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Abstract— The ability of correlation tensor and directional
modeling strategies to accurately capture the spatial behavior of
multiple-input multiple-output (MIMO) channels is investigated.
Correlation tensor methods are based on the reduced order
approximations of the full channel covariance, and do not require
any a priori knowledge about the physical scattering mechanism
or antenna array. Directional methods require knowledge about
the array configuration and usually assume a double-directional
wave-propagation mechanism. Five different tensor methods
(Kronecker, separable maximum entropy, Weichselberger, prin-
cipal hyperplane, and sparse core tensor) and one directional
method (unstructured diffuse spectrum estimation) are compared
in terms of the number of parameters required and the match
to the true full covariance matrix. Simulations with a realistic
cluster channel model indicate that tensor methods suffer from
poor accuracy when too few values in the core tensor are
retained, especially when no joint transmit/receive information is
available. The directional method, on the other hand, has good
accuracy with the same number of parameters as the simplest
tensor model. The results stress the importance of including
joint transmit/receive information in MIMO models and suggest
that directional modeling is a logical choice for high accuracy
modeling with few parameters.

I. INTRODUCTION

Full characterization of the performance of multiple-input
multiple-ouput (MIMO) systems is facilitated by accurate
models that capture the spatial behavior of true MIMO chan-
nels. Although direct measurement provides a nearly exact
characterization of site-specific scenarios, such campaigns
are costly, the resulting data is not always openly available,
working with measured data can be cumbersome, and only
relatively few scenarios can be measured. MIMO models,
on the other hand, are relatively simple to work with, but
the accuracy is often questionable, especially when only a
few parameters describing the channel are available. Thus, an
important research topic continues to be the search for MIMO
models that are accurate, yet require relatively few parameters.

Initial MIMO modeling efforts focused mainly on random
matrix based methods that assumed a zero-mean joint complex
Gaussian distribution for the elements of the channel transfer
matrix. For narrowband MIMO channels, the distribution is
completely specified by an (NT NR)×(NT NR) covariance
matrix (referred to herein as the full covariance), where NT

and NR are the number of transmit and receive antennas,
respectively. Early theoretical studies assumed an i.i.d. dis-
tribution (a full covariance equal to the identity matrix),
indicating linear capacity growth with respect to the number

of transmit and receive elements. Subsequent measurement
campaigns indicated lower capacities than the ideal channel,
due to inherent spatial correlation created by the limited
multipath of the propagation channel.

The inclusion of correlation information in the random
matrix models has been accomplished in a number of ways.
An initial logical approach assumed that the covariance of
channel transfer matrix elements could be represented by
a product of a two separate contributions (one due to the
transmit environment and another due to the receive envi-
ronment). This separable correlation structure results in the
Kronecker model [1], which approximates the full covariance
as a separable product of transmit and receive covariances.
This model greatly improved the accuracy of modeled capacity
predictions. The so-called Weichselberger model [2] further
improved the accuracy of the Kronecker model by only
enforcing a separable structure for the covariance eigenvectors,
not the eigenvalues.

A different modeling strategy known as the double-
directional channel was introduced in [3], employing infor-
mation about wave propagation mechanisms combined with
knowledge of the array configuration. Such models boast high
accuracy, but usually require detailed measurements and data
processing to identify directions of arrival and departure of
the multipath. This same basic double-directional strategy was
used in later work to extract clusters of arrivals from the full
covariance, rather than individual multipath components [4].
Such techniques have the potential of representing the full
covariance with high accuracy and relatively few parameters
compared to the matrix based methods.

An almost universal feature of past MIMO channel model
validation efforts is the use of channel capacity as the only
metric to judge model accuracy. Although capacity is perhaps
the most important metric, intuition suggests that capacity will
always be somewhat insensitive to the exact nature of the
multipath, since it only depends on a weighted combination
of the channel singular values, and not at all on the singular
vectors, which contain most of the directional information.
For example, use of the double-directional spatial spectrum
indicates that the Kronecker model in particular significantly
distorts the directional channel response [5]. Such errors
could lead to incorrect assessment of specific antenna array
structures or directional transmission algorithms.

