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ABSTRACT

Node mobility in rich multipath environments limits the
quality of attainable channel state information (CSI) due
to wavelength-scale fading, leading to effectively lower
channel capacities. Recent work on the capacity of block-
fading MIMO channels considers the impact of antenna
correlation at the transmitter [1], proving that correla-
tion guarantees capacity growth with additional anten-
nas and suggests that for rapidly fading channels, anten-
nas should be paced as close together as possible. This
work augments the MIMO modeling strategy in [1] to
include the effects of electromagnetic coupling of the an-
tennas. Constraining the radiated power of the transmit
array reveals that the reported gains result from simple
beamforming mechanisms, and that capacity growth only
comes from increased channel correlation, not antenna
correlation whose gain is offset by increased coupling.
The new model also predicts that optimal antenna place-
ment for rapidly fading channels is not arbitrarily close,
but rather on the order of 0.3 to 0.6 wavelengths.

Key words: MIMO; correlation; coupling; antenna place-
ment.

1. INTRODUCTION

In rich multipath environments, node mobility limits the
quality of attainable channel state information (CSI) due
to wavelength-scale fast fading, leading to effectively
lower channel capacities [2–4]. Analytical results for
block fading i.i.d. Gaussian multiple-input multiple-
output (MIMO) channels with block length T indicate a
severe drop in capacity as T becomes small and that hav-
ing more than T antennas does not increase capacity [5].
More recent work extends previous results by modeling
the MIMO channel with separable transmit/receive corre-
lation. For this case, capacity always increases with addi-
tional transmit antennas beyond T , as long as the transmit
antennas are correlated. For very rapidly fading chan-
nels (T=1) the analysis indicates that antennas should be
placed as close together as possible for maximum capac-
ity [1].

One problem with the modeling strategy in [1] is that
antenna coupling is neglected, which becomes very im-
portant as the inter-element spacing of antennas vanishes.
In this paper, the previous analysis is improved by prop-
erly accounting for the actual radiated power of the trans-
mit array and not simply constraining the sum of squared
antenna currents. This new modeling strategy indicates
whether capacity growth results from increased radiated
power or from the actual channel. The fundamental ob-
servation is that transmit correlation increases capacity
through simple beamforming techniques, and that true
capacity gain only comes from increased channel corre-
lation, not antenna correlation whose gain is offset by
increased antenna coupling. With these considerations,
optimal antenna placement is found to be close to that of
conventional phased arrays (0.3 to 0.6 wavelengths).

The remainder of the paper is organized as follows: Sec-
tion 2 presents the new block fading MIMO channel
model. Section 3 introduces the concept of radiated
power derived from electromagnetic considerations. Sec-
tion 4 analyzes capacity increase with correlation in terms
of beamforming mechanisms and reveals new conditions
for capacity growth. Section 5 discusses optimal antenna
placement for rapidly fading channels. Section 6 con-
cludes the paper.

2. CHANNEL MODEL

As in [1, 5], we adopt the block-fading modeling frame-
work

X =
√

(ρ/P )SH + W, (1)

where S is the T×M matrix of complex baseband trans-
mit signals, H is a single realization of the M×N chan-
nel transfer matrix, X is the T×N matrix of receive sam-
ples, T is the block length, M and N are the number of
transmit and receive antennas, and ρ is the average sig-
nal to noise ratio (SNR). The new term P represents the
average power generated per unit time by the signal ma-
trix S, thus allowing the radiated power to be properly
scaled. The T×N matrix W of noise samples consists
of i.i.d. elements Wij ∼ CN (0, 1), with CN (µ, σ2) de-
noting the univariate complex Gaussian distribution with
mean µ and variance σ2.
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The channel H is assumed to be constant over blocks of
length T , with elements given by the Kronecker model,
or

H = R1/2
T HwR1/2

R , (2)

where RT = (1/N)E
{
HHH

}
and RR =

(1/M)E
{
HHH

}
are the transmit and receive covari-

ance matrices, and Hw,ij ∼ CN (0, 1). Covariance ma-
trices are generated in this work with a directional chan-
nel model, where the probability density function (pdf)
of departures or arrivals at angle φ in the azimuthal plane
is p(φ). For a uniform linear array (ULA) of Hertzian
dipoles, the covariance matrix (for either transmit or re-
ceive) has elements

Rik =
∫ 2π

0

dφ p(φ) exp[j2π(i− k)∆x cosφ], (3)

where ∆x is the inter-element spacing in wavelengths.

