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Abstract— The extent of time variation of measured multiple-
input multiple-output (MIMO) wireless channels is explored. A
prototype MIMO channel sounder developed at Brigham Young
University, capable of probing 8×8 MIMO channels from 2-
8 GHz with up to 100 MHz of instantaneous bandwidth, is
used to measure representative indoor and outdoor scenarios
at 2.4 and 5.2 GHz. New metrics are proposed to quantify the
time variation observed in the channel measurements: eigenvalue
level crossing rate, eigenvalue fade duration, rate of eigenvector
angular deviation, and temporal capacity degradation. Two
different models are used to fit the measurements: (1) a simple
random matrix model and (2) a physical time-varying cluster
model. The performance of these models is assessed in terms of
their ability to reproduce the measured time-variation metrics.

I. I NTRODUCTION

With perfect channel state information (CSI) at the receiver
and/or transmitter, theoretical studies and measurements have
confirmed that multiple-input multiple-output (MIMO) wire-
less systems exhibit a large capacity improvement over their
single-input single-output (SISO) counterparts. In real sys-
tems, however, where the MIMO channel is time variant, CSI
is either imperfect or unavailable, leading to severe reductions
in the available capacity. Therefore, the degree of channel time
variation strongly impacts the target applications of MIMO
techniques, the types of modulation/training employed, the
number of transmit and receive antennas used, etc. Although
previous studies have analyzed the effects of MIMO channel
time variation, very little work exists that characterizes the
extent of time variation in measured MIMO channels.

In this paper, we present a framework for the characteri-
zation of time variation in MIMO channels, based on wide-
band 8×8 MIMO channel measurements taken at Brigham
Young University (BYU) in indoor and outdoor environments.
The paper introduces a number of metrics that are useful
for assessing the severity of time variation: eigenvalue level
crossing rate, eigenvalue fade duration, rate of eigenvector
angular deviation, and temporal capacity degradation. Finally,
we investigate the ability of two different time-varying models
to capture key behaviors observed in the measured MIMO
channels: (1) a simple random matrix model and (2) an
advanced time-variant physical clustering model. Due to space
constraints, this paper focuses on our indoor channel measure-
ments, with outdoor measurements to be included in a later
publication.

II. M EASUREMENTSYSTEM

Figure 1 depicts a block diagram of the wideband8×8
MIMO channel sounder developed at BYU. At the transmit
side, an arbitrary waveform generator creates a multi-tone sig-
nal with up to 100 MHz of instantaneous bandwidth, which is
up-converted to an RF carrier in the range of 2-8 GHz, power

amplified, and fed to an 8-way microwave switch connected to
the transmit array. At the receive side, an 8-way switch routes
signals from the array to a common RF receiver, consisting
of low noise amplification, down-conversion, automatic gain
control (AGC), and up to 500-MS/s PC-based A/D conversion.
Control of the microwave switches is accomplished by a
flexible synchronization unit that scans all possible antenna
combinations, where the number of antennas and dwell time
are selectable.

The receive waveforms and AGC levels are stored on a
PC, allowing channel estimation to be performed off-line.
The number of back-to-back channel snapshots that can be
acquired is limited by the memory depth (512 MB) and sample
rate (12.5-500 MS/s) of the A/D card. A “multiple record”
feature allows delays to be placed between channel snapshots,
thus extending the acquisition length. The number of locations
probed in a single campaign is limited by hard drive space on
the PC, where 100 GB can hold about 200 locations. Highly
stable 10 MHz rubidium time/frequency references provide
system synchronization at transmit and receive.

Antenna arrays at transmit and receive were 8-element uni-
form circular arrays, consisting of omnidirectional monopole
elements withλ/2 inter-element spacing. Such arrays measure
multipath from360◦ of azimuthal view with a single channel
snapshot, allowing the general characteristics of multipath and
its time-variant behavior to be investigated.

