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ABSTRACT

The goal of this work is to identify MIMO modeling
strategies with high accuracy and relatively few param-
eters. Candidates are existing correlation tensor models
(Kronecker, Weichselberger, and maximum entropy), a
new generalized tensor model based on the higher-order
singular value decomposition (HOSVD), and an unstruc-
tured diffuse directional model. The performance of the
models is investigated by applying them to 8×8 MIMO
reference channels generated with a realistic double-
directional cluster channel model. It is shown that all
of the existing models exhibit high error in the recon-
structed spatial spectra (10-30%) and even higher error
in the reconstructed full covariance (20-35%). Analysis
of a new sparse core tensor model indicates that this error
decays slowly (logarithmically) as the number of param-
eters is increased. For the same number of parameters
as the simple Kronecker model, the directional model is
able to reconstruct the spectrum with improved accuracy
(about 3% error). More surprisingly, the error in the re-
constructed covariance matrices (about 16%) is also sub-
stantially lower than all of the reduced-order correlation
tensor methods.
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1. INTRODUCTION

Characterizing the performance of multiple-input
multiple-ouput (MIMO) systems is facilitated by ac-
curate models that capture the true spatial behavior of
MIMO channels. Although direct measurement provides
a nearly exact characterization of site-specific scenar-
ios, there are a number of drawbacks: measurement
campaigns are costly, the resulting data is not always
openly available, working with measured data can be
cumbersome, and only relatively few scenarios can
be measured. MIMO models, on the other hand, are
relatively simple to work with, but the accuracy is often
questionable, especially when only a few parameters
describing the channel are available. An important
question, therefore, is how to represent MIMO channels
with high accuracy, yet with relatively few parameters.

MIMO modeling efforts have focused mainly on ran-
dom matrix based methods assuming a zero-mean joint
complex Gaussian distribution for the elements of the

channel transfer matrix. For narrowband MIMO chan-
nels, this distribution is completely specified by an
(NT NR)×(NT NR) covariance matrix (referred to herein
as the full covariance), where NT and NR are the num-
ber of transmit and receive antennas, respectively. Early
theoretical studies assumed an i.i.d. distribution (full co-
variance equal to the identity matrix), which has the ideal
property of linear capacity growth with additional trans-
mit/receive antennas. Subsequent measurement cam-
paigns indicated lower capacities than the ideal channel,
due to inherent spatial correlation created by the limited
multipath of the propagation channel.

The inclusion of correlation information in the random
matrix models has been accomplished in a number of
ways. An initial logical approach assumed that the co-
variance of channel transfer matrix elements could be
represented by a product of a two separate contributions
(one due to the transmit environment and another due
to the receive environment). This separable correlation
structure results in the Kronecker model [10], approxi-
mating the full covariance as a separable product of trans-
mit and receive covariances, and improving modeled ca-
pacity predictions. The so-called Weichselberger model
[9] further improved the accuracy of the Kronecker model
by only enforcing a separable structure for the covariance
eigenvectors, not the eigenvalues.

A different modeling strategy known as the double-
directional channel was developed in [6], employing
information about wave propagation mechanisms com-
bined with knowledge of the array configuration. Such
models boast high accuracy, but usually require detailed
measurements and data processing to identify directions
of arrival and departure of the multipath. This same basic
double-directional strategy was used in later work to ex-
tract clusters of arrivals from the full covariance, rather
than individual multipath components [7]. Such tech-
niques have the potential of representing the full covari-
ance with high accuracy and relatively few parameters
compared to the matrix based methods.

A widespread feature of past MIMO channel model vali-
dation efforts is the use of channel capacity as the only
metric to judge model accuracy. Although capacity is
perhaps the most important metric, intuition suggests that
capacity will always be somewhat insensitive to the ex-
act nature of the multipath, since capacity only depends
on a weighted combination of the channel singular val-
ues, and not at all on the singular vectors, which contain
most of the directional information. For example, use of
the double-directional spatial spectrum indicates that the



Kronecker model in particular significantly distorts the
directional channel response [4]. Such errors could lead
to incorrect assessment of specific antenna array struc-
tures or directional transmission algorithms.