To understand the effects of different multipath distribu-
tions, three forms of p(φ) at transmit are considered:

1 For full angular spread p(φ) = 1/(2π), and the co-
variance elements become RT,ik = J0[2π∆x(i −
k)], where J0(·) is the zeroth order Bessel function.

2 For a set of L discrete paths with powers β` and ar-
rival/departure angles φ`, we have

RT,ik =
L∑

`=1

β` exp[j2π∆x(i− k) cos φ`]. (4)

3 For a single von Mises cluster [6],

RT,ik = I0

(√
κ2 − y2 + j2πκy cos φ

)
/I0(κ),

(5)
where y = 2π(i − k)∆x, φ is the mean cluster de-
parture angle, and κ ∈ [0,∞) controls the cluster
width.

3. RADIATED POWER

In MIMO analyses, the transmit signal is typically con-
strained to have unit average power for each antenna and
symbol time [1, 5], or

P = Ptr = (1/T )ETr
{
SSH

}
= M, (6)

where E {·}, Tr {·}, and {·}H represent expectation,
trace, and conjugate transpose respectively. In a realis-
tic system, this is equivalent to constraining the sum of
the squared currents on the antenna elements, which for
uncoupled antennas also constrains the radiated power.
When the antenna elements are electromagnetically cou-
pled, the power radiated during the ith symbol time be-
comes [7]

Pi = siAsH
i , (7)

where A is an M×M coupling matrix, and si is the ith
row of S. The average radiated power per unit time is
therefore expressed as

P = Prad = (1/T )ETr
{
SASH

}
. (8)

To simplify the analysis, we assume a ULA of Hertzian
dipoles, oriented perpendicular to the azimuthal plane,
giving Aij = J0[2π∆x(i − j)]. Although the assump-
tion of Hertzian dipoles appears to limit the generality of
the results, we have also applied precisely the same anal-
ysis to more realistic half-wave dipoles analyzed with de-
tailed finite-difference time-domain (FDTD) simulations,
and these results will appear in a future article. Since the
conclusions are basically identical for Hertzian and half-
wave dipoles, the simple assumption does not appear to
severely limit the present analysis.

In the development that follows, we assume that the sig-
naling strategy S is chosen by letting P = Ptr = M
as in (6) and then scaling S so that the radiated power
computed in (8) achieves the desired value. This method
is suboptimal, since the optimal solution would find S
by directly constraining the radiated power [8]. How-
ever, the suboptimal scheme is convenient for this present
analysis since it reveals the source of the gains in [1] and
whether such gains are realistic.

4. BEAMFORMING AND CAPACITY GROWTH

Understanding the behavior of capacity for correlated
block-fading channels is facilitated by an eigenbeam-
forming interpretation. Substituting (2) into (1) and tak-
ing the eigenvalue decomposition (EVD) of the covari-
ance matrices (RP = ξξξPΛΛΛPξξξH

P ) yields

X =
√

ρ

P
SR1/2

T HwR1/2
R + W, or (9)

XξξξR︸︷︷︸
X′

=
√

ρ

P
S ξξξT︸︷︷︸
S′

ΛΛΛ1/2
T ξξξH

T HwξξξR︸ ︷︷ ︸
H′

w

ΛΛΛ1/2
R ξξξH

RξξξR︸ ︷︷ ︸
I

+WξξξR︸ ︷︷ ︸
W′

.

(10)

The unitary transformations do not change the statistics
of the channel and noise nor the capacity [5], resulting in
the simplified model

X′ =
√

ρ

P
S′ΛΛΛ1/2

T HwΛΛΛ1/2
R + W. (11)

Note that since H′
w and W′ have the same statistics as

Hw and W, respectively, the primes have been dropped.
The behavior of the channel is depicted graphically in
Figure 1.

Equation (11) indicates that correlation (ΛΛΛ{T,R} 6= I) al-
lows the transmitter and receiver to form beams that ex-
cite the spatial modes of the channel with the highest
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Figure 1. Graphical representation of channels with separable (Kronecker) correlation

gain, referred to commonly as dominant modes. From
a physical perspective, communicating on the dominant
modes corresponds to transmitting and receiving power
in directions of high multipath. Adding more antennas
allows improved control of the radiation and reception
patterns and therefore improved spatial filtering. Thus,
the dominant modes of the covariance become stronger
as antennas are added, yielding higher beamforming gain
and leading to the guaranteed capacity growth in [1].

A logical observation from [1] is that mutual informa-
tion only depends on the distribution of SRT SH =
S′ΛΛΛT S′H . This fact allowed a scheme to be developed
in [1] where mutual information remains constant with
added antennas even though the transmit power is re-
duced. Here we review this analysis and study the impact
of including radiated power.

