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Abstract—Time-variant multiple-input multiple-output
(MIMO) channels are measured in an outdoor campus environ-
ment at 2.45 GHz with directional patch arrays and omni-
directional monopole arrays. A number of useful metrics are
proposed for quantifying time variation in MIMO channels:
eigenvalue level crossing rate, eigenvector angular deviation,
and capacity loss for delayed transmit and receive channel state
information (CSI). Measurements in four different environments
confirm the strong correlation between angular spread of
multipath and MIMO channel time variability. The rate of
time variation is also strongly influenced by the type of array,
indicating that directional elements may be advantageous for
highly mobile environments. The proposed metrics indicate that
although the physical communication layer may need to update
CSI several times per wavelength, the required rate of adaptation
in transmit rate, modulation, and power allocation is much
less severe.

Index Terms—Information theory, multiple-input multiple-
output (MIMO) systems, time-varying channels.

I. INTRODUCTION

ANALYTICAL studies and measurement campaigns have
demonstrated the dramatic capacity increase enabled

by exploiting the multipath spatial structure with multiple-
input multiple-output (MIMO) communications [1], [2]. How-
ever, realization of these gains depends critically on the
availability of channel state information (CSI) [3], which is
typically obtained by periodically transmitting known train-
ing sequences. When the channel varies rapidly, the required
frequency of training can diminish and eventually offset the
capacity improvement enabled by MIMO technology. Although
signaling strategies for rapidly varying MIMO channels exist
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[4], such methods typically provide modest capacity increase
relative to the gains associated with methods exploiting full
CSI [5], [6].

Since the rate of time variation effectively limits the achiev-
able MIMO capacity, an understanding of the degree of time
variation in real-world channels is very important. Such knowl-
edge helps in determining the type of MIMO technology to
apply for specific applications. Previously reported MIMO
measurements have shown that a moving person can tem-
porarily inhibit a single indoor channel eigenmode [7], and
that the coherence time of outdoor channels is about twice
that predicted by Jakes’ model [8]. Furthermore, recent work
demonstrates the effect of delayed receive CSI on the bit error
rate of MIMO systems in an indoor environment [9]. However,
to date there does not appear to be a comprehensive analysis
providing metrics for MIMO channel variation combined with
real-world channel measurements with the goal of demonstrat-
ing how the variation impacts performance in practice. Also, the
effect of directional and dual-polarization elements on channel
time variation has received little attention.

In this paper, we evaluate the channel time variation from
narrowband measurements taken at 2.45 GHz in several
representative outdoor locations. Instead of simply plotting
eigenvalues of time-varying channels or applying previous
single-input single-output (SISO) metrics, we present true
MIMO metrics that quantify the rate of channel time variation,
thus allowing the channels to be classified based on their
time variability. Combining outdoor measurements with useful
time-variation metrics illustrates general limitations imposed
by time-varying channels and serves as a benchmark for later
studies.

II. NARROWBAND MIMO MEASUREMENT SYSTEM

In this section, we briefly describe the MIMO channel
sounder employed, with an emphasis on parameters specific
to this measurement campaign. We refer the reader to [10] for
additional details on the measurement system.

A. Channel Sounder

Figs. 1 and 2 depict a high-level block diagram of the narrow-
band MIMO channel sounder and the actual transmit/receive
subsystems, respectively. The channel is probed by transmitting
a high-frequency carrier on NT different transmit antennas,
each modulated with an independent code word. The receiver
simultaneously samples the intermediate frequency waveforms
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Fig. 1. High-level block diagram of narrowband MIMO channel sounder used in this paper.

Fig. 2. Photographs of (a) transmit and (b) receive subsystems. Equipment is
placed on carts for mobile outdoor measurements.

TABLE I
MEASUREMENT PARAMETERS FOR MEASUREMENT CAMPAIGN

received on NR different receive antennas, thus allowing the
formation of an NR × NT narrowband channel matrix.

B. Measurement Parameters

Table I lists the important parameters of the system for this
measurement campaign common to all measurement locations.
The nominal 30-kHz bandwidth allowed a single tone in the
2.4-GHz industrial, scientific, and medical band to be mea-
sured. Each transmit channel used a repeated 31-bit sequence
consisting of a unique 16-bit Walsh code combined with a com-
mon 15-bit alignment code. The alignment code was chosen
to have favorable autocorrelation properties, allowing correct
alignment of the waveforms to be achieved in postprocessing.
Although the system produced channel snapshots for each
2.5 ms of measurement time, the data were smoothed by a factor
of 10 in time to improve signal-to-noise ratio (SNR).