This work comprises three main contributions: First, we
compare the relative accuracy of random matrix methods and
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a directional method in terms of their ability to match the full
covariance, which is a much more sensitive indicator of accu-
racy than capacity alone. We also compare the models in terms
of the number of parameters required. Second, we investigate
fundamental limitations of separable transmit/receive models
by providing a maximum entropy alternative to the Kronecker
model, indicating whether or not joint transmit/receive infor-
mation is required for high accuracy. Third, we generalize
the concept of random-matrix modeling using the correlation
tensor concept that was proposed in [6] for MIMO channels.
Our contribution in this area is to use the higher-order singular
value decomposition (HOSVD), which is an extension of
the matrix SVD for tensors [7]. The different models are
basically special cases of a general HOSVD model with dif-
ferent specifications of the core tensor. This analysis indicates
a fundamental tradeoff between the number of core tensor
entries and model accuracy.

II. CHANNEL MODELS

This section presents background material on existing mod-
eling strategies as well as our new proposed models. Al-
though we consider only narrowband stationary channels for
simplicity, the tensor based framework easily accommodates
wideband and non-stationary extensions.

A. General Tensor Model

First we present a the general tensor model, since other
random matrix models can treated as special cases. Given an
NR×NT channel matrix H described by a multivariate zero
mean complex Gaussian distribution, the channel behavior is
completely characterized by the fourth-order covariance tensor

Ri1j1i2j2 = E
{
Hi1j1H

∗
i2j2

}
. (1)

The information in the correlation tensor can be represented
as a matrix by stacking the channel into a vector according to
h = Vec {H}, and letting R = E

{
hhH

}
. This has the same

effect as stacking the i and j indices as k1 = i1 +NR(j1 −1)
and k2 = i2+NR(j2−1) in (1) to obtain Rk1k2 . This operation
can be represented symbolically as

R[i1j1][i2j2] = Ri1j1i2j2 , (2)

which indicates that the dimensions in brackets have been
stacked (or unfolded using tensor terminology). Such stacking
is familiar to anyone who has resized multidimensional arrays
in numerical matrix software such as MATLAB or Octave.
The tensor and matrix representations are referred to as the
full covariance tensor and matrix, respectively, and these are
assumed to capture the channel spatial correlations exactly.

A useful method for considering reduced-order approxima-
tions of the full covariance is obtained through the HOSVD.
As described in [7], any N th order tensor A can be represented
by the decomposition

A = S×1U(1)×2U(2) · · · ×NU(N), (3)

where S is the N th order core tensor, U(n) is the matrix of n-
mode singular values, and ×n is the n-mode product defined
as

(A×nU)i1i2...in−1jnin+1...iN
=

∑
in

ai1i2...in−1inin+1...iN
ujnin

.

(4)

Note that due to the Hermitian structure of the covariance, we
have U(1) = U(3) and U(2) = U(4), and the HOSVD is really
a higher-order eigenvalue decomposition (HOEVD).

In the HOSVD, the core tensor S is not necessarily diagonal
as with the matrix SVD, but rather has the so-called “all
orthogonality” property

〈Sin=α,Sin=β〉 = 0 when α �= β, (5)

where the inner-product operator is defined as

< A,B >=
∑
i1

∑
i2

· · ·
∑
iN

b∗i1i2...iN
ai1i2...iN

. (6)

Since S is in general a full tensor, the specific elements cannot
be ordered like with the matrix SVD. Instead, the ordering is

‖Sin=1‖ ≥ ‖Sin=2‖ ≥ · · · ≥ ‖Sin=In
‖ ≥ 0, (7)

where the Frobenius norm for tensors is

‖A‖ =
√

< A,A >. (8)

Later we will also have need of the outer product operator,
defined as

(A ◦ B)i1i2...iN j1j2...jN
= Ai1i2...iN

Bj1j2...jN
. (9)

In this work, we define the M th order sparse core tensor
model as the tensor R̂ formed by approximating the full core
tensor with Ŝ, which is equal to S for the M entries with
largest magnitude and zero elsewhere. Note that (̂·) refer to
assumed or approximate quantities in this paper. Although
not guaranteed to be the best M th order representation (as
would be the case with the matrix SVD), as argued in
[7], this method should still be a very good reduced rank
approximation, allowing the overall tradeoff of complexity
and accuracy to be investigated. We also define the principal
hyperplane approximation by specifying the approximate core
tensor to be Ŝi1j1i2j2 = Si1j1i1j1δi1i2δj1j2 .