This work comprises three main contributions: First, we
compare the relative accuracy of random matrix meth-
ods and a directional method in terms of their ability to
match the full covariance, which is a much more sensi-
tive indicator of accuracy than capacity. We also com-
pare the models in terms of the number of parameters
required. Second, we investigate fundamental limitations
of separable transmit/receive models by providing a max-
imum entropy alternative to the Kronecker model, indi-
cating whether or not joint transmit/receive information
is required for high accuracy. Third, we generalize the
concept of random-matrix modeling using the correlation
tensor concept that was proposed in [1] for MIMO chan-
nels. Our contribution in this area is to use the higher-
order singular value decomposition (HOSVD), which is
an extension of the matrix SVD for tensors [2]. The dif-
ferent models are approximated by special cases of a gen-
eral HOSVD model with different specifications of the
core tensor. This analysis indicates a fundamental trade-
off between the number of core tensor entries and model
accuracy, and approximately logarithmic improvement in
accuracy with the number of parameters.

2. CHANNEL MODELS

This section presents background material on existing
modeling strategies as well as our new proposed models.
Although we consider only narrowband stationary chan-
nels for simplicity, the tensor based framework easily ac-
commodates wideband and non-stationary extensions.

2.1. General Tensor Model

First we present the general tensor model, since other ran-
dom matrix models can treated as special cases. Given
an NR×NT channel matrix H described by a multivari-
ate zero mean complex Gaussian distribution, the channel
behavior is completely characterized by the fourth-order
covariance tensor

Ri1j1i2j2 = E
{
Hi1j1H

∗
i2j2

}
. (1)

The information in the correlation tensor can be repre-
sented as a matrix by stacking the channel into a vector
according to h = Vec {H}, and letting R = E

{
hhH

}
.

This has the same effect as stacking the i and j indices
as k1 = i1 + NR(j1 − 1) and k2 = i2 + NR(j2 − 1)
in (1) to obtain Rk1k2 . This operation can be represented
symbolically as

R[i1j1][i2j2] = Ri1j1i2j2 , (2)

which indicates that the dimensions in brackets have been
stacked (or unfolded using tensor terminology). Such
stacking is familiar to anyone who has resized multidi-
mensional arrays in numerical matrix software such as
MATLAB or Octave. The tensor and matrix represen-
tations are referred to as the full covariance tensor and
matrix, respectively, and these are assumed to capture the
channel spatial correlations exactly.

A useful method for considering reduced-order approx-
imations of the full covariance is obtained through the
HOSVD. As described in [2], any N th order tensor A
can be represented by the decomposition

A = S×1U(1)×2U(2) · · · ×NU(N), (3)

where S is the N th order core tensor, U(n) is the matrix
of n-mode singular values, and×n is the n-mode product
defined as

(A×nU)i1i2...in−1jnin+1...iN
(4)

=
∑

in

Ai1i2...in−1inin+1...iN
Ujnin

.

The U(n) are given by the left singular vectors of A(n),
with elements

{A(n)}in[in−1in−2...i1iN iN−1...in+1] = Ai1...iN , (5)

which is the nth matrix unfolding of the tensor A. Note
that due to the Hermitian structure of the covariance, we
have U(1) = U(3) and U(2) = U(4), and the HOSVD
is really a higher-order eigenvalue decomposition (HO-
EVD).

In the HOSVD, the core tensor S is not necessarily diag-
onal as with the matrix SVD, but rather has the so-called
“all orthogonality” property

〈Sin=α,Sin=β〉 = 0 when α 6= β, (6)

where the single subscript indicates that a specific index
is held constant to produce a sub tensor with N − 1 di-
mensions, and the inner-product operator is defined as

< A,B >=
∑

i1

∑

i2

· · ·
∑

iN

b∗i1i2...iN
ai1i2...iN

. (7)

Since S is in general a full tensor, the specific elements
cannot be ordered like with the matrix SVD. Instead, the
ordering is

