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Abstract— A recent study on correlated block-fading MIMO
channels with transmit covariance information indicates guar-
anteed capacity growth with additional transmit elements, in
contrast to previous results for uncorrelated channels. Also, for
very rapidly fading channels, the results indicate the optimality
of placing antenna elements as close together as possible. In this
work, application of radiated power considerations indicates that
transmit beamforming only increases capacity when this gain
results from correlation inherent in the channel, not correlation
that is simply offset by increased antenna coupling. The new
analysis reveals that when multipath is directionally biased,
antenna spacings of 0.3 to 0.6 wavelengths are optimal, and that
when no such bias is present, antennas should be placed as far
apart as possible. As expected, the electromagnetic analysis shows
that at zero element separation, the array yields no capacity gain
over a single antenna.

I. INTRODUCTION

In rich multipath environments, node mobility limits the
quality of attainable channel state information (CSI) due
to wavelength-scale fast fading, leading to effectively lower
channel capacities [1–3]. Analytical results for block fading
i.i.d. Gaussian channels with block length T indicate a severe
drop in capacity as T becomes small and that having more
than T antennas does not increase capacity [4]. More recent
work studies the capacity of block-fading Gaussian MIMO
channels with Kronecker correlation. For this case, capacity
always increases with additional transmit antennas beyond T ,
as long as the transmit antennas are correlated. For very rapidly
fading channels (T=1) the analysis indicates that antennas
should be placed as close together as possible for maximum
capacity [5].

Instead of simply constraining the sum of the squares of the
transmit signals as in previous analyses, this paper accounts
for the true radiated power of the transmit array, indicating
whether capacity growth results from increased radiated power
or from the actual channel. The fundamental observation is that
transmit correlation increases capacity through simple beam-
forming techniques, and that true capacity gain only comes
from increased channel correlation, not antenna correlation
whose gain is offset by increased antenna coupling. With these
considerations, optimal antenna placement is found to be close
to that of conventional phased arrays (0.3 to 0.6 wavelengths).

The remainder of the paper is organized as follows: Sec-
tion II presents the block fading MIMO channel model. Sec-
tion III introduces the concept of radiated power derived from
electromagnetic considerations. Section IV analyzes capacity
increase with correlation in terms of beamforming mechanisms
and reveals new conditions for capacity growth. Section V dis-
cusses optimal antenna placement for rapidly fading channels.
Section VI concludes the paper.
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II. CHANNEL MODEL

As in [4, 5], we adopt the block-fading channel model

X =
√

(ρ/P )SH + W, (1)

where S is the T×M matrix of complex baseband transmit
signals, H is a single realization of the M×N channel transfer
matrix, X is the T×N matrix of receive samples, T is the
block length, and M and N are the number of transmit
and receive antennas, respectively. The quantities P and ρ
represent the average power generated per unit time by the
transmit signal matrix S and the average signal to noise ratio
(SNR), respectively. The T×N matrix W of noise samples
consists of i.i.d. elements Wij ∼ CN (0, 1), with CN (µ, σ2)
denoting the univariate complex Gaussian distribution with
mean µ and variance σ2.

The channel H is assumed to be constant over blocks of
length T , with elements given by the Kronecker model, or

H = R1/2
T HwR1/2

R , (2)

where RT = (1/N)E
{
HHH

}
and RR = (1/M)E

{
HHH

}
are the transmit and receive covariance matrices, and Hw,ij ∼
CN (0, 1). Covariance matrices are generated in this work with
a directional channel model, where the probability density
function (pdf) of departures or arrivals at angle φ for either
transmit or receive in the azimuthal plane is p(φ). For a uni-
form linear array (ULA) of infinitesimal dipoles, the transmit
or receive covariance matrix has elements

Rik =
∫ 2π

0

dφ p(φ) exp[j2π(i − k)∆x cos φ], (3)

where ∆x is the inter-element spacing in wavelengths.
To understand the effects of different multipath distribu-

tions, three forms of p(φ) at the transmitter are considered:
1 For full angular spread p(φ) = 1/(2π), and the covari-

ance elements become RT,ik = J0[2π∆x(i−k)], where
J0(·) is the zeroth order Bessel function.