B. Kronecker Model

The Kronecker model assumes that the full covariance
matrix can be expressed as the Kronecker product of the
separate transmit and receive covariances according to

RT,ij =
1
α

NR∑
k=1

Rkikj =
1
α

E
{
(HHH)T

}
ij

(10)

RR,ij =
1
β

NT∑
k=1

Rikjk =
1
β

E
{
HHH

}
ij

, (11)

respectively, where for consistency, the scale factors α and β
satisfy

αβ =
NR∑

i1=1

NT∑
j1=1

Ri1j1i1j1 = Tr {R} . (12)

For simplicity, we can let α = β =
√

Tr {R}.
In the Kronecker model, the full covariance matrix is

assumed to be
R̂ = RT ⊗ RR. (13)
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If the eigenvalue decompositions (EVD) of the transmit and
receive covariances are RT = UT ΛT UH

T and RR =
URΛRUH

R , respectively, the EVD of the full covariance is

R̂ = (UT ⊗ UR)(ΛT ⊗ ΛR)(UT ⊗ UR)H . (14)

Compared with the HOSVD we have

R̂ = A×1UR×2UT×3U∗
R×4U∗

T

Ai1j1i2j2 = ΛR,i1i2ΛT,j1j2 = λR,i1λT,j1δi1i2δj1j2 . (15)

Thus the Kronecker model is basically a principal hyperplane
approximation where the core tensor values have a separable
structure, meaning that there are only NT + NR unique
parameters in the core tensor. The total number of unique real
parameters for this model is found to be N2

R+N2
T +NR+NT .

C. Separable Maximum Entropy Model

It has been argued that the Kronecker model enforces a
structure on the data that may be artificial. Supposing that
only the separate transmit and receive covariances are known,
another approach to defining the full covariance is to use the
principle of maximum entropy [8], thus avoiding “artificial
structure” that cannot be deduced from the information at
hand. In this case, we have constraints

E
{
HHH

}
= RR E

{∑
k

HikH∗
jk

}
= RR,ij (16)

E
{
HHH

}
= RT

T E

{∑
k

HkiH
∗
kj

}
= RT,ij (17)

p(H) ≥ 0,

∫
p(H)dH = 1. (18)

where p(H) is the joint probability density function (pdf) of
the elements of H. The entropy∫

p(H) log p(H)dH (19)

is maximized by forming the Lagrangian and setting the
derivative equal to zero, resulting in the form of the solution

p(H) = c0 exp
[ ∑

ijkl

HijH
∗
k�(µR,ikδj� + µT,j�δik︸ ︷︷ ︸

−R−1
[ij][k�]

)
]
, (20)

which is a standard multivariate complex Gaussian pdf with
covariance

R = −(IT ⊗ µR + µT ⊗ IR︸ ︷︷ ︸
A

)−1. (21)

Note that although expressed with Kronecker products, this
form is not identical to the Kronecker model. Taking the
eigenvalue decomposition (EVD) of µT and µR, or

µT = ξT ΛT ξH
T , µR = ξRΛRξH

R , (22)

allows (21) to be expanded as

R−1 = − (ξT ⊗ ξR)︸ ︷︷ ︸
ξ

(IT ⊗ ΛR + ΛT ⊗ IR)︸ ︷︷ ︸
Λ

(ξT ⊗ ξR)H︸ ︷︷ ︸
ξH

,

(23)

such that R = −ξΛ−1ξH . The matrix Λ involves Kronecker
products and sums of diagonal matrices, which will also be
diagonal, or

Λ[ij][k�] = δj�δikλR,i + δj�δikλT,j

= δj�δik [λR,i + λT,j ] (24)

Λ−1
[ij][k�] = δj�δik

1
λR,i + λT,j

. (25)

Therefore, we have the form of the full covariance matrix. The
eigenvectors are just the Kronecker product of the separate
transmit and receive eigenvectors. The eigenvalues, however,
must be found by substituting R back into the original
constraints. Although the constraints (16) and (17) depend on
expectations of H, they can be rewritten in terms of the full
covariance as

RR,ik =
∑

j

R[ij][kj], RT,j� =
∑

i

R[ij][i�]. (26)

The covariance matrix from (23) can be written in component
form as

R[ij][k�] =
{−A−1

}
[ij][k�]

(27)

= −
∑
mn

ξ[ij][mn]Λ−1
[mn][mn]ξ

∗
[k�][mn].

