channel estimation is simpler if the acquired signals for differ-
ent antenna combinations have no temporal overlap, the multi-
tone signal is multiplied by a Gaussian window of the form

w(t) =

⎧⎨
⎩

e−(T1−t)2/(2σ2), 0 ≤ t < T1

e−(T2−t)2/(2σ2), T − T2 ≤ t ≤ T
1, otherwise

(2)

where T1 and T2 are the limits of the window, and the standard
deviation σ controls the rise and fall times of the window.
Typically, the guard time T1 + T2 is chosen to be much larger
than the channel delay spread. The guard time also allows the
AGC to adapt between switch events.
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Fig. 6. Simplified schematic of the SYNC module.

Fig. 7. Example multitone signal plotted versus time and frequency.

A simple 8-MHz multitone signal used for outdoor channel
probing is depicted in Fig. 7. The window spreads the tones
slightly, which is unavoidable for a finite-length signal. The
active portion of the time-domain signal has a peak-to-average
ratio of 1.74, close to that of a sine wave (π/2 ≈ 1.57).

F. Calibration Procedure

Since the RF components in the system are not ideal, raw
measurements include the channel and system response. In
addition, microwave switches are often constructed with un-
equal length transmission lines on various ports, leading to
phase differences. These effects can be removed by a careful
calibration method.

Fig. 8(a) depicts the measurement setup, where the ideal
channel response from the nth TX antenna to the mth RX
antenna at baseband frequency fk is hk,mn. One way to accom-
plish system calibration is to connect TX to RX, as depicted in

Fig. 8. Procedures for system calibration. (a) Original measurement setup.
(b) Single-channel calibration. (c) Direct matrix calibration.

Fig. 8(b), where the switches and antennas have been replaced
with a single attenuator with loss L W/W. This measurement
yields ycal

k , which is the value of the FFT bin corresponding
to the baseband tone at frequency fk. The response of the
switches is measured on a network analyzer giving broadband
S-parameters S

{TX,RX}
n0 (f), where 0 and n are indices of com-

mon and switched ports, respectively, and f is the frequency.
Assuming near-linear response of the RX subsystem, a mea-

surement taken with the setup in Fig. 8(a) results in

yk,mn = Lycal
k hk,mnSTX

0n (fk + fc)SRX
0m (fk + fc) (3)

where k, m, and n are the frequency, RX, and TX indices, and
fc is the carrier frequency. The ideal (or calibrated) channel
response h is then obtained from

hk,mn =
yk,mn

Lycal
k STX

0n (fk + fc)SRX
0m (fk + fc)

. (4)
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Fig. 9. Relative phase stability of LOs at 2.45 GHz.

Fig. 10. System constructed and deployed at UP. (a) Transmit. (b) Receive.

Fig. 11. Measurement scenario in the Carl and Emily Fuchs Engineering
Building, UP.

Another calibration method involves the connection strategy
in Fig. 8(c). In this case, the switches remain, and TX and RX
are connected via an NT - and NR-way power combiner and
divider, with measured S-parameters S

{TX,RX}
n0 (f). To avoid

RX saturation, a loss of L may also be inserted. A measurement
of all the TX and RX combinations yields ycal

k,mn. Similar to the
first approach, the ideal channel response is computed as

hk,mn =
yk,mnSTX

0n (fk + fc)SRX
0m (fk + fc)

Lycal
k,mn

. (5)

Note that the position of the S-parameters has changed since
the divider and combiner are present in the calibration but
not the measurement, whereas before, the switches were present
in the measurement but not the calibration.

Fig. 12. Scatter plot of channel capacity at 5.2 GHz versus that at 2.4 GHz,
where each location is a data point.

Fig. 13. Photos of the system constructed and deployed at BYU.
(a) Transmit. (b) Receive.

G. Phase Stability, Channel Stationarity, and Dynamic Range

For accurate switched measurements, the acquisition time of
an NR × NT channel measurement must be short relative to
the time variability of the channel (Doppler) and phase drift
of the LOs. With a dwell of 50 μs and NT = NR = 8, 3.2 ms
is required for each acquisition, and a maximum Doppler of
156 Hz can be tolerated. Fig. 9 shows the mean and rms phase
offset for a typical 1-s measurement with direct connection
of TX to RX at 2.45 GHz. Raw curves indicate rubidium
standards not calibrated for several months, and Cal indicate re-
cent calibration. The deterministic mean phase drift (frequency
offset) can be reduced by calibrating the standards, whereas the
random phase fluctuations are caused by the phase noise of the
LOs. The mean phase deviation for a 3.2-ms separation is well
below 1◦, and random fluctuations are approximately 2◦ rms,
which introduces negligible error for most MIMO studies.