2 For a set of L discrete paths with powers β� and
arrival/departure angles φ�, we have

RT,ik =
L∑

�=1

β� exp[j2π∆x(i − k) cos φ�]. (4)

3 For a single von Mises cluster [6],

RT,ik = I0

(√
κ2 − y2 + j2πκy cos φ

)
/I0(κ), (5)

where y = 2π(i−k)∆x, κ ∈ [0,∞) controls the cluster
width, and φ is the mean cluster departure angle.
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III. RADIATED POWER

In MIMO analyses, the transmit signal is typically con-
strained to have unit average power for each antenna and
symbol time [4, 5], or

P = Ptr = (1/T )ETr
{
SSH

}
= M, (6)

where E {·}, Tr {·}, and {·}H represent expectation, trace, and
conjugate transpose, respectively. In a realistic system, this
is equivalent to constraining the sum of the squared currents
on the antenna elements, which for uncoupled antennas also
constrains the radiated power. When the antenna elements are
electromagnetically coupled, the power radiated during the ith
symbol time becomes [7]

Pi = siAsH
i , (7)

where A is an M×M coupling matrix, and si is the ith row
of S. The average radiated power per unit time is therefore
expressed as

P = Prad = (1/T )ETr
{
SASH

}
. (8)

A ULA of infinitesimal dipoles oriented perpendicular to the
azimuthal plane is assumed, giving Aij = J0[2π∆x(i − j)].

In the analysis that follows, we assume that the signaling
strategy S is chosen by letting P = Ptr = M as in (6) and then
scaling S so that the radiated power computed in (8) achieves
the desired value. This method is suboptimal, since the optimal
solution would find S by directly constraining the radiated
power [8]. However, the suboptimal scheme is convenient for
this present analysis since it reveals the source of the gains in
[5] and whether such gains are realistic.

IV. BEAMFORMING AND CAPACITY GROWTH

Understanding the behavior of capacity for correlated block-
fading channels is facilitated by an eigenbeamforming inter-
pretation. Substituting (2) into (1) and taking the eigenvalue
decomposition (EVD) of the covariance matrices (RP =
ξξξPΛΛΛPξξξH

P ) yields

X =
√

ρ

P
SR1/2

T HwR1/2
R + W, or (9)

XξξξR︸︷︷︸
X′

=
√

ρ

P
S ξξξT︸ ︷︷ ︸
S′

ΛΛΛ1/2
T ξξξH

T HwξξξR︸ ︷︷ ︸
H′

w

ΛΛΛ1/2
R ξξξH

RξξξR︸ ︷︷ ︸
I

+WξξξR︸ ︷︷ ︸
W′

. (10)

The unitary transformations do not change the statistics of
the channel and noise nor the capacity [4], resulting in the
simplified model

X′ =
√

ρ

P
S′ΛΛΛ1/2

T HwΛΛΛ1/2
R + W. (11)

Note that since H′
w and W′ have the same distributions

as Hw and W, respectively, the primes have been dropped
for convenience. The behavior of the channel is depicted
graphically in Figure 1.

Equation (11) indicates that correlation (ΛΛΛ{T,R} �= I) allows
the transmitter and receiver to form beams that excite the
spatial modes of the channel with the highest gain, referred
to commonly as dominant modes. From a physical perspec-
tive, communicating on the dominant modes corresponds to
transmitting and receiving power in directions of high multi-
path. Adding more antennas allows improved control of the
radiation and reception patterns and therefore improved spatial
filtering. Thus, the dominant modes of the covariance become

stronger as antennas are added, yielding higher beamforming
gain and leading to the guaranteed capacity growth in [5].

A logical observation that can be drawn from [5] is
that mutual information only depends on the distribution of
SRT SH = S′ΛΛΛT S′H . This allowed a scheme in [5] to be
developed where mutual information remains constant with
added antennas even though the transmit power is reduced,
indicating capacity growth. Here we review this analysis and
study the impact of including radiated power.

A. Effective Power Gain
From the perspective of Figure 1, mutual information only

depends on the temporal correlation S′′S′′H of signals trans-
mitted through the channel. Consider adding ∆M transmit
antennas to a system consisting of M antennas. Transmit
signals can be rearranged so that the first M columns of S′′
remain the same, but the additional ∆M columns are zero,
meaning no change in the spatio-temporal excitation.

