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Abstract—The extent of time variation of measured multiple- amplified, and fed to an 8-way microwave switch connected to
input multiple-output (MIMO) wireless channels is explored. A the transmit array. At the receive side, an 8-way switch routes
Bro_totyp_e MlMObclhanPeI Sg‘ﬁ”der de‘ﬁlﬁﬁpoed ?]t Bnglha;n Y°“2“9 signals from the array to a common RF receiver, consisting
8”&’&?'%’“#6‘53 tg 200”&,_',29 o%xi%stantane%uasn%%gdv{/?dngh, is Of low noise amplification, down-conversion, automatic gain
used to measure representative indoor and outdoor scenarios control (AGC), and up to 500-MS/s PC-based A/D conversion.
at 2.4 and 5.2 GHz. New metrics are proposed to quantify the Control of the microwave switches is accomplished by a
time variation observed in the channel measurements: eigenvalue flexible synchronization unit that scans all possible antenna

level crossing rate, eigenvalue fade duration, rate of eigenvector compinations, where the number of antennas and dwell time
angular deviation, and temporal capacity degradation. Two are selectable

different models are used to fit the measurements: (1) a simple .
random matrix model and (2) a physical time-varying cluster _ The receive waveforms and AGC levels are stored on a

model. The performance of these models is assessed in terms oPC, allowing channel estimation to be performed off-line.
their ability to reproduce the measured time-variation metrics. ~ The number of back-to-back channel snapshots that can be
| INTRODUGTION acquired is limited by the memory depth (512 MB) and sample
: rate (12.5-500 MS/s) of the A/D card. A “multiple record”
With perfect channel state information (CSI) at the receivégature allows delays to be placed between channel snapshots,
and/or transmitter, theoretical studies and measurements hgwgs extending the acquisition length. The number of locations
confirmed that multiple-input multiple-output (MIMO) wire- probed in a single campaign is limited by hard drive space on
less systems exhibit a large capacity improvement over theie PC, where 100 GB can hold about 200 locations. Highly
single-input single-output (SISO) counterparts. In real systable 10 MHz rubidium time/frequency references provide
tems, however, where the MIMO channel is time variant, CSlystem synchronization at transmit and receive.
is either imperfect or unavailable, leading to severe reductionsAntenna arrays at transmit and receive were 8-element uni-
in the available capacity. Therefore, the degree of channel tifioem circular arrays, consisting of omnidirectional monopole
variation strongly impacts the target applications of MIM@lements with\ /2 inter-element spacing. Such arrays measure
techniques, the types of modulation/training employed, theultipath from360° of azimuthal view with a single channel
number of transmit and receive antennas used, etc. Althougiiapshot, allowing the general characteristics of multipath and
previous studies have analyzed the effects of MIMO chanrigd time-variant behavior to be investigated.
time variation, very little work exists that characterizes the MIMO channel time variation was studied by placing the
extent of time variation in measured MIMO channels. transmitter in a fixed position and moving the receiver at a
In this paper, we present a framework for the charactetenstant speed over a prescribed path of up to 4.5 m. The
zation of time variation in MIMO channels, based on widetransmit signal consisted of 80 tones with 1 MHz separation,
band 8x8 MIMO channel measurements taken at Brighaman antenna dwell time of 5@S, and a center frequency of
Young University (BYU) in indoor and outdoor environmentseither 2.55 or 5.2 GHz. The 2.55 GHz center frequency was
The paper introduces a number of metrics that are usefilosen instead of 2.45 GHz to avoid interfering with our
for assessing the severity of time variation: eigenvalue lewstisting WLAN network. Channels were acquired either back-
crossing rate, eigenvalue fade duration, rate of eigenvectorback every 3.2 ms (fast mode) or with multiple record every
angular deviation, and temporal capacity degradation. Final6.6 ms (slow mode), allowing both small- and large-scale
we investigate the ability of two different time-varying modelsariations to be investigated.
to capture key behaviors observed in the measured MIMO
channels: (1) a simple random matrix model and (2) an IIl. M EASUREMENT SCENARIOS
advanced time-variant physical clustering model. Due to spaceFor the indoor scenario, depicted in Figure 2, the transmitter
constraints, this paper focuses on our indoor channel measwvas stationary in a hallway, while the receiver was placed in 8
ments, with outdoor measurements to be included in a latifferent rooms, thus simulating a reasonable WLAN topology.
publication. In each room, four different measurements were performed:
(1) an acquisition with the transmitter turned off and the
Il. MEASUREMENT SYSTEM receiver stationary to assess the impact of co-channel interfer-
Figure 1 depicts a block diagram of the wideba®id8 ence, (2) a measurement with the receiver stationary to assess
MIMO channel sounder developed at BYU. At the transmitme variation from people/equipment, and measurements with
side, an arbitrary waveform generator creates a multi-tone sige receiver moving at 0.3 m/s with either (3) fast, or (4)
nal with up to 100 MHz of instantaneous bandwidth, which islow acquisition. Acquisition for case (1) with the transmitter
up-converted to an RF carrier in the range of 2-8 GHz, poweff showed response only for the 2.55 GHz band, and this
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Fig. 1. Simplified block diagram of thex8 wideband MIMO channel sounder used to measure time variation of indoor and outdoor MIMO channels
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andV = [v1v,...| are the matrices of left and right singular
vectors, andS is the diagonal matrix of ordered singular
values. We refer ter;(H) = S2 as theith channel eigenvalue
and column vectorsi; andv; as theith receive and transmit
eigenvectors, respectively. Sinee represents a power gain,
we can apply the standard single-antenna metrics to each
eigenvalue.
Eigenvalue level crossing rate for th#h eigenvalue
e (ELCR;) is computed as the number of times tha(H)
™M d ® 5 o o drops below a specified threshold divided by the distance
NI