Substituting (27) into (26) results in

{−RT }jl =
∑
mn

∑
i

ξ[ij][mn]Λ−1
[mn][mn]ξ

∗
[i�][mn] (28)

=
∑
mn

ξT,jnξ∗T,�nΛ−1
[mn][mn]

∑
i

ξR,imξ∗R,im︸ ︷︷ ︸
= 1

(29)

=
∑

n

ξT,jnξ∗T,�n

∑
m

Λ−1
[mn][mn]︸ ︷︷ ︸

−DT,nn

, (30)

Similarly, one can expand the receive covariance constraint as

{−RR}ik =
∑
m

ξR,imξ∗R,km

∑
n

Λ−1
[mn][mn]︸ ︷︷ ︸

−DR,mm

. (31)

We recognize (30) and (31) as just the eigenvalue decompo-
sitions of our transmit and receive covariances,

RT = ξT DT ξH
T (32)

RR = ξRDRξH
R . (33)

To solve for the full covariance, the system of equations

DT,nn = dT,n = −
∑
m

1
λR,m + λT,n

(34)

DR,mm = dR,m = −
∑

n

1
λR,m + λT,n

(35)

must be solved, but a direct solution can be problematic
since we have to find the roots of multivariate large order
polynomials. An indirect approach is possible by noticing that
since H is a Gaussian process, maximum entropy maximizes
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det(R). Since we already know the eigenvectors, we only need
find Λ, such that det

(−Λ−1
)

is maximized. Letting

fmn = −Λ−1
[mn][mn], (36)

we must find the maximum of det(R) =
∏

ij fij , subject to
the constraints

dT,j =
∑

i

fij , dR,i =
∑

j

fij , fij ≥ 0. (37)

Since the constraints are linear and −∏
ij fij is convex, we

have a simple convex optimization problem that can be solved
with conventional techniques. In this paper, the solution is
obtained by finding an admissible initial guess for the fij using
linear programming and then moving to the optimum with
gradient descent.

This maximum entropy method generates a model with
only the separate transmit/receive information at hand, which
conceptually is the “best one can do” when no joint trans-
mit/receive information is available, since for any other model,
additional information must be incorporated. This model has
the same basic structure as the Kronecker model, except
that the core tensor is generated from the NT + NR unique
parameters in a slightly different way.

D. Weichselberger Model

This model also has the same basic form as the Kronecker
model, except that one requirement is relaxed: the eigenvalues
of the full covariance matrix are no longer required to be the
separable product of the transmit and receive eigenvalues. In
this case, the full covariance matrix is

R̂ = (UT ⊗ UR)Λ(UT ⊗ UR)H , (38)

which in tensor notation is

R̂ = A×1UR×2UT×3U∗
R×4U∗

T

Ai1j1i2j2 = Λi1j1δi1i2δj1j2 . (39)

The eigenvalues (which have also been called coupling co-
efficients) are found by projecting the eigenvectors onto the
covariance matrix according to

Λij = R×1U
(i)
R ×2U

(j)
T ×3U

(i)∗
R ×4U

(j)∗
T , (40)

where U(k) here denotes the kth column. Note that this is pre-
cisely the same way the core tensor values along the principal
hyperplane Aijij are computed in the general HOSVD. Thus,
we expect the accuracy of the Weichselberger model to be
similar to the principal hyperplane model already presented.
The total number of real parameters is N2

R + N2
T + NRNT .

E. Directional Model

The initial formulation of the double-directional modeling
concept used super-resolution methods to estimate the exact
angles of arrival and departure of multipath components,
extracted from measured channel data. Another possibility is
to take a more statistical approach and model the covariance as
a diffuse process. In this work, we consider the case of an un-
structured diffuse model, where the ideal joint transmit/receive
spatial spectrum is divided into LR×LT sectors of equal
angular extent. Note that this is similar to the virtual matrix

modeling idea proposed in [9]. The ideal joint transmit/receive
spatial spectrum is assumed to be piecewise constant, or

V (φR, φT ) =
LR∑

m=1

LT∑
n=1

Vmnfmn(φR, φT ), (41)

where the two-dimensional (2D) pulse functions are

fmn(φR, φT ) =




1, φR,m − ∆φR

2 ≤ φR ≤ φR,m + ∆φR

2

φT,n − ∆φT

2 ≤ φT ≤ φT,n + ∆φT

2 ,
0, otherwise.

(42)
where ∆φP is the angular extent of the pulse function. The
full covariance tensor is found as

R =
∫ 2π

0

dφR

∫ 2π

0

dφT V (φR, φT )L(φR, φT ), (43)

L(φR, φT ) = aR(φT ) ◦ aT (φT ) ◦ a∗
R(φR) ◦ a∗

T (φT ), (44)

where the steering vector aP (φ) = exp[jk(xP
i cos φ +

yP
i sin φ)], k is the wavenumber, and xP

i and yP
i are coor-

dinates of the ith antenna for P = T for transmit or P = R
for receive. The joint 2D Bartlett spatial spectrum is formed
as

B(φR, φT ) =< R,L(φR, φT ) > . (45)

Sampling this function at KR and KT discrete angles at
receive and transmit, denoted as φR,k and φT,k to obtain
Bk� = B(φR,k, φT,�) and making the required substitutions

Bk� =
LR∑

m=1

LT∑
n=1

Vmn (46)

×
∫ 2π

0

dφR

∫ 2π

0

dφT fmn(φR, φT )<L(φR, φT ),L(φR,k, φT,�)>︸ ︷︷ ︸
Qk�mn

.