C. Antenna Arrays

Fig. 3 depicts the two basic array types used in this paper,
namely: 1) a uniform linear array (ULA) of eight vertically
polarized monopole antennas and 2) a linear array of four dual-
polarized patch antennas. The monopole antennas of length

Fig. 3. Two types of antenna arrays employed in this paper. (a) λ/4 monopole
antennas mounted on a reconfigurable ground plane. (b) Dual-polarization
patch antennas. Arrows pointing out of the page indicate orientation direction
for the two arrays.

λ/4, where λ is the free space wavelength, exhibit nearly
uniform radiation patterns in the azimuthal plane. Each patch
element has two independent feeds for vertical and horizontal
polarizations, with the polarizations exhibiting 3-dB azimuthal
beamwidths of approximately 90◦ and 120◦, respectively. The
use of the two array types allows the investigation of the effect
of directivity and polarization on the rate of channel variation.

III. CHANNEL METRICS

An important part of this paper is the identification of met-
rics that quantify the time variation of the measured channel
responses. Each channel metric can be computed from the
channel transfer matrix elements H

(n)
ij , where n is a channel

measurement time index, and i and j are the receive and trans-
mit antenna indices, respectively. Since the temporal variation
of measured channels results largely from receiver movement,
time-variation metrics are given in terms of distance, which can
readily be converted to time given a receiver motion velocity.

Many of the metrics presented make use of the notion of
parallel spatial channels enabled by the array and the multipath
propagation. As way of background, let the singular value
decomposition of the channel matrix at time index n be given
as H(n) = U(n)S(n)V(n)H , where U(n) and V(n) are unitary
matrices of singular vectors, S(n) is a diagonal matrix of real
singular values, and {·}H is the Hermitian operator. If we pre-
code the vector x(n)

0 of transmit symbols by the right singular
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vectors using x(n) = V(n)x(n)
0 and weight the resulting re-

ceived signal vector by the left singular vectors, we obtain

y(n)
0 =U(n)Hy(n)

=U(n)HH(n)x(n) + U(n)Hη(n)

=S(n)x(n)
0 + η

(n)
0 (1)

where η(n) is the noise at the nth time index. Throughout this
discussion, it will be assumed that the noise vector consists of
zero-mean Gaussian random variables and has covariance σ2I,
where I is the identity matrix. Since the received signal vector
is now a scaled (and noisy) version of the transmitted vector,
this weighting effectively creates a set of independent spatial
modes over which the data are communicated. In the following,
we will refer to the ith columns of U(n) and V(n), symbolized
by u(n)

i and v(n)
i , as the ith receive and transmit eigenvectors,

respectively, and γ
(n)
i = S

(n)2
ii as the ith channel eigenvalue.

A. Capacity Metrics

The Shannon capacity, which is the upper bound of achiev-
able rates for error-free transmission, is a key figure of merit
for MIMO channels. In this paper, we consider narrowband
MIMO capacity under the conditions where the transmitter is
informed and uninformed about the CSI. All numerical values
of capacity are given in terms of bits per second per hertz.
Note that since this paper analyzes time-variant channels, and
notions of capacity usually assume an infinite time window for
coding, the time-variant capacity in our context represents a
figure of merit as opposed to a truly achievable capacity. These
values serve as a bound that becomes tight as either the velocity
vanishes or the symbol rate grows large.

1) Informed Transmit Capacity CWF: A transmitter with
perfect CSI may diagonalize the channel as outlined above and
subsequently use water-filling on the parallel Gaussian channels
to obtain the capacity, i.e.,

C
(n)
WF =

∑
i

log2

(
1 +

p
(n)
i γ

(n)
i

σ2

)
(2)

p
(n)
i =

(
ν − σ2/γ

(n)
i

)+

(3)

(z)+ =
{

z, z ≥ 0
0, otherwise

(4)

where pi is the power delivered to the ith parallel channel, ν is
determined using the constraint

∑
i p

(n)
i = PT , and PT is the

total transmit power. Typically, H(n), σ2, and PT are scaled to
obtain a prescribed average SISO SNR that is reasonable for
a realistic system. In this paper, a SISO SNR of 10 dB was
assumed for all capacity computations.