‖Sin=1‖ ≥ ‖Sin=2‖ ≥ · · · ≥ ‖SIn‖ ≥ 0, (8)

where the Frobenius norm for tensors is

‖A‖ =
√

< A,A >. (9)

Later we will also have need of the outer product opera-
tor, defined as

(A ◦ B)i1i2...iN j1j2...jN = Ai1i2...iNBj1j2...jN . (10)

In this work, we define the M th order sparse core ten-
sor model as the tensor R̂ formed by approximating the
full core tensor with Ŝ , which is equal to S for the M
entries with largest magnitude and zero elsewhere. Note
that (̂·) refer to assumed or approximate quantities in this
paper. Although not guaranteed to be the best M th or-
der representation (as would be the case with the ma-
trix SVD), as argued in [2], this method should still be
a very good reduced rank approximation, allowing the
overall tradeoff of complexity and accuracy to be inves-
tigated. We also define the principal hyperplane approx-
imation by specifying the approximate core tensor to be
Ŝi1j1i2j2 = Si1j1i1j1δi1i2δj1j2 .



2.2. Kronecker Model

The Kronecker model assumes that the full covariance
matrix can be expressed as the Kronecker product of the
separate transmit and receive covariances according to

RT,ij =
1
α

NR∑

k=1

Rkikj =
1
α

E
{
(HHH)T

}
ij

(11)

RR,ij =
1
β

NT∑

k=1

Rikjk =
1
β

E
{
HHH

}
ij

, (12)

respectively, where for consistency, the scale factors α
and β satisfy

αβ =
NR∑

i1=1

NT∑

j1=1

Ri1j1i1j1 = Tr {R} . (13)

For simplicity, we can let α = β =
√

Tr {R}.

In the Kronecker model, the full covariance matrix is as-
sumed to be

R̂ = RT ⊗RR. (14)

If the eigenvalue decompositions (EVD) of the trans-
mit and receive covariances are RT = UT ΛT UH

T and
RR = URΛRUH

R , respectively, the EVD of the full co-
variance is

R̂ = (UT ⊗UR)(ΛT ⊗ΛR)(UT ⊗UR)H . (15)

Compared with the HOSVD we have

R̂ = A×1UR×2UT×3U∗
R×4U∗

T (16)
Ai1j1i2j2 = ΛR,i1i2ΛT,j1j2 = λR,i1λT,j1δi1i2δj1j2 .

Thus the Kronecker model is basically a principal hyper-
plane approximation where the core tensor values have a
separable structure, meaning that there are only NT +NR
unique parameters in the core tensor. The total number
of unique real parameters for this model is found to be
N2

R + N2
T , or N2

R + N2
T + NR + NT if the eigenvalues

and eigenvectors are to be specified separately.

2.3. Separable Maximum Entropy Model

It has been argued that the Kronecker model enforces
a structure on the data that may be artificial. Suppos-
ing that only the separate transmit and receive covari-
ances are known, another approach to defining the full
covariance is to use the principle of maximum entropy
[3], thus avoiding “artificial structure” that cannot be de-
duced from the information at hand. In this case, we have
constraints

E
{
HHH

}
= RR E

{∑

k

HikH∗
jk

}
= RR,ij (17)

E
{
HHH

}
= RT

T E

{∑

k

HkiH
∗
kj

}
= RT,ij (18)

p(H) ≥ 0,

∫
p(H)dH = 1. (19)

where p(H) is the joint probability density function (pdf)
of the elements of H. The entropy

∫
p(H) log p(H)dH (20)

is maximized by forming the Lagrangian and setting the
derivative equal to zero, resulting in the form of the solu-
tion

p(H) = c0 exp
[∑

ijkl

HijH
∗
k`(µR,ikδj` + µT,j`δik︸ ︷︷ ︸

−R−1
[ij][k`]

)
]
,

(21)
which is a standard multivariate complex Gaussian pdf
with covariance

R = −(IT ⊗ µR + µT ⊗ IR︸ ︷︷ ︸
A

)−1. (22)