4.1. Effective Power Gain

From the perspective of Fig. 1, for a fixed capac-
ity achieving S′′, mutual information only depends on
the temporal correlation S′′S′′H of signals transmitted
through the channel. Consider adding ∆M transmit an-
tennas to a system consisting of M antennas (M ≥ T ).
Transmit signals can be rearranged so that the first M
columns of S′′ remain the same, but the additional ∆M
columns are zero, meaning no change in the spatio-
temporal excitation.

Given a system with M transmit antennas and an ab-
stract quantity (·) (such as RT , S, etc.), let (̂·) repre-
sent the same quantity for M + ∆M transmit antennas.
For Hertzian dipoles, the radiation patterns do not change
with additional elements, and the transmit covariance for
the M + ∆M antenna system has the form

R̂T =
[

RT Q
QH R

]
, (12)

with corresponding eigenvalues

Λ̂ΛΛT =
[

Λ̂ΛΛT,M 0
0 Λ̂ΛΛT,∆M

]
, (13)

where {·}M and {·}∆M represent the upper left M×M
and lower right ∆M×∆M sub-blocks of the matrix, re-
spectively. Mutual information remains constant if the
signaling matrix is rearranged as Ŝ′′ = [S′′ 0T×∆M ],
which is equivalent to

Ŝ′ = [S′ΛΛΛ1/2
T Λ̂ΛΛ−1/2

T,M 0T×∆M ]. (14)

To assess the impact of signal reassignment on the radi-
ated power, we define the effective gain of adding ∆M
antennas using the ratio of radiated powers, or

Geff =
ETr

{
SASH

}

ETr
{
ŜÂŜH

} . (15)

Thus, if adding the ∆M antennas decreases radiated
power, Geff will be greater than unity, indicating capacity
growth.

4.1.1. Full Angular Spread

Consider the case of full angular spread with transmit co-
variance RT,ij = J0[2π∆x(i − j)]. Since in this cir-
cumstance RT = A, the radiated power for M anten-
nas is simply Prad = (1/T )ETr

{
S′ΛΛΛT S′H

}
, meaning

that beamforming gain is accompanied by a commensu-
rate increase in radiated power, or Geff = 1 indicating
no capacity increase. This case highlights one of the key
features of systems with mutual coupling: changing the
transmit antenna configuration can only enhance beam-
forming gain if the increase in correlation is not offset by
increased coupling.

4.1.2. Single Departure

Next consider the case where propagation to the receiver
occurs for only a single departure direction φ with L = 1
and β1 = 1. In this case, a single spatial transmission
mode exists given by the eigenvalue and eigenvector pair

λ = M, and (16)

vi = 1/
√

M exp(j2πi∆x cosφ), (17)

respectively. Optimal transmission involves exciting this
mode with S = s′vH , where s′ is the vector of time sym-
bols for the current block, producing a radiated power of

Prad = (1/T )E
{
s′Hs′

}
︸ ︷︷ ︸

= 1

Tr
{
vHAv

}
λ−1. (18)

Assuming Aij = J0[2π∆x(i− j)], we have

Tr
{
vHAv

}
(19)

= 1 +
1
M

M−1∑
m=1

(M −m) cos(2πm∆x cosφ)J0(2πm∆x).
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Figure 2. Effective gain versus the number of antenna
elements for a single endfire cluster for uncoupled anten-
nas

By placing antenna elements sufficiently far apart, a gain
of M is obtained, which is expected from basic array gain
concepts.

4.1.3. von Mises Cluster

Consider the case of a single continuous cluster of de-
partures described by the von Mises distribution with co-
variance (5). Assuming communication on just the single
dominant spatial mode, the effective gain is

Geff =
vH

1 Av1

λ1λ̂
−1
1 v̂H

1 Âv̂1

, (20)

where λ1 and v1 are the principal eigenvalue and corre-
sponding eigenvector of RT , respectively.

Fig. 2 and 3 plot the effective gain for uncoupled and
coupled antennas, respectively, where a single cluster de-
parts in the endfire direction (φ = 0), antenna spacing is
∆x = 0.5, and various values of κ are considered. For
uncoupled antennas, the capacity growth is inversely pro-
portional to κ, and for κ → ∞ effective gain approaches
M just as in the case of a single departure. For cou-
pled antennas, the case κ = 0 (equivalent to full angular
spread) has no effective gain. Coupling also inhibits the
effective gain for the other values of κ, mainly because
the endfire excitation tends to increase radiated power rel-
ative to the uncoupled case for ∆x = 0.5. On the other
hand, for broadside excitation (not plotted), the coupling
actually enhances the effective gain for ∆x = 0.5.