MIMO channel time variation was studied by placing the
transmitter in a fixed position and moving the receiver at a
constant speed over a prescribed path of up to 4.5 m. The
transmit signal consisted of 80 tones with 1 MHz separation,
an antenna dwell time of 50µS, and a center frequency of
either 2.55 or 5.2 GHz. The 2.55 GHz center frequency was
chosen instead of 2.45 GHz to avoid interfering with our
existing WLAN network. Channels were acquired either back-
to-back every 3.2 ms (fast mode) or with multiple record every
25.6 ms (slow mode), allowing both small- and large-scale
variations to be investigated.

III. M EASUREMENTSCENARIOS

For the indoor scenario, depicted in Figure 2, the transmitter
was stationary in a hallway, while the receiver was placed in 8
different rooms, thus simulating a reasonable WLAN topology.
In each room, four different measurements were performed:
(1) an acquisition with the transmitter turned off and the
receiver stationary to assess the impact of co-channel interfer-
ence, (2) a measurement with the receiver stationary to assess
time variation from people/equipment, and measurements with
the receiver moving at 0.3 m/s with either (3) fast, or (4)
slow acquisition. Acquisition for case (1) with the transmitter
off showed response only for the 2.55 GHz band, and this



SP8T
Switch

PA

SP8T
Switch

50
0M

S
/s

A
/D

Rubidium
Clock

SYNC
Unit

SYNC
Unit

Rubidium
ClockSwitch

Control
Switch
ControlReset

LO
LPF PC

LNA

Trigger

LO
Clock In

Clock
500MHz

Trigger
REF10 MHz

CHANNEL

10 MHz REF

Waveform
Generator

Fig. 1. Simplified block diagram of the8×8 wideband MIMO channel sounder used to measure time variation of indoor and outdoor MIMO channels
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Fig. 2. Indoor measurement scenario for Locations 1-3, where other locations
were in similar rooms to the right of the transmitter.

interference was negligible. Stationary receiver measurements
produced a maximum Doppler of less than 1 Hz, which was
small compared to the Doppler for moving measurements (10-
20 Hz). Finally, inspection of the fast acquisition waveforms
indicated that the slow acquisition channel sample rate was
sufficient to capture the channel time variation. In the results
that follow, only measurements from case (4) are considered.

IV. MIMO T IME-VARIATION METRICS

Key to this work are a set of metrics that indicate the degree
of time variability of measured channels. Our goal in defining
these metrics is not only to allow various measured channels
to be classified, but also to assess the accuracy of time-varying
models and to provide a connection between MIMO channel
variation and the performance of other communications layers.
Although our metrics are intended fortime-varying channels,
we characterize variation versus distance, allowing the results
to be scaled for different movement speeds.

A. Eigenvalue Level Crossing Rate and Average Fade Dura-
tion

The singular value decomposition (SVD) of a single channel
matrix H is given byH = USVH , whereU = [u1u2 . . .]

andV = [v1v2 . . .] are the matrices of left and right singular
vectors, andS is the diagonal matrix of ordered singular
values. We refer toσi(H) = S2

ii as theith channel eigenvalue
and column vectorsui andvi as theith receive and transmit
eigenvectors, respectively. Sinceσi represents a power gain,
we can apply the standard single-antenna metrics to each
eigenvalue.

Eigenvalue level crossing rate for theith eigenvalue
(ELCRi) is computed as the number of times thatσi(H)
drops below a specified threshold divided by the distance
traveled. Eigenvalue average fade duration (EAFDi) is the
average fraction of path distance that the waveform lies below
the threshold. The threshold will depend on the application,
and in this work we use 2 dB below the mean.

ELCR and EAFD are interesting for multiple communica-
tions layers. For example, these values indicate how quickly
a sophisticated MIMO physical layer (PHY) and medium
access later (MAC) would need to adapt modulation and
transmission rate to the time-varying channel quality. For
constant rate/modulation transmission, they indicate the type
of precoding required to overcome channel fades.