Defining the RF dynamic range of the receiver as the span
from the noise power level (−110 dBm at 1-MHz bandwidth)
to a power that is 3-dB below amplifier saturation (−40 dBm)
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Fig. 14. Measurement scenario in the Clyde Building, BYU.

yields a value of 70 dB. Because the system uses (and retains
the gain level for) a 40-dB AGC circuit to amplify the RF
signals to an appropriate level for the A/D, the system dynamic
range between antennas (switch positions) and measurement
snapshots is nearly the full RF dynamic range, with an achieved
value of better than 60 dB in practice. Within a single mea-
surement (switch position and snapshot), the dynamic range is
mainly controlled by signal construction (tone orthogonality)
and A/D quantization. For the signal depicted in Fig. 7, the
dynamic range among frequency bins is better than 30 dB. This
can be enhanced by using a longer dwell time but at the expense
of more phase variation.

IV. EXAMPLE SYSTEMS AND MEASUREMENTS

Nearly identical versions of the wideband MIMO channel
sounder have been built and deployed at the University of
Pretoria (UP), Pretoria, South Africa, and Brigham Young Uni-
versity (BYU), Provo, UT. This section describes these systems
and briefly presents example results from each platform. For
more details on these studies, see [7]–[9].

A. UP System

Fig. 10 depicts the UP system. The antenna arrays con-
nected in the photo are dual-polarization patch antennas with
λ/2 interelement spacing. The TX consists of an integrated
AWG/microwave source covering the 100-kHz to 6-GHz band.
The rubidium oscillator module, RF components, and the
SYNC unit are all powered via dedicated 12-V/24-V recharge-
able batteries. At the RX, an uninterruptible power supply
(UPS) provides temporary backup power to the PC when the
system must be unplugged for relocation. Again, the rubidium
oscillator and RF module are powered via 12-V/24-V batteries,
whereas the SYNC module is inside the PC.

As an example study performed with this system, Fig. 11
shows a floor plan of the Carl and Emily Fuchs Electrical Engi-
neering Building at UP, where colocated MIMO measurements
were performed at 2.4 and 5.2 GHz. The TX and RX were
placed in a central corridor and in several adjoining rooms,
respectively. The antenna arrays were uniform linear arrays
of monopoles with λ/2 interelement spacing. One purpose of

Fig. 15. Fractional reduction in capacity due to outdated transmit CSI with
movement.

this experiment was to compare the effect of center frequency
on element correlation and capacity. Fig. 12 plots the channel
capacity at 5.2 GHz versus that at 2.4 GHz, indicating a strong
correlation in the channel quality at the two frequencies, and
plots of TX and RX correlation also show similar dependence.
These results indicate that the propagation mechanisms at the
two frequencies may be similar, potentially saving effort in site-
specific channel characterization and network planning.

B. BYU System

Fig. 13 depicts the BYU system. The TX and RX arrays
are monopole antennas mounted on a reconfigurable ground
plane. At the TX, separate dedicated instruments are used for
the rubidium oscillators, AWG, and microwave source. The
RF module and SYNC unit are housed in a computer disk-
drive chassis. At the RX, the PC houses the RF module, SYNC
unit, and AGC board, and a high-capacity UPS is present for
relocating the system.

Fig. 14 shows a map of the Clyde Building on the BYU cam-
pus, where measurements were performed at 2.5 and 5.2 GHz
as part of an effort to understand the effect of RX movement on
the effective channel capacity. The TX was placed at one of two
positions in the corridor. The antennas were eight-element uni-
form circular arrays of monopole elements separated by λ/2.
The RX was moved along a straight 4.5-m path at the numbered
boxes in various rooms. Fig. 15 depicts the reduction in channel
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capacity due to outdated TX channel state information (CSI) as
a function of movement, averaged over all eight RX locations.
The results indicate that TX CSI is useful for about 1 m of dis-
placement, which is a longer distance than might be expected.
In addition, the results at the two frequencies look most similar
when plotted on a physical (not electrical) distance scale,
suggesting that the effect is mainly due to shadow-type fading.

V. CONCLUSION

This paper has presented a low-cost wideband MIMO mea-
surement platform constructed mainly from COTS instruments
and components. This information should aid others in devel-
oping such measurement capabilities with reasonable time and
cost, as well as encourage the sharing of MIMO data and the
comparison of results.
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