Note that although expressed with Kronecker products,
this form is not identical to the Kronecker model. Taking
the eigenvalue decomposition (EVD) of µT and µR, or

µT = ξT ΛT ξH
T , µR = ξRΛRξH

R , (23)

allows (22) to be expanded as

R−1 = (24)

− (ξT ⊗ ξR)︸ ︷︷ ︸
ξ

(IT ⊗ΛR + ΛT ⊗ IR)︸ ︷︷ ︸
Λ

(ξT ⊗ ξR)H

︸ ︷︷ ︸
ξH

,

such that R = −ξΛ−1ξH . The matrix Λ involves Kro-
necker products and sums of diagonal matrices, which
will also be diagonal, or

Λ[ij][k`] = δj`δikλR,i + δj`δikλT,j

= δj`δik [λR,i + λT,j ] (25)

Λ−1
[ij][k`] = δj`δik

1
λR,i + λT,j

. (26)

Therefore, we have the form of the full covariance matrix.
The eigenvectors are just the Kronecker product of the
separate transmit and receive eigenvectors. The eigen-
values, however, must be found by substituting R back
into the original constraints. Although the constraints
(17) and (18) depend on expectations of H, they can be
rewritten in terms of the full covariance as

RR,ik =
∑

j

R[ij][kj], RT,j` =
∑

i

R[ij][i`]. (27)

The covariance matrix from (24) can be written in com-
ponent form as

R[ij][k`] =
{−A−1

}
[ij][k`]

(28)

= −
∑
mn

ξ[ij][mn]Λ−1
[mn][mn]ξ

∗
[k`][mn].



Substituting (28) into (27) results in

{−RT }jl =
∑
mn

∑

i

ξ[ij][mn]Λ−1
[mn][mn]ξ

∗
[i`][mn] (29)

=
∑
mn

ξT,jnξ∗T,`nΛ−1
[mn][mn]

∑

i

ξR,imξ∗R,im

︸ ︷︷ ︸
= 1

(30)

=
∑

n

ξT,jnξ∗T,`n

∑
m

Λ−1
[mn][mn]

︸ ︷︷ ︸
−DT,nn

, (31)

Similarly, one can expand the receive covariance con-
straint as

{−RR}ik =
∑
m

ξR,imξ∗R,km

∑
n

Λ−1
[mn][mn]

︸ ︷︷ ︸
−DR,mm

. (32)

We recognize (31) and (32) as just the eigenvalue decom-
positions of our transmit and receive covariances,

RT = ξT DT ξH
T (33)

RR = ξRDRξH
R . (34)

To solve for the full covariance, the system of equations

DT,nn = dT,n = −
∑
m

1
λR,m + λT,n

(35)

DR,mm = dR,m = −
∑

n

1
λR,m + λT,n

(36)

must be solved, but a direct solution can be problematic
since we have to find the roots of multivariate large order
polynomials. An indirect approach is possible by notic-
ing that since H is a Gaussian process, maximum entropy
maximizes det(R). Since we already know the eigen-
vectors, we only need find Λ, such that det

(−Λ−1
)

is
maximized. Letting

fmn = −Λ−1
[mn][mn], (37)

we must find the maximum of det(R) =
∏

ij fij , subject
to the constraints

dT,j =
∑

i

fij , dR,i =
∑

j

fij , fij ≥ 0. (38)

Since the constraints are linear and −∏
ij fij is convex,

we have a simple convex optimization problem that can
be solved with conventional techniques. In this paper, the
solution is obtained by finding an admissible initial guess
for the fij using linear programming and then moving to
the optimum with gradient descent.

This maximum entropy method generates a model with
only the separate transmit/receive information at hand,
which conceptually is the “best one can do” when no
joint transmit/receive information is available, since for
any other model, additional information must be incor-
porated. This model has the same basic structure as the
Kronecker model, except that the core tensor is generated
from the NT +NR unique parameters in a slightly differ-
ent way.