Given a system with M transmit antennas and an abstract
quantity (·) (such as RT , S, etc.), let (̂·) represent the same
quantity for M + ∆M transmit antennas. Assuming that
radiation patterns do not change with additional elements, the
transmit covariance for the M + ∆M antenna system has the
form

R̂T =
[

RT Q
QH R

]
, (12)

with corresponding eigenvalues

Λ̂ΛΛT =
[

Λ̂ΛΛT,M 0
0 Λ̂ΛΛT,∆M

]
, (13)

where {·}M and {·}∆M represent the upper left M×M and
lower right ∆M×∆M sub-blocks of the matrix, respectively.
Mutual information remains constant if the signaling matrix is
rearranged as Ŝ′′ = [S′′ 0T×∆M ], which is equivalent to

Ŝ′ = [S′ΛΛΛ1/2
T Λ̂ΛΛ−1/2

T,M 0T×∆M ]. (14)

To assess the impact of signal reassignment on the radiated
power, we define the effective gain of adding ∆M antennas
using the ratio of radiated powers, or

Geff =
ETr

{
SASH

}
ETr

{
ŜÂŜH

} . (15)

Thus, if adding the ∆M antennas decreases radiated power,
Geff will be greater than unity, indicating capacity growth.

1) Full Angular Spread: Consider the case of full angular
spread with transmit covariance RT,ij = J0[2π∆x(i − j)].
Since in this circumstance RT = A, the radiated power for M
antennas is simply Prad = (1/T )ETr

{
S′ΛΛΛT S′H}

, meaning
that beamforming gain is accompanied by a commensurate
increase in radiated power, or Geff = 1 indicating no capacity
increase. This case highlights one of the key features of
systems with mutual coupling: changing the transmit antenna
configuration can only enhance beamforming gain if the
increase in correlation is not offset by increased coupling.

2) Single Departure: Next consider the case where prop-
agation to the receiver occurs for only a single departure
direction φ with L = 1 and β1 = 1. In this case, a single
spatial transmission mode exists given by the eigenvalue and
eigenvector pair

λ = M, and (16)

vi = 1/
√

M exp(j2πi∆x cos φ), (17)
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Fig. 1. Graphical representation of channels with separable (Kronecker) correlation

respectively. Optimal transmission involves exciting this mode
with S = s′vH , where s′ is the vector of time symbols for
the current block, producing a radiated power of

Prad = (1/T )E
{
s′Hs′

}
︸ ︷︷ ︸

= 1

Tr
{
vHAv

}
λ−1. (18)

Assuming Aij = J0[2π∆x(i − j)], we have

Tr
{
vHAv

}
(19)

= 1 +
1
M

M−1∑
m=1

(M − m) cos(2πm∆x cos φ)J0(2πm∆x).

By placing antenna elements sufficiently far apart, a gain of M
is obtained, which is expected from basic array gain concepts.

3) von Mises Cluster: Consider the case of a single con-
tinuous cluster of departures described by the von Mises
distribution with covariance (5). Assuming communication on
just the single dominant spatial mode, the effective gain is

Geff =
vH

1 Av1

λ1λ̂
−1
1 v̂H

1 Âv̂1

, (20)

where λ1 and v1 are the principal eigenvalue and correspond-
ing eigenvector of RT , respectively.

Figures 2 and 3 plot the effective gain for uncoupled and
coupled antennas, respectively, where a single cluster departs
in the endfire direction (φ = 0), antenna spacing is ∆x =
0.5, and various values of κ are considered. For uncoupled
antennas, the capacity growth is inversely proportional to κ,
and for κ → ∞ effective gain approaches M just as in the
case of a single departure. For coupled antennas, the case κ =
0 (equivalent to full angular spread) has no effective gain.
Coupling also inhibits the effective gain for the other values
of κ, mainly because the endfire excitation tends to increase
radiated power relative to the uncoupled case for ∆x = 0.5.
On the other hand, for broadside excitation (not plotted), the
coupling actually enhances the effective gain for ∆x = 0.5.