2) Uninformed Transmit Capacity CUT: When the trans-
mitter has no knowledge about channel state, rank, or statistics,
the best strategy involves delivering equal power in independent
streams to the transmit antennas. In this case, the channel
capacity is given by

C
(n)
UT = log2

∣∣∣∣PT H(n)H(n)H

NT σ2
+ I
∣∣∣∣ . (5)

Fig. 4. Example plot of the time variation of the first four channel eigenvalues,
illustrating the meaning of the ELCR metric.

B. Eigenchannel Metrics

Since achieving capacity involves transmitting independent
information on the parallel channel eigenmodes, it is interesting
to study the temporal behavior of these modes. The following
metrics represent possible mechanisms for quantifying the tem-
poral variability of the channel eigenvalues and eigenvectors.

1) Eigenvalue Level Crossing Rate (ELCR): ELCRi is the
number of times γ

(n)
i , which represents the power gain of the

ith eigenmode, drops below a specified threshold divided by
the total distance traveled. This concept is illustrated in Fig. 4.
In this paper, a threshold of 2 dB below the mean is assumed,
and ELCR is specified as the average number of crossings per
wavelength.

ELCR is interesting from the point of view of an adaptive
MIMO physical layer (PHY) and a medium access layer (MAC)
that must adapt transmission rate and modulation to the time-
dependent channel quality. This metric also indicates the level
of coding that may be required to overcome channel fades for
constant rate/modulation transmission.

2) Eigenvector Angular Deviation (EAD): EAD quantifies
how quickly the transmit and receive eigenvectors rotate in
complex multidimensional space. We define EAD for the trans-
mit space as

θik =
1

N − k

N−k∑
n=1

cos−1
∣∣∣v(n)H

i v(n+k)
i

∣∣∣ (6)

where k is the distance between two channel snapshots, and N
is the total number of snapshots, with an analogous definition
for the receiver EAD. EAD directly impacts how quickly the
PHY must update transmission weights to track the time-variant
MIMO channel. However, since the information in this metric
is somewhat redundant with the information provided by the
capacity degradation metrics in Section III-C, it will not be used
in the following data analysis.
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3) Eigenvalue Spread (ES): ES indicates the amount of
multipath in the channel, ranging from large values for nearly
line-of-sight (LOS) channels to lower values for channels with
richer multipath. ES in this campaign is defined as ES =
10 log10(γ1) − 10 log10(γ3), where γi is the mean of the ith
eigenvalue.

C. Capacity Degradation Metrics

Although the eigenchannel metrics are useful for sys-
tem specification and design, they do not indicate the loss
of channel quality in an information-theoretic sense. Fur-
thermore, the time-variant capacity metrics only provide an
instantaneous measure of capacity (within the limits outlined in
Section III-A). Here, we define simple metrics for quantifying
the loss in capacity due to channel time variation.

1) Transmit CSI Delay: First, consider the case where the
receiver has perfect CSI but the transmitter only has the de-
layed channel estimate Ĥ. We may define capacity for delayed
transmit CSI as

C
(n)
T = log2

∣∣∣∣∣H(n)Q(Ĥ)H(n)H

σ2
+ I

∣∣∣∣∣ (7)

where H is the true channel, σ2 is the receiver noise vari-
ance, Q(Ĥ) is the optimal transmit covariance given by the
water-filling solution (assuming Ĥ represents the true channel),
Tr{Q} ≤ PT , and PT is total transmit power. As the estimate
Ĥ becomes increasingly outdated, C

(n)
T will tend to decrease.

When C
(n)
T falls below the uninformed transmit capacity (C(n)

T

with Q = I), which occurs at the motion distance dT , the
transmit CSI is no longer useful.

2) Receive CSI Delay (RCD): Next, consider the case where
both transmitter and receiver have outdated CSI. With imperfect
channel estimates Ĥ = ÛŜV̂H , we can rearrange the received
signal as

y(n) = Ĥx(n) + [H(n) − Ĥ]x(n) + η(n) (8)

where x(n) = V̂x(n)
0 . Detection of the received waveform us-

ing the outdated CSI leads to a modification of (1) given by

ŷ(n)
0 = ÛHy(n) = Ŝx(n)

0 + M(n)x(n)
0 + ÛHη(n) (9)

where M(n) = ÛH [H(n) − Ĥ]V̂. This procedure therefore
constructs parallel channels with gains Ŝii but with self-
interference (or “crosstalk”) controlled by the matrix M(n).