T traveled. Eigenvalue average fade durati®iAFD;) is the
average fraction of path distance that the waveform lies below
the threshold. The threshold will depend on the application,
and in this work we use 2 dB below the mean.

ELCR and EAFD are interesting for multiple communica-
tions layers. For example, these values indicate how quickly
a sophisticated MIMO physical layer (PHY) and medium

= g v ] access later (MAC) would need to adapt modulation and
transmission rate to the time-varying channel quality. For
\ \ \ \ \ I'm constant rate/modulation transmission, they indicate the type

0 3 6 9 12 15 of precoding required to overcome channel fades.

Fig. 2. Indoor measurement scenario for Locations 1-3, where other locatiqgs _. .
were in similar rooms to the right of the transmitter. . Eigenvector Angular Deviation

Eigenvector angular deviation (EAD) quantifies how quickly
the transmit and receive eigenvectors rotate in complex

interference was negligible. Stationary receiver measuremegiensional space, wher®/ is the number of antenna ele-
produced a maximum Doppler of less than 1 Hz, which wagents. We define EAD as

small compared to the Doppler for moving measurements (10-

20 Hz). Finally, inspection of the fast acquisition waveforms 1 Nk
indicated that the slow acquisition channel sample rate was O = —— > cos ! [vWHy(ER)] 1)
sufficient to capture the channel time variation. In the results N-k =

that follow, only measurements from case (4) are considered. ) ) )
wherek is the distance between two channel snapshgtss
IV. MIMO T IME-VARIATION METRICS

/ : RIC the total number of snapshote!™ is the nth snapshot of a
Key to this work are a set of metrics that indicate the degregven left or right singular vector, anft}¥ is the Hermitian

of time variability of measured channels. Our goal in defininglperator_

these metrics is not only to allow various measured channelsEAD directly impacts how quickly a spatial multiplexing

to be classified, but also to assess the accuracy of time-varymgy must adapt its transmit/receive weights.

models and to provide a connection between MIMO channel

variation and the performance of other communications layegs. capacity Degradation

Although our metrics are intended ftimevarying channels,

we characterize variation versus distance, allowing the resultdAlthough the eigenchannel metrics are useful for system
to be scaled for different movement speeds. specification and design, they do not indicate the loss of

i ) channel quality in an information theoretic sense. To this end,
A. Eigenvalue Level Crossing Rate and Average Fade Duige define a simple metric for quantifying capacity loss for a
tion time-varying channel.
The singular value decomposition (SVD) of a single channel First, consider the case @fansmit CSI degradatioiTCD)
matrix H is given byH = USV#, whereU = [u;uy...] where the receiver has perfect CSI but the transmitter only has



the delayed channel estimal®. We may define capacity for A. MVCN Model

delayed transmit CSI as . , .
We represent the complex gain from thigh transmitter

to the ith receiver at time index: for a single frequency
, (2) bin as HZ.(”). If these gains follow a (possibly time-varying)
MVCN distribution in both time and space, the spatio-temporal
variation of the MIMO channel is completely characterized by
whereH is the true channek? is the receiver noise variance the multivariate meanNI) and covarianceR), or
Q(H) is the optimal transmit covariance given by the water-
filling solution (assumingd = H), I is the identity matrix, M g {H(n)} @)
Tr {Q} < Pr, and Pr is total transmit power. In the results Y Y
that foIIow,.PT and ¢? are ch_oser) such that_ the ayerageR(v}g) —E {(H.(T’) _ M'(m)(HJETm) _ M,gf"”)*}, ®)
SISO SNR is 10 dB. As the estimak# becomes increasingly * Y
outdated(C'r will tend to decrease. At some distance, when the . . ) o
delayed capacity drops below the uninformed transmit capaci#iere E {-} is expectation. For a stationary distributiah]
(Cr with Q = I), the transmit CSI is no longer useful, and®nd R are not a function ofn and can be obtained with
we call this distancely-. sample averages. The difficulty of extracting these parameters
Next, consider the case oéceive CS| degradatiotRCD), from a nonstationary process depends on the severity of the
where both transmit and receive have outdated CSI. wigienstationarity, and may even be impossible for overspread
perfect CSI, parallel channels may be formed by taking tigocesses [1]. Here, we consider a process characterized by
SVD of the channel matrix, where the transmitter uses the right™ean and covariance that vary slowly in time, allowing
singular vectorsV as transmit weights and the receiver use@Stimation by weighted sample averages, or
the left singular vectordJ as receive weights. The capacity