B. Eigenvector Angular Deviation

Eigenvector angular deviation (EAD) quantifies how quickly
the transmit and receive eigenvectors rotate in complexM -
dimensional space, whereM is the number of antenna ele-
ments. We define EAD as

θk =
1

N − k

N−k∑
n=1

cos−1 |v(n)Hv(n+k)|, (1)

wherek is the distance between two channel snapshots,N is
the total number of snapshots,v(n) is thenth snapshot of a
given left or right singular vector, and{·}H is the Hermitian
operator.

EAD directly impacts how quickly a spatial multiplexing
PHY must adapt its transmit/receive weights.

C. Capacity Degradation

Although the eigenchannel metrics are useful for system
specification and design, they do not indicate the loss of
channel quality in an information theoretic sense. To this end,
we define a simple metric for quantifying capacity loss for a
time-varying channel.

First, consider the case oftransmit CSI degradation(TCD)
where the receiver has perfect CSI but the transmitter only has



the delayed channel estimatêH. We may define capacity for
delayed transmit CSI as

CT = log2

∣∣∣∣∣
HQ(Ĥ)HH

σ2
+ I

∣∣∣∣∣ , (2)

whereH is the true channel,σ2 is the receiver noise variance,
Q(Ĥ) is the optimal transmit covariance given by the water-
filling solution (assumingH = Ĥ), I is the identity matrix,
Tr {Q} ≤ PT , andPT is total transmit power. In the results
that follow, PT and σ2 are chosen such that the average
SISO SNR is 10 dB. As the estimatêH becomes increasingly
outdated,CT will tend to decrease. At some distance, when the
delayed capacity drops below the uninformed transmit capacity
(CT with Q = I), the transmit CSI is no longer useful, and
we call this distancedT .

Next, consider the case ofreceive CSI degradation(RCD),
where both transmit and receive have outdated CSI. With
perfect CSI, parallel channels may be formed by taking the
SVD of the channel matrix, where the transmitter uses the right
singular vectorsV as transmit weights and the receiver uses
the left singular vectorsU as receive weights. The capacity
of a such a system is

C = max
p

∑

i

log2(1 + piSii/σ
2), (3)

where thepi are found according to water-filling. Imperfect
estimates of the channel̂H = ÛŜV̂H cause “cross-talk”
among these parallel channels. Since we make no assumptions
about the distribution ofH, we consider the worst case where
the interference is i.i.d. Gaussian, resulting in a new mutual
information of

CR =
∑

i

log2(1 + piSii/qi), (4)

where

qi =
{
MPMH

}
ii

+ σ2 (5)

M = ÛHHV̂ −ΦΦΦŜ, (6)

P = diag(p), and ΦΦΦ is a complex diagonal matrix whose
diagonal elements have unit magnitude. In this work, we
assumearg(Φii) = arg({ÛHHV̂}ii), thus masking the effect
of average phase variations of the individual eigenchannels
and focusing on the changing spatial structure. We refer to
the point at whichCR drops to 50% of its maximum value as
the distancedR.

Typically, the transmit and receive degradation metrics are
averaged over a number of different realizations: different
starting points (training positions), multiple frequency bins,
etc. This averaging provides a global picture of the effect of
the time variation.

V. T IME-VARIANT MIMO CHANNEL MODELS

Since accurate models are critical for the design and analysis
of MIMO architectures, we investigate two different modeling
strategies for time-variant MIMO channels: (1) a random
matrix model following the multivariate complex normal
(MVCN) distribution and (2) a time-variant clustering (TVC)
model.