We make no assumptions about the distribution of the
channel, which in turn leads to unknown statistics for M(n).
Unfortunately, defining the capacity of this channel rigorously
is difficult, and we therefore construct a lower bound for the
capacity by computing the mutual information of a simplified
system. Specifically, it is realistic to assume that the receiver
knows the level of self-interference on the parallel subchan-
nels but is unaware of the cross correlation. Mathematically,
we assume the interference vector z(n) = M(n)x(n)

0 consists
of independent zero-mean Gaussian elements with variance

(at time sample n) of {R(n)
z }ii = {M(n)R(n)

x M(n)H}ii, where
R(n)

x is the covariance of x(n)
0 . The mutual information of this

system is

C
(n)
R =

∑
i

log2

(
1 + p

(n)
i γ

(n)
i /q

(n)
i

)
(10)

q
(n)
i =

{
M(n)R(n)

x M(n)H
}

ii
+ σ2 (11)

where R(n)
x = diag(p(n)) with p

(n)
i found according to water-

filling (assuming H(n) = Ĥ and q
(n)
i = σ2). We define dR

as the distance at which CR drops to 50% of its maximum
value. We note that this RCD capacity is very similar to the
capacity defined in [11], which has been applied to ray-tracing
simulations of time-varying urban channels.

Since the capacity degradation metrics are a function of delay
between the points in time when the channel CSI is obtained
and eventually used, these metrics may be averaged over many
starting points to obtain a more general understanding of the
effect of time variation on capacity.

D. Spatial Spectra

It is intuitive that the rate of channel time variation is linked
to the angle spread of the multipath field, motivating a study
of the channel spatial structure. The channel spatial spectrum
represents the relative power transfer through the channel as
a function of transmit or receive angle. A simple Bartlett
(or Fourier) beamformer estimates the transmit and receive
spectra as

P (φ) =aH(φ)Ra(φ) (12)

ai(φ) = fi(φ) exp [jk0(xi cos φ + yi sin φ)] (13)

where a is the array steering vector, R is a transmit or receive
covariance matrix, fi(φ) is the far-field radiation/reception
pattern of the ith antenna in the horizontal plane, k0 is the free-
space wavenumber, and xi and yi are the coordinates of the
ith antenna. Covariance matrices for transmit and receive are,
respectively, estimated using

RT,j1,j2 =
1

NNR

NR∑
i=1

N∑
n=1

H
(n)
ij1

H
(n)∗
ij2

(14)

RR,i1,i2 =
1

NNT

NT∑
j=1

N∑
n=1

H
(n)
i1j H

(n)∗
i2j . (15)

IV. CHANNEL MEASUREMENTS

Measurements were taken in four different environments.
In all cases, the transmitter remained stationary during the
measurement time. In the following, the designation 8P refers
to the eight-port (four-element) dual-polarized patch array with
an element spacing of 0.5 λ. The designation nM refers to the
n-element monopole ULA, where the interelement spacing is
0.44 λ unless otherwise noted.
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Fig. 5. Map of Environment 1 (DT field). Transmitter and receiver were
placed in a large open field to the east of a single large building, simulating
a low-scattering environment. Distances are in meters.

A. Deseret Towers (DT) Field

Initial measurements were taken at the DT field, which is a
large open area, surrounded by a 1.5-m-high fence composed
of vertical metal rods and bricks, with a single large building
nearby. The transmitter and receiver were placed about 70 m to
the east of the building, as shown in Fig. 5. The monopole array
spacing was set to 0.4 λ for these experiments. Furthermore, a
reflecting plate was placed on the side of the monopole transmit
array to block the LOS component.

Two experiments were run to determine a suitable spatial
sample rate for the moving receiver. The receiver first traveled
approximately 2.5 cm/s over a distance of 75 cm, with a sample
acquired every 0.005 λ. This experiment was then repeated
for motion at 30 cm/s over a distance of 9 m, with a sample
acquired every 0.06 λ. Comparison of these results revealed that
the channel variation could be captured with insignificant error
using the higher receiver speed.

The array orientations, receiver motion path (relative to
Fig. 5), and metrics resulting from the acquired data are listed
in Table II. The metrics confirm that this environment has
relatively slow temporal variation. The eigenvalue variation
indicates that the MAC should optimally adapt at a rate less
than once per wavelength. However, since the RCD capacity
degradation is significant for distances on the order of λ/4, the
receive PHY must adapt at a higher rate.