2.4. Weichselberger Model

This model also has the same basic form as the Kronecker
model, except that one requirement is relaxed: the eigen-
values of the full covariance matrix are no longer required
to be the separable product of the transmit and receive
eigenvalues. In this case, the full covariance matrix is

R̂ = (UT ⊗UR)Λ(UT ⊗UR)H , (39)

where Λ is a diagonal NT NR×NT NR matrix with gen-
eral entries along the diagonal. In tensor notation,

R̂ = A×1UR×2UT×3U∗
R×4U∗

T

Ai1j1i2j2 = Λ[i1j1][i1j1]δi1i2δj1j2 . (40)

The eigenvalues (which have also been called coupling
coefficients) are found by projecting the eigenvectors
onto the covariance matrix according to

Λ[ij][ij] = R×1U
(i)
R ×2U

(j)
T ×3U

(i)∗
R ×4U

(j)∗
T , (41)

where U(k) here denotes the kth column. Note that this
is precisely the same way the core tensor values along
the principal hyperplane Sijij are computed in the gen-
eral HOSVD. Thus, we expect the accuracy of the We-
ichselberger model to be similar to the principal hyper-
plane model already presented. The total number of real
parameters is N2

R + N2
T + NRNT .

2.5. Directional Model

The initial formulation of the double-directional model-
ing concept used super-resolution methods to estimate
the exact angles of arrival and departure of multipath
components, extracted from measured channel data. An-
other possibility is to take a more statistical approach and
model the covariance as a diffuse process. In this work,
we consider the case of an unstructured diffuse model,
where the ideal joint transmit/receive spatial spectrum is
divided into LR×LT sectors of equal angular extent. The
ideal joint transmit/receive spatial spectrum is assumed to
be piecewise constant, or

V (φR, φT ) =
LR∑

m=1

LT∑
n=1

Vmnfmn(φR, φT ), (42)

where the two-dimensional (2D) pulse functions are

fmn(φR, φT ) =





1, |φR − φR,m| ≤ ∆φR

2

|φT − φT,n| ≤ ∆φT

2 ,
0, otherwise.

(43)

where ∆φP is the angular extent of the pulse function.
The full covariance tensor is found as

R =
∫ 2π

0

dφR

∫ 2π

0

dφT V (φR, φT )L(φR, φT ),

L(φR, φT ) = aR(φT ) ◦ aT (φT ) ◦ a∗R(φR) ◦ a∗T (φT ),
(44)



where the steering vector {aP (φ)}i =
exp[jk(xP

i cosφ + yP
i sinφ)], k is the wavenum-

ber, and xP
i and yP

i are coordinates of the ith antenna for
P = T for transmit or P = R for receive. The joint 2D
Bartlett spatial spectrum is formed as

B(φR, φT ) =< R,L(φR, φT ) > . (45)

Sampling this function at KR and KT discrete angles at
receive and transmit, denoted as φR,k and φT,k to obtain
Bk` = B(φR,k, φT,`) and making the required substitu-
tions

Bk` =
LR∑

m=1

LT∑
n=1

Vmn

∫ 2π

0

dφR

∫ 2π

0

dφT (46)

× fmn(φR, φT )<L(φR, φT ),L(φR,k, φT,`)>,

where the double integral can be computed from known
information and can be represented as the tensor Qk`mn.
Stacking the dimensions appropriately

b[k`] =
∑

[mn]

Q[k`][mn]v[mn], (47)

which can be solved using linear programming for v
when b is known. In practice b is computed from (45) us-
ing the sample full covariance for R. Note that although
the intermediate step of using the Bartlett beamformer is
not necessary, it simplifies the solution by making all the
elements ofQ real and positive and by removing any con-
tributions from non-plane wave propagation. The result-
ing directional model only requires LRLT parameters,
each of which is a positive real value. Also, the linear
programming solution tends to favor a sparse representa-
tion, so many of the v[mn] are identically zero in practice.

3. PERFORMANCE COMPARISON

The different models are compared by computing the
fractional error in the modeled covariance matrix, or

ε =
‖R̂ − R‖
‖R‖ . (48)

Additionally, we consider the error in the actual and mod-
eled Bartlett spectra as

εB =

∫ 2π

0
dφR

∫ 2π

0
dφT |B̂(φR, φT )−B(φR, φT )|∫ 2π

0
dφR

∫ 2π

0
dφT |B(φR, φT )|

.