5. ANTENNA PLACEMENT FOR RAPID FAD-
ING

For rapidly fading channels (T = 1), the results of [1]
indicate that only one spatial mode (or beam) should be
used and therefore antenna placement should be chosen
to maximize the principal channel eigenvalue. Equa-
tion (3) indicates that this is accomplished by letting
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Figure 3. Effective gain versus the number of antenna
elements for a single endfire cluster for coupled antennas

∆x → 0 so that RT,ij → 1, producing a single nonzero
eigenvalue of M . This concept of placing antennas as
close together as possible is troubling from an electro-
magnetic perspective, since for ∆x = 0 the antennas
should function as a single element.

The apparent contradiction arises because the traditional
power constraint (6) is not useful for close spacings, due
to coherent addition of the fields [7]. For example, for
∆x = 0, Aij = 1, meaning that excitation along the
principal eigenvector leads to Prad = M (which equals
the channel eigenvalue). Thus, the gain increase is mir-
rored by a commensurate increase in radiated power, and
no true gain is actually present over the single antenna.
The following analysis studies this issue in more detail.

5.1. Effective Gain for M = 2

For M = 2 the transmit covariance matrix is of the form

RT =
[

1 γ
γ∗ 1

]
, (21)

with eigenvalues λ1,2 = 1± |γ| and eigenvectors

v1,2 = (1/
√

2)[1 ± exp(−j 6 γ)]T , (22)

where {·}T denotes transpose. We consider the case iden-
tical to [1], where for T = 1 we use S = s′vH

1 . For un-
coupled antennas, the gain of two antennas over a single
antenna is the eigenvalue λ1 = 1 + |γ|. In our case, how-
ever, the transmit signals must be divided by the square
root of the factor

Prad/Ptr = (1/M)Prad = (1/M)ETr
{
SASH

}

= (1/M)E
{
s′Hs′

}
︸ ︷︷ ︸

= 1

vH
1 Av1,

(23)

leading to Geff = λ1/(vH
1 Av1). For Hertzian dipoles

Geff =
1 + |γ|

1 + cos( 6 γ)J0(2π∆x)
. (24)

Thus, we are left with finding the antenna spacing that
maximizes the effective gain.
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5.1.1. Full Angular Spread

The case of full angular spread is trivial, since γ =
J0(2π∆x), and (24) gives Geff = 1, regardless of the
antenna spacing. Thus, any increase in correlation due to
reduced spacing is exactly offset by an increase in radi-
ated power. To avoid difficulties with element coupling,
antenna spacing should be as large as possible.

5.1.2. L-path Model

Next we consider the case of L discrete paths, each hav-
ing a mean power of 1/L. The path directions φ` are
assumed to be i.i.d. uniform on [0, 2π]. Fig. 4 plots
the mean effective gain computed by averaging Geff over
104 channel realizations as a function of spacing. As ex-
pected, the effective gain decreases with increasing mul-
tipath. Also, antennas should be placed no closer than
about 0.4 wavelengths since coupling begins to counter-
act the benefits of correlation leading to a reduction in
Geff .

5.1.3. Von Mises Cluster

Consider a single departing cluster described with a von
Mises angular distribution, where φ and κ are fixed. For
a specific array orientation, γ is computed from (5) with
y = −2π∆x. Fig. 5 and 6 plot Geff versus ∆x for three
values of κ for endfire (φ = 0) and broadside (φ = π/2)
mean departure angle, respectively.

The results reveal that increased multipath causes a gain
reduction. However, in contrast to the results observed
for the discrete path model, very large spacings are now
less desirable. This behavior likely stems from the fixed
mean departure angle, as the effective gain averaged over
a uniformly distributed sequence of mean departure an-
gles looks similar to the curves for the discrete path
model. The key observation from this result is that if ar-
ray orientation relative to the multipath can be controlled,
close spacings may be advantageous. When the arrival
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Figure 6. Effective gain as a function of antenna spacing
assuming a single departing cluster distributed according
to the von Mises distribution for three values of κ with
φ = π/2

angles are more random, very wide spacings appear to be
nearly as optimal as narrow spacings.