The results also show that the monopole antennas exhibit
higher channel variation than the patch antennas. This concept
is reinforced by Fig. 6, which plots a sample time evolution
of the first four eigenvalues for Set 1 (patches) and Set 4
(monopoles). The rapid variation observed for the monopole
array is likely due to the wide angular spread of arrivals
collected by omnidirectional elements. In contrast, the dual-

TABLE II
ARRAY CONFIGURATIONS AND METRICS FOR DT FIELD

(ENVIRONMENT 1)

Fig. 6. Sample temporal evolution of eigenvalues from Environment 1 for
(a) Set 1 with patches and (b) Set 6 with monopoles.

polarized patches have more directive patterns, resulting in
reduced sensitivity to position.

Fig. 7 plots the eigenvalue probability density functions
(pdfs) for channels obtained with four vertical patch elements
and four monopoles (from Sets 1 and 4). These results show that
the eigenvalues (and therefore capacities) are nearly identical
for the two antennas. This observation suggests that antennas
with more spatial selectivity may be advantageous for MIMO
systems in environments with high mobility since they offer
high capacity while exhibiting lower temporal variability.

Fig. 8 plots spatial spectra for Sets 1 and 2. The spectra for
Set 1 are narrow due to a dominant reflection from the building
(Conference Center) to the west, corresponding to fairly slow
variation as quantified by the metrics. In contrast, for Set 2, the
receiver points south toward more distant buildings, and since
no single-bounce propagation mechanism is present, the spectra
are much wider, resulting in faster channel variation.

B. Clyde Building (CB) Trees

In the second measurement campaign, the system nodes were
placed in the midst of sparse trees near the CB, as shown in
Fig. 9. The environment was influenced by occasional passing
pedestrians. The transmitter was placed in front of the building
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Fig. 7. Eigenvalue pdfs of four patches (Set 1) compared with four monopole
elements (Set 6).

Fig. 8. Transmit and receive spectra for data sets 1 and 2, indicating much
higher angular spread for set 2.

behind two trees, whereas the receiver assumed a number of
possible positions. For each measurement, the receiver was
either stationary (to observe the effect of pedestrians) or moved
9 m along a straight path. The crossing rates for the stationary
measurements were all zero except for the third eigenvalue
on a single data set. Therefore, we will assume the effect of
pedestrians to be negligible and focus on the moving cases.

Table III summarizes the array configurations and metrics in
this environment. These data exhibit even less variation than the
DT field measurements, particularly for patch arrays. As with
DT field, the location with the highest variation (Set 3) has very
wide angular spread of multipath at transmit and receive. For
sets with very low variation (Sets 4 and 8), the spatial spectra
are much narrower, suggesting a strong nonfading path through

Fig. 9. Map of Environment 2 (CB Trees). Transmitter was placed behind
sparse trees, and the receiver assumed three different positions on the opposite
side of the trees. Distances are in meters.

TABLE III
ARRAY CONFIGURATIONS AND METRICS FOR CB TREES

(ENVIRONMENT 2)

the trees. Given the variation rates, it appears reasonable that the
MAC adapt at a rate less than once per wavelength. The receive
PHY, however, may still need to update reception weights on
the λ/4 scale.

C. Coal Yard

The third environment consisted of a parking lot with parked
cars surrounded by many metal buildings, as depicted in
Fig. 10. The transmitter assumed one of three possible lettered
positions in the diagram, and the receiver assumed one of two
possible numbered positions. The receiver was either stationary
or moved along a straight 9-m path at 30 cm/s. For the station-
ary measurements, the crossing rates were again almost always
zero, showing that any cars moving in the channel had a nearly
negligible effect.

Table IV summarizes the measurement parameters and met-
rics for the moving cases. The metrics reveal that the variation
is only slightly higher (on average) than the variation seen at
the DT field. However, certain positions (Set 1, for example)
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Fig. 10. Map of Environment 3 (Coal Yard). Transmitter was at one of the
lettered positions, whereas the receiver was placed at one of the numbered
positions. For Sets 7 and 8, a coal truck was parked in the coal yard as indicated.
Distances are in meters.

TABLE IV
ARRAY CONFIGURATIONS AND METRICS FOR COAL YARD

(ENVIRONMENT 3)

exhibit much more variation, revealing that the same phys-
ical scenario can produce channels with both high and low
variations. Additional analysis not included here again reveals
that Sets 3, 5, and 7, which represent the channels with high
time variation, are characterized by larger angular spread as
compared to Sets 4, 6, and 8.