Stacking the dimensions appropriately

b[k�] =
∑
[mn]

Q[k�][mn]v[mn], (47)

which can be solved using linear programming for v when b is
known. In practice b is computed from (45) using the sample
full covariance for R. Note that although the intermediate
step of using the Bartlett beamformer is not necessary, it
simplifies the solution by making all the elements of Q real
and positive and by removing any contributions from non-
plane wave propagation. The resulting directional model only
requires LRLT parameters, each of which is a positive real
value. Also, the linear programming solution tends to favor
a sparse representation, so many of the v[mn] are identically
zero in practice.

III. PERFORMANCE COMPARISON

The different models are compared by computing the frac-
tional error in the modeled covariance matrix, or

ε =
‖R̂ − R‖

‖R‖ . (48)
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Additionally, we consider the error in the actual and modeled
Bartlett spectra as

εB =

∫ 2π

0
dφR

∫ 2π

0
dφT |B̂(φR, φT ) − B(φR, φT )|∫ 2π

0
dφR

∫ 2π

0
dφT |B(φR, φT )|

. (49)

In the simulations that follow, full covariance matrices are gen-
erated using the narrowband Saleh-Valenzuela angular (SVA)
model [10], assuming Laplacian shaped clusters with angular
spread σ = 26◦ at both transmit and receive, unit arrival
rate, and decay rate Γ = 2. These parameters are consistent
with measurements of indoor MIMO channels [11]. Arrays
at transmit and receive are 8-element uniform linear arrays
(ULAs) of ideal dipoles with λ/2 interelement spacing. The
results that follow are averaged over 100 random realizations
of the channel model.

For the directional channel model, LR = LT = L = 12
with corresponding angles angles φk = π(k − 0.5)/L. Note
that for the ULA, only angles on one side of the symmetric
array need be considered. The Bartlett spectrum is matched
at KR = KT = K = 32 discrete angles given by φk =
π(k − 0.5)/K.

First we consider the accuracy of the sparse core tensor
model, where only M of the largest core tensor entries are
retained. Figure 1 plots the average fractional error in the
covariance and Bartlett spectrum with respect to M . The
result indicates that the error drops approximately linearly with
the logarithm of the number of core entries until a knee at
NT NR entries, indicating that models with fewer than NT NR

eigenvalues will always suffer low accuracy.
Table I lists the number of parameters in the various

models and the accuracy of the modeled covariance and spatial
spectra. First, we see that the maximum entropy method
does not offer any improvement over the Kronecker model,
suggesting that the Kronecker model is basically optimal when
nothing more than the separable transmit/receive information
is available. Second, we see that the Weichselberger model
and the principal hyperplane core tensor model are also nearly
equivalent, as expected. Third, we see that the directional
model has superior accuracy to all of the random matrix
models as well as the smallest number of parameters. Al-
though seemingly remarkable, the parameters of the directional
model focus on joint transmit/receive information, whereas
the parameters of the tensor models are mostly separate
transmit/receive information. It also seems reasonable that by
matching the Bartlett spectrum, rather than the covariance
matrix directly, the directional model is able to avoid wasting
parameters on eigenvector pairs that have little contribution to
the channel response.

IV. CONCLUSION

This paper has compared the ability of random matrix
and directional channel models to capture the behavior of
realistic MIMO channels. The performance of the models was
compared in terms of the error in the estimated full covariance
matrices, error in the Bartlett spectra, and the number of
parameters required. The results suggest that models without
sufficient joint transmit/receive information suffer from inher-
ently low accuracy. The importance of joint transmit/receive
information was further validated by the superior performance

of the directional model compared to all of the tensor-based
methods.
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Fig. 1. Average error as a function of the number of nonzero core tensor
entries

TABLE I

AVERAGE MODEL ERROR

Model Parameters ε εB
Kronecker 144 0.32 0.25
Maximum Entropy 144 0.35 0.27
Weichselberger 192 0.24 0.16
P. Hyperplane 192 0.21 0.13
Directional 144 0.16 0.03
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