A. MVCN Model

We represent the complex gain from thejth transmitter
to the ith receiver at time indexn for a single frequency
bin asH(n)

ij . If these gains follow a (possibly time-varying)
MVCN distribution in both time and space, the spatio-temporal
variation of the MIMO channel is completely characterized by
the multivariate mean (M) and covariance (R), or

M
(n)
ij = E

{
H

(n)
ij

}
(7)

R
(n,m)
ij,k` = E

{
(H(n)

ij −M
(n)
ij )(H(n+m)

k` −M
(n+m)
k` )∗

}
, (8)

whereE {·} is expectation. For a stationary distribution,M
and R are not a function ofn and can be obtained with
sample averages. The difficulty of extracting these parameters
from a nonstationary process depends on the severity of the
nonstationarity, and may even be impossible for overspread
processes [1]. Here, we consider a process characterized by
a mean and covariance that vary slowly in time, allowing
estimation by weighted sample averages, or

M̂
(n)
ij =

∞∑
s=−∞

wsH
(s)
ij

R̂
(n,m)
ij,k` =

∞∑
s=−∞

ws+m/2Z
(n+s)
ij Z

(n+s+m)∗
k` , (9)

whereZ(n)
ij = H

(n)
ij − M̂ (n)

ij , w is the weighting window, and
the indexs + m/2 is chosen to apply a weight ofw0 when
the pointsn+s andn+s+m are equidistant from the center
estimation pointn.

The choice of the weighting window is a tradeoff between
the bias and variance of the estimator. Here, we apply an
exponential window, of the formws = exp(−|s/`c|), where
`c is the correlation length. If the process is determined to be
nearly stationary overNs samples, faithful estimates can be
obtained with4`c = Ns.

To determine a suitable value for`c, three different tests for
multivariate normality were applied to the data: (1) Mardia’s
tests for multivariate skewness and (2) kurtosis [2], and (3)
the Henze-Zirkler test [3]. Since previous results suggest that
MIMO channels with large numbers of antennas do not strictly
follow a multivariate normal distribution [4], we restrict our
tests to2×2 subsets of the MIMO data. Figure 3 depicts
the average rejection rates for a significance level of 5% and
a varying record length (sample size) for Locations 1-8 at
2.55 GHz. Very similar plots are obtained for 5.2 GHz. The
results indicate that over distances of4−8λ the rejection rates
are acceptable, and we therefore let`c = 2λ.

Once the time-varying mean and covariance have been
estimated from the data via (9), we require a way of generating
simulated channels. One approach involves formingR into a
covariance matrix, computing the matrix square root, and using
the result to correlate the elements of i.i.d. complex normal
vectors. This approach is numerically prohibitive, however,
since for 8 transmitters and receivers and 500 time steps,
the covariance matrix has dimensions32, 000×32, 000. A
natural way to reduce this complexity is to assume that the
covariance is separable in the time and space dimensions or
R

(n,m)
ij,k` = R

(n)
S,ij,k`R

(n,m)
T . In this case, we need only find the

matrix square root of a500×500 matrix. For this separable
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Fig. 3. Average rejection rates for three multivariate normal tests for
Locations 1-8 at 2.55 GHz.

case, synthetic channels are generated stepwise as

B
(n)
ij =

∑

n′
XT,nn′A

(n′)
ij (10)

H
(n)
ij =

∑

i′j′
X

(n)
S,ij,i′j′B

(n)
i′j′ , (11)

whereXT = R′1/2
T , XR = R(n)1/2

S , R′T,nn′ = R
(n,n′−n)
T , i

andj are stacked when used as a covariance index, andA
(n′)
ij

are matrices of i.i.d. complex normal elements.
A nice feature of the MVCN model is that its parameters are

directly extracted from the measured data. The main drawback,
however, is the large number of parameters required to specify
the distribution. Also, little physical insight is obtained from
these parameters.

B. TVC Model
Another modeling approach for the time-varying MIMO

channel is an extension of the cluster modeling strategy
described in [5]. In this variant, we first obtain the double-
directional Bartlett spatial spectrum for time stepn as

P (n)(Ω) = bH(Ω)R(n)
S b(Ω), (12)

where Ω = (φT , φR), bik(Ω) = ψR,i(φR) ψT,k(φT ) is the
joint steering vector withψS,i(φS) = exp[j2π(xS,i cosφS +
yS,i sinφS)], S is eitherT or R for transmit or receive,φS
is azimuth angle, andxi and yi are x and y coordinates of
the ith antenna. Given a true diffuse arrival power spectrum
of A(Ω), the covariance is