V. ANTENNA PLACEMENT FOR RAPID FADING

For rapidly fading channels (T = 1), the results of [5] indi-
cate that only one spatial mode (or beam) should be used and
therefore antenna placement should be chosen to maximize
the principal channel eigenvalue. Equation (3) indicates that
this is accomplished by letting ∆x → 0 so that RT,ij → 1,
producing a single nonzero eigenvalue of M . This concept
of placing antennas as close together as possible is troubling
from an electromagnetic perspective, since for ∆x = 0 the
antennas should function as a single element.

The apparent contradiction arises because the traditional
power constraint (6) is not useful for close spacings, due to
coherent addition of the fields [7]. For example, for ∆x = 0,
Aij = 1, meaning that excitation along the principal eigenvec-
tor leads to Prad = M (which equals the channel eigenvalue).
Since the increased signal gain is equal to the increased
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Fig. 2. Effective gain versus the number of antenna elements for a single
endfire cluster for uncoupled antennas
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Fig. 3. Effective gain versus the number of antenna elements for a single
endfire cluster for coupled antennas

radiated power, there is no true performance increase. The
following analysis studies this issue in more detail.

A. Effective Gain for M = 2

For M = 2 the transmit covariance matrix is of the form

RT =
[

1 γ
γ∗ 1

]
, (21)

with eigenvalues λ1,2 = 1 ± |γ| and eigenvectors

v1,2 = (1/
√

2)[1 ± exp(−j � γ)]T , (22)

where {·}T denotes transpose. We consider the case identical
to [5], where for T = 1 we use S = s′vH

1 . For uncoupled
antennas, the gain of two antennas over a single antenna is the
eigenvalue λ1 = 1 + |γ|. When considering radiated power,
however, the transmit signals must be divided by the square
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root of the factor

Prad/Ptr = (1/M)Prad = (1/M)ETr
{
SASH

}
= (1/M)E

{
s′Hs′

}
︸ ︷︷ ︸

= 1

vH
1 Av1, (23)

leading to Geff = λ1/(vH
1 Av1). For infinitesimal dipoles

Geff =
1 + |γ|

1 + cos( � γ)J0(2π∆x)
. (24)

Thus, we are left with finding the antenna spacing that
maximizes the effective gain.

1) Full Angular Spread: The case of full angular spread
is trivial, since γ = J0(2π∆x), and (24) gives Geff = 1,
regardless of the antenna spacing. Thus, any increase in
correlation due to reduced spacing is exactly offset by an
increase in radiated power. To avoid difficulties with element
coupling, antenna spacing should be as large as possible.

2) L-path Model: Next we consider the case of L discrete
paths, each having a mean power of 1/L. The path directions
φ� are assumed to be i.i.d. uniform on [0, 2π]. Figure 4 plots
the mean effective gain computed by averaging Geff over 104

channel realizations as a function of spacing. As expected, the
effective gain decreases with increasing multipath. Also, an-
tennas should be placed no closer than about 0.4 wavelengths
since coupling begins to counteract the benefits of correlation
leading to a reduction in Geff .

3) Von Mises Cluster: Consider a single departing cluster
described with a von Mises angular distribution, where φ and
κ are fixed. For a specific array orientation, γ is computed
from (5) with y = −2π∆x. Figures 5 and 6 plot Geff versus
∆x for three values of κ for endfire (φ = 0) and broadside
(φ = π/2) mean departure angle, respectively.

The results reveal that increased multipath causes a gain
reduction. However, in contrast to the results observed for the
discrete path model, very large spacings are now less desirable.
This behavior likely stems from the fixed mean departure an-
gle, as the effective gain averaged over a uniformly distributed
sequence of mean departure angles looks similar to the curves
for the discrete path model. The key observation from this
result is that if array orientation relative to the multipath can
be controlled, close spacings may be advantageous. When the
arrival angles are more random, very wide spacings appear to
be nearly as optimal as narrow spacings.

For a realistic cluster size of 14◦ (κ = 10), the optimal
spacing for endfire and broadside departures is approximately
0.3 and 0.6 wavelengths, respectively. The optimality of these
spacings can be understood by phasing the two antennas
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such that the main beam is steered in direction φ, or vH =
(1/

√
2)[1 exp(j2π∆x cos φ)]. The resulting radiation pattern

of the array is

P (φ) = cos2[π∆x(cos φ − cos φ)]. (25)

At spacings of 0.3 and 0.6 wavelengths this radiation pattern
has a single main lobe (with no side lobes) in the endfire and
broadside directions, respectively.