D. CB Corridor

Fig. 11 shows a map of measurements taken when the nodes
sat in corridors between buildings. For all sets, the transmitter
assumed a fixed position and the receiver was either moved
along a 27-m path or rotated two times.

Large-scale movement and rotation led to much more pro-
nounced changes in the channel than had been seen previously.
However, large transitions led mainly to changes in the path
loss as opposed to changes in the amount of multipath present.
Fig. 12 shows the spatial spectra for Set 1 as the receiver is
moved along a corridor between the buildings. Since the path is
quite long, the spatial spectra have been computed separately
at the beginning (B), middle (M), and end (E) of the path.
Interestingly, when the receiver is the most obscured (B), the

Fig. 11. Map of Environment 4 (CB Corridor) showing positions and orienta-
tions of arrays. The transmitter was at three different locations, and the receiver
was moved along a 27-m path (dotted line) in a corridor between two buildings
or rotated (Rot.). Patches were used for Sets 1–3 and monopoles for Sets 4–6.
The orientation for the receiver monopole array (M) was shifted by 45◦ relative
to the patches (P).

Fig. 12. Transmit/receive spectra for Environment 4, Set 1 for the beginning
(B), middle (M), and end (E) of the path.

spectra look the most directional, and when the receiver moves
out into the open, the spectra become wider. These results can
possibly be explained by a waveguiding phenomenon, since
a waveguide would exhibit only a few strong propagation
directions.

The effect of the large-scale movement and rotation on the
eigenvalues is depicted in Fig. 13 for Set 1. These results show a
change in the overall eigenvalue levels (due to path loss) rather
than a change in the ES. Table V(a) and (b) summarizes the
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Fig. 13. Variation of the first four eigenvalues for Environment 4, Set 1 for
(a) receiver movement and (b) receiver rotation, indicating mainly changes in
the path loss.

metrics for this location for moving and rotating measurements.
For rotating measurements, ELCR is measured in number of
eigenvalue crossings per 10◦ of rotation, and dR is measured
in degrees. Metrics for the moving case show that the rate
of variation here was lower than that for DT field. Although
surprising, perhaps the waveguiding effect of the buildings par-
tially accounts for this effect. Variation of the channels for patch
antennas and monopoles is quite similar, in contrast to other
measurements where the monopoles exhibit higher variation.
This can be explained by the fact that the directional arrays
were usually pointed where the maximum power transfer would
occur (i.e., down the corridor), and therefore, it is unlikely that
the monopoles would collect significantly more multipath than
the patches.

E. Discussion

Table VI summarizes average values of the metrics for
monopole and patch arrays across all of the environments in

TABLE V
METRICS FOR CB CORRIDOR (ENVIRONMENT 4) (a) LARGE-SCALE

MOVEMENT (b) ROTATION (ELCR IN CROSSING 110◦)

TABLE VI
AVERAGE METRICS VERSUS ENVIRONMENT

this paper. This paper indicates that the physical scattering
environment has much less of an effect on the time variability
of channels than the array configurations and orientations of
the MIMO system. Dual-polarized directional patch antennas
produced channels with considerably lower temporal variation
than omnidirectional monopoles, indicating that spatially selec-
tive elements may be advantageous for highly mobile systems.
This idea is also supported by the fact that throughout the
measurements, a very strong correlation between the angu-
lar spread of spatial spectra and the temporal variation was
evident.

The measurements also indicate the level of adaptation
required of advanced mobile MIMO architectures. Table VI
gives average eigenvalue crossing rates on the order of 0.4/λ
and 0.2/λ for monopoles and patches, respectively, indicating
that an advanced adaptive MIMO MAC/PHY would need to
update its modulation and rate a few times per wavelength. On
the other hand, values for dR are about 0.2 λ and 0.5 λ for
monopoles and patches, respectively, suggesting that training
must be performed rapidly at the receive PHY to achieve high
capacity. Although dT can be quite large, indicating that trans-
mit CSI is useful for long distances, the increase in capacity
when the transmitter knows the channel was fairly modest for
our measured channels.
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V. CONCLUSION

This paper presents MIMO channel measurements conducted
in an outdoor campus environment at 2.45 GHz and analyzes
the data behavior in terms of channel temporal variation. A
number of useful metrics are developed to quantify MIMO
time variation and its effect on system performance. The results
indicate that rates of system adaptation are on the order of
λ/4 for the PHY and 1 λ for higher level adaptation of the
transmission rate and modulation. The analysis should be useful
for the design of MIMO systems for mobile environments.
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