R =
∫
dΩA(Ω)ΨΨΨ(Ω), (13)

where ΨΨΨ(Ω) = ΨΨΨT (φT ) ⊗ ΨΨΨR(φR) and ΨΨΨS(φS) =
ψψψS(φS)ψψψS(φS)H . Decomposing the true spectrum into basis
functions (clusters)Ap(Ω), we have

A(Ω) =
∑

p

apAp(Ω), (14)

and the Bartlett spectrum becomes

P (n)(Ω) = W [A] =
∫
dΩ′A(Ω′)bH(Ω)ΨΨΨ(Ω′)b(Ω) (15)

=
∑

p

apW [Ap]. (16)

By discretizing functions of the continuous variableΩ and
matching left and right hand sides at a number of discrete
points, we obtain the matrix equationp = Wa, which can
solved via linear programming for the basis coefficientsap.
The main advantages of using the Bartlett spectrum, rather
than operating on the covariance directly, are (1) the resulting
equations are real, and (2) covariance structure representing
non-propagating (evanescent) modes is removed.

In this work, we assume a set of Gaussian-shaped
basis functions (clusters) with possible arrival angles
of {0◦, 5◦, 10◦, ..., 355◦} and angular spreads of
{5◦, 10◦, 20◦, 40◦}. The time-variant nature of the clusters
is obtained by estimating the basis coefficients from the
time average of the measured Bartlett spectra, keeping the
dominant basis functions (collectively representing 90% of
the power spectrum), and estimating the optimal coefficients
at each time step for this fixed basis. Because the initial
double-directional estimate with the full basis can be very
costly, we reduce the dimensionality by applying a single-
directional version of the method to the average transmit and
receive spectra individually, thus allowing a smaller set of
important basis functions to be retained.

Synthetic channels are generated by assumingL rays per
cluster, and computing the channel response as

H
(n)
ij = L−1/2

∑

p,`

a(n)1/2
p βp` ψR,i(φR,p`) ψT,j(φT,p`), (17)

where φS,p` ∼ N (φS,p, σ
2
S,p), βp` ∼ CN (0, 1), φS,p and

σ2
S,p are the mean and variance of the departures/arrivals

for cluster p, and N (µ, σ2) and CN (µ, σ2) are the real
and complex normal distributions with meanµ and variance
σ2, respectively. Extensions to the model include allowing a
different number of rays (richness) in each cluster, rays that
dynamically appear or disappear in time, a time-variant set
of clusters, etc. For this work, a fixed set ofL = 50 rays
per cluster is assumed for a each realization of the model.
Also, note that this current model only attempts to fit the
channel covariance, and has no provision for including non-
fading components (channel mean).

Figure 4 plots an example double-directional spectrum
estimate for Location 1 at 2.55 GHz.

C. Model Comparisons
To demonstrate the ability of the specified models to capture

the time-variant characteristics of MIMO channels, we apply
the proposed time-variation metrics directly to measured data
as well as synthetic channels generated with the MVCN and
TVC models. When computing covariance, mean, and time-
variation metrics from data, we consider 8 frequency bins
separated by 10 MHz as statistically independent realizations,
thus creating an effectively larger sample size. For the models
at each location, 10 independent temporal evolutions (realiza-
tions) are considered.

Figure 5 shows a typical result for the RCD capacity metric
(4), taken from Location 5 at 5.2 GHz. In most cases, the
RCD capacity for the MVCN model dropped too quickly and
the TVC model provided a better fit. On the other hand, the
MVCN model matched TCD capacity very well. This result
is not surprising, however, since the RCD capacity depends
on the small scale variations, which may not be captured very
well by forcing separability of time and space. TCD capacity,
on the other hand, is governed only by the long term spatial
statistics, which will be matched almost exactly by MVCN.

Table I lists the metrics applied to measured data and
synthetic channels at 2.55 and 5.2 GHz, where all metrics
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are in terms of wavelengthsλ, andσ is average absolute devi-
ation from measured values. Although the TVC model better
predicts metrics associated with short-term variations (CR, dR,
ELCR, and EAFD), the MVCN model more faithfully captures
the long-term behavior (CT anddT ).