4) von Mises Cluster with Input Power Constraint: One of
the strange aspects of the effective gain curves for broadside
excitation in Figure 6 is the presence of discontinuities. These
artifacts appear as γ (which is purely real for φ = π/2)
changes sign abruptly as the spacing increases, meaning that
signaling changes between even and odd-mode array excita-
tion. This observation highlights the suboptimality of commu-
nicating on the principal eigenvector of RT and ignoring the
effect of antenna coupling in signal construction.

To explore the idea of optimal signaling with covariance
information, consider only constraining the signal matrix S
such that P = Prad = M . This constraint can be transformed
into the traditional power constraint by making the substitution
S = S′A−1/2, and the relationship for the channel becomes

X =
√

ρ

M
S′ A−1/2R1/2

T︸ ︷︷ ︸
R′1/2

T

HwR1/2
R + W, (26)

thus creating the effective transmit covariance

R′
T = A−1/2RT A−(1/2)H , (27)



which includes both the effects of antenna correlation and
coupling. For T = 1, the optimal strategy now directs power
along the principal eigenvector of R′

T rather than RT .
As ∆x → 0, this strategy is problematic, since the supergain

effect becomes significant [8]. To avoid the appearance of
impractical supergain solutions, we assume modified coupling
and covariance matrices of the form [9]

A = ηA0 + (1 − η)I, RT = ηRT,0 (28)

where A0 and RT,0 are the radiation-only coupling and
covariance matrices, respectively, defined in Section III, and
η is the antenna efficiency. The first and second terms of A
represent radiation and ohmic loss, respectively. The ohmic
loss regularizes the inverse of A, which corresponds to re-
moval of supergain solutions. Since A now contains loss, the
formulation actually constrains the system input power.

Assuming M = 2, closed-form solutions for Geff with the
input power constraint are possible. A is of the form

A =
[

1 a
a∗ 1

]
, (29)

with eigenvalues λ1,2 = 1 ± |a| and eigenvectors v1,2 =
(1/

√
2)[1 ± e−j � a]T . Thus, having the EVD of A allows

(27) to be computed as

R′
T = η

[
c1 c2

c∗2 c1

]
, (30)

with

c1 = b2
1 + |b2|2 + 2Re{γb1b

∗
2}, (31)

c2 = 2b1b2 + γb2
1 + γ∗b2

2, (32)

b1 = [(1 + |a|)−1/2 + (1 − |a|)−1/2]/2, (33)

b2 = [(1 + |a|)−1/2 − (1 − |a|)−1/2] exp(j � a)/2, (34)

where γ is from (21). The eigenvalues of R′
T are η(c1±|c2|).

For unit input power, a single antenna has gain η, leading to
the effective gain of c1 + c2 for two elements over a single
element.

Figure 7 plots the effective gain versus antenna spacing
for a single endfire von Mises cluster with κ = 10 and
different antenna efficiencies (η). The effective gain for the
traditional power constraint scaled according to radiated power
is also plotted for comparison. The result shows that for lower
antenna efficiencies the optimal and suboptimal solutions
are almost equivalent. As the antenna efficiency increases,
however, the optimal spacing approaches zero, indicating the
existence of supergain solutions.

Figure 8 plots a similar result for a single broadside cluster
with a fixed efficiency of η = 0.99. As can be seen, the
discontinuities in the effective gain have been removed by the
input-power constraint. For narrow spacings, however, the two
solutions are nearly identical.

VI. CONCLUSION

This paper has explored the effect of applying radiated
power considerations to the analysis of correlated block-fading
MIMO channels with covariance information. The analysis
indicated that capacity gain results from simple beamform-
ing mechanisms. Also, different conditions were found for
capacity growth and optimal antenna placement compared with
previous analyses. Gains are only possible when increased
correlation is not commensurate with increased coupling.
Further, for rapidly fading channels (T = 1) radiated power
dictates that placing antennas arbitrarily close is equivalent to
a single antenna system.
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