(49)
In the simulations that follow, full covariance matrices are
generated using the narrowband Saleh-Valenzuela angu-
lar (SVA) model [8], assuming Laplacian shaped clusters
with angular spread σ = 26◦ at both transmit and receive,
unit arrival rate, and decay rate Γ = 2. These parameters
are consistent with measurements of indoor MIMO chan-
nels [5]. Arrays at transmit and receive are 8-element
uniform linear arrays (ULAs) of ideal dipoles with λ/2
interelement spacing.

For the directional channel model, LR = LT = L = 12
with corresponding angles angles φk = π(k − 0.5)/L.

Note that for the ULA, only angles on one side of the
symmetric array need be considered. The Bartlett spec-
trum is matched at KR = KT = K = 32 discrete angles
given by φk = π(k − 0.5)/K.

Figure 1 plots the Bartlett spatial spectrum for the vari-
ous models for a single random channel realization, in-
dicating that the Kronecker model (b) significantly dis-
torts the directional response of the true full covariance
(a). The Weichselberger model (c) offers only a small
improvement in the match of the spectrum over the Kro-
necker model. The general tensor models begin to ap-
proximate the true spectrum much better for the principal
hyperplane (d) and general sparse core tensor (e), both of
which have NT NR nonzero core tensor entries. Finally,
the directional model matches the Bartlett spectrum very
well, which is not surprising since the method fits this di-
rectly. However, this fitting is accomplished with only as
many parameters as required by the Kronecker model.

Next we look at the statistical behavior averaged over 100
random realizations of the channel model, and consider
the accuracy of the sparse core tensor model, where only
M of the largest core tensor entries are retained. Fig-
ure 2 plots the average fractional error in the covariance
and Bartlett spectrum with respect to M . The result in-
dicates that the error drops approximately linearly with
the logarithm of the number of core entries until a knee
at NT NR entries, indicating that models with fewer than
NT NR eigenvalues will always suffer low accuracy.

Table 1 lists the number of parameters in the various mod-
els and the average accuracy of the modeled covariance
and spatial spectra for the 100 realizations. First, we see
that the maximum entropy method does not offer any im-
provement over the Kronecker model, suggesting that the
Kronecker model is basically optimal when nothing more
than the separable transmit/receive information is avail-
able. Second, we see that the Weichselberger model and
the principal hyperplane core tensor model are similar, as
expected. Third, we see that the directional model has
superior accuracy to all of the random matrix models as
well as relatively few parameters. Although seemingly
remarkable, the parameters of the directional model fo-
cus on joint transmit/receive information, whereas the pa-
rameters of the tensor models are mostly separate trans-
mit/receive information. It also seems reasonable that by
matching the Bartlett spectrum, rather than the covari-
ance matrix directly, the directional model is able to avoid
wasting parameters on eigenvector pairs that have little
contribution to the channel response.

4. CONCLUSION

This paper has compared the ability of random matrix and
directional channel models to capture the behavior of re-
alistic MIMO channels. The performance of the mod-
els was compared in terms of the error in the estimated
full covariance matrices, error in the Bartlett spectra, and
the number of parameters required. The results suggest
that models without sufficient joint transmit/receive in-
formation suffer from inherently low accuracy. The im-
portance of joint transmit/receive information was further
validated by the superior performance of the directional
model compared to all of the tensor-based methods.
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Figure 1. Bartlett spatial spectra of a single realization of the reference channel model for the various approximations to
the true covariance

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 4 16 64 256 1024 4096

ǫ

Nonzero Core Tensor Entries

ǫ

ǫB

Figure 2. Average error as a function of the number of
nonzero core tensor entries

Table 1. Average Model Error
Model Parameters ε εB
Kronecker 144 0.32 0.25
Maximum Entropy 144 0.35 0.27
Weichselberger 192 0.24 0.16
P. Hyperplane 192 0.21 0.13
Directional 144 0.16 0.03
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