VI. CONCLUSION

Although MIMO systems exhibit high capacity with perfect
CSI, imperfect CSI can lead to reductions in available capacity.
This paper provided a number of metrics for characterizing
the time variation of MIMO channels, useful for classifying
channels, assessing modeling accuracy, and connecting time
variation to the performance of higher communications layers.
The metrics were applied to measured8×8 indoor channels
at 2.55 and 5.2 GHz to demonstrate their utility. A random
matrix model based on the MVCN distribution and a cluster
model both showed promise in capturing the key behaviors
of the time-varying channels. Later work will demonstrate the
application of these metrics and models to outdoor data, where
similar conclusions may be drawn, although the scales of time

TABLE I
COMPARISON OFMETRICS FORINDOOR DATA /MODELS

(a) 2.55 GHz

dR (λ) dT (λ)
Loc. Data MVCN TVC Data MVCN TVC
1 0.28 0.14 0.21 7.8 6.1 ≥ 30.0
2 0.28 0.14 0.28 17.5 6.7 ≥ 30.0
3 0.21 0.14 0.14 1.7 0.3 13.5
4 0.21 0.14 0.21 3.2 1.5 12.6
5 0.21 0.14 0.21 7.2 6.2 ≥ 20.0
6 0.21 0.14 0.21 ≥ 20.0 ≥ 20.0 ≥ 20.0
7 0.21 0.14 0.21 2.0 0.3 26.8
8 0.21 0.14 0.21 3.0 1.1 32.7
σ - 0.09 0.02 - 2.5 15.4

ELCR1 (1/λ) ELCR2 (1/λ)
Loc. Data MVCN TVC Data MVCN TVC
1 0.31 0.83 0.37 0.40 0.96 0.42
2 1.21 1.42 0.39 1.05 1.57 0.47
3 0.81 1.17 0.55 0.52 1.09 0.56
4 0.58 0.83 0.37 0.67 0.86 0.44
5 0.76 0.99 0.44 0.47 1.11 0.52
6 0.40 0.77 0.32 0.56 0.98 0.46
7 0.33 0.71 0.30 0.44 0.69 0.33
8 0.72 0.89 0.43 0.56 1.11 0.56
σ - 0.31 0.26 - 0.46 0.14

(b) 5.2 GHz

dR (λ) dT (λ)
Loc. Data MVCN TVC Data MVCN TVC
1 0.28 0.28 0.28 39.6 35.5 ≥ 70.0
2 0.28 0.28 0.28 28.5 23.1 33.0
3 0.28 0.14 0.14 3.4 1.5 19.7
4 0.28 0.14 0.70 18.3 18.6 44.9
5 0.28 0.14 0.28 27.3 27.6 30.1
6 0.28 0.14 0.28 ≥ 50.0 47.5 ≥ 50.0
7 0.28 0.28 0.28 27.8 14.5 ≥ 70.0
8 0.28 0.14 0.14 25.5 21.3 ≥ 70.0
σ - 0.09 0.09 - 4.0 20.9

ELCR1 (1/λ) ELCR2 (1/λ)
Loc. Data MVCN TVC Data MVCN TVC
1 0.25 0.61 0.25 0.35 0.71 0.29
2 0.25 0.58 0.32 0.42 0.69 0.49
3 0.22 0.60 0.54 0.57 0.74 0.51
4 0.41 0.57 0.29 0.56 0.72 0.43
5 0.25 0.63 0.20 0.41 0.70 0.46
6 0.42 0.70 0.32 0.47 0.76 0.37
7 0.20 0.69 0.29 0.31 0.49 0.37
8 0.43 0.65 0.45 0.51 0.85 0.50
σ - 0.32 0.10 - 0.26 0.07

variation are generally longer due to less multipath. Also,
future work is needed to produce models that can accurately
predict all metrics with relatively few parameters.
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