For a realistic cluster size of 14◦ (κ = 10), the optimal
spacing for endfire and broadside departures is approx-
imately 0.3 and 0.6 wavelengths, respectively. The op-
timality of these spacings can be understood by phasing
the two antennas such that the main beam is steered in di-
rection φ, or vH = (1/

√
2)[1 exp(j2π∆x cosφ)]. The

resulting radiation pattern of the array is

P (φ) = cos2[π∆x(cos φ− cosφ)]. (25)

and is depicted in Fig. 7 and 8 for endfire and broad-
side excitations, respectively. At spacings of 0.3 and 0.6
wavelengths the radiation pattern has a single main lobe
(with virtually no side lobes) in the endfire and broadside
directions, respectively. For very wide spacings, the radi-
ation patterns consist of grating lobes, which are undesir-
able since they emit power away from the main cluster.
On the other hand, the radiation patterns for very narrow
spacings are nearly uniform, also reducing the spatial se-
lectivity.
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5.1.4. von Mises Cluster with Input Power Constraint

One of the strange aspects of the effective gain curves
for broadside excitation in Fig. 6 is the presence of dis-
continuities. These artifacts appear as γ (which is purely
real for φ = π/2) changes sign abruptly as the spacing
increases, meaning that signaling changes between even
and odd-mode array excitation. This observation high-
lights the suboptimality of communicating on the princi-
pal eigenvector of RT and ignoring the effect of antenna
coupling in signal construction.

To explore the idea of optimal signaling with covariance
information, consider only constraining the signal matrix
S such that P = Prad = M . This constraint can be
transformed into the traditional power constraint by mak-
ing the substitution S = S′A−1/2, and the relationship

for the channel becomes

X =
√

ρ

M
S′A−1/2R1/2

T︸ ︷︷ ︸
R′1/2

T

HwR1/2
R + W, (26)

thus creating the effective transmit covariance

R′
T = A−1/2RT A−(1/2)H , (27)

which includes both the effects of antenna correlation and
coupling. For T = 1, the optimal strategy now directs
power along the principal eigenvector of R′

T rather than
RT .

As ∆x → 0, this strategy is problematic, since the su-
pergain effect becomes significant [8]. To avoid the ap-
pearance of impractical supergain solutions, we assume a
modified coupling matrix of the form [9]

A = ηA0 + (1− η)I, RT = ηRT0 (28)

where A0 and RT0 are the radiation-only coupling and
covariance matrices defined previously, and η is the an-
tenna radiation efficiency. The first and second terms of
A represent radiation and ohmic loss, respectively. The
ohmic loss regularizes the inverse of A, which corre-
sponds to removal of supergain solutions. Since A now
contains loss, the formulation actually constrains the sys-
tem input power.

Assuming M = 2, closed-form solutions for Geff with
the input power constraint are possible. A is of the form

A =
[

1 a
a∗ 1

]
, (29)

with eigenvalues λ1,2 = 1± |a| and eigenvectors v1,2 =
(1/
√

2)[1 ±e−j 6 a]T . Thus, having the EVD of A allows
(27) to be computed as

R′
T = η

[
c1 c2

c∗2 c1

]
, (30)

with

c1 = b2
1 + |b2|2 + 2Re{γb1b

∗
2}, (31)

c2 = 2b1b2 + γb2
1 + γ∗b2

2, (32)

b1 = [(1 + |a|)−1/2 + (1− |a|)−1/2]/2, (33)

b2 = [(1 + |a|)−1/2 − (1− |a|)−1/2] exp(j 6 a)/2,
(34)

where γ is from (21). The eigenvalues of R′
T are η(c1 ±

|c2|). Since the gain of a single antenna is just equal to
the efficiency η, the effective gain of two antennas over a
single antenna is c1 + |c2|.
Fig. 9 plots the effective gain versus antenna spacing for
a single endfire von Mises cluster with κ = 10 and dif-
ferent antenna efficiencies (η). The effective gain for
the traditional power constraint scaled according to ra-
diated power is also plotted for comparison. The result
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shows that for lower antenna efficiencies the optimal and
suboptimal solutions are almost equivalent. As the an-
tenna efficiency increases, however, the optimal spacing
approaches zero, indicating the existence of supergain so-
lutions.

Fig. 10 plots a similar result for a single broadside cluster
with a fixed efficiency of η = 0.99. As can be seen, the
discontinuities in the effective gain have been removed
by the input-power constraint. For narrow spacings, how-
ever, the two solutions are nearly identical.

6. CONCLUSION

This paper has explored the effect of applying radiated
power considerations to modeling block-fading MIMO
channels with Kronecker-type covariance. An analysis
of the resulting model indicated that capacity gain re-
sults from simple beamforming mechanisms. Also, dif-
ferent conditions were found for capacity growth and op-
timal antenna placement compared with previous analy-
ses. Gains are only possible when increased correlation is

not commensurate with increased coupling. Further, for
rapidly fading channels (T = 1) radiated power dictates
that placing antennas arbitrarily close is equivalent to a
single antenna system.
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