HQ(H)HY

Cr = log, 2 +1

of a such a system is - >
Y M = 3" wHY
C = max Yy logy(1+ piSii/o?), 3) =
P o0
7 >(n,m n—+s n+s+m)*
R§j7k-g) = E ws—&-m/2Zi(j )Z]E-g ) ’ (9)
where thep; are found according to water-filling. Imperfect s=—00

estimates of the channdl = USV¥ cause “cross-talk” A
among these parallel channels. Since we make no assumptighere Zz™ = g — Mi(;l), w is the weighting window, and

?

about the distribution oH, we consider the worst case wherghe indexs -+ m72 is chosen to apply a weight afi, when

the interference is i.i.d. Gaussian, resulting in a new mutu@le pointsn + s andn + s +m are equidistant from the center
information of estimation pointz.
The choice of the weighting window is a tradeoff between
Cr= Zlo%(l*pisii/q?i)v (4)  the bias and variance of the estimator. Here, we apply an
i exponential window, of the formws = exp(—|s/¢.|), where
¢. is the correlation length. If the process is determined to be
nearly stationary oveN, samples, faithful estimates can be
H 9 obtained with4/, = Ns.
4 = {AMPRA/I }u':" g ®) To determine a suitable value fér, three different tests for
M = U7HV - &S, (6) multivariate normality were applied to the data: (1) Mardia’s
tests for multivariate skewness and (2) kurtosis [2], and (3)
P = diag(p), and ® is a complex diagonal matrix whosethe Henze-Zirkler test [3]. Since previous results suggest that
diagonal elements have unit magnitude. In this work, wdIMO channels with large numbers of antennas do not strictly
assumewrg(®;;) = arg({UTHV},;), thus masking the effect follow a multivariate normal distribution [4], we restrict our
of average phase variations of the individual eigenchannégsts t02x2 subsets of the MIMO data. Figure 3 depicts
and focusing on the changing spatial structure. We refer ¢ average rejection rates for a significance level of 5% and
the point at whichC drops to 50% of its maximum value asd varying record length (sample size) for Locations 1-8 at
the distancelp. 2.55 GHz. Very similar plots are obtained for 5.2 GHz. The
Typically, the transmit and receive degradation metrics afgsults indicate that over distances4ef8\ the rejection rates
averaged over a number of different realizations: differeff€ acceptable, and we thereforedet= 2.
starting points (training positions), multiple frequency bins, Once the time-varying mean and covariance have been

etc. This averaging provides a global picture of the effect §stimated from the data via (9), we require a way of generating
the time variation. simulated channels. One approach involves fornfgnto a

covariance matrix, computing the matrix square root, and using
the result to correlate the elements of i.i.d. complex normal
vectors. This approach is numerically prohibitive, however,

Since accurate models are critical for the design and anal@gce for 8 transmitters and receivers and 500 time steps,

where

V. TIME-VARIANT MIMO CHANNEL MODELS

of MIMO architectures, we investigate two different modelind'€ covariance matrix has dimensiosg, 000x32,000. A

strategies for time-variant MIMO channels: (1) a randofiatural way to reduce this complexity is to assume that the

matrix model following the multivariate complex normalcovariance Is sepa(lrab;e in the time and space dimensions or
n,m

(MVCN) distribution and (2) a time-variant clustering (TVC)REZ’,ZT) = Rgfgj,MRT . In this case, we need only find the
model. matrix square root of &00x500 matrix. For this separable
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By discretizing functions of the continuous varialfle and

08 l\'\//||+% ESE | matching left and right hand sides at a number of discrete
W7 Teet points, we obtain the matrix equatign = Wa, which can

solved via linear programming for the basis coefficiems

0.6 1 The main advantages of using the Bartlett spectrum, rather
than operating on the covariance directly, are (1) the resulting
0.4 1 equations are real, and (2) covariance structure representing

Rejection Rate

non-propagating (evanescent) modes is removed.

In this work, we assume a set of Gaussian-shaped
basis functions (clusters) with possible arrival angles
of {0°,5°,10°...,,355°} and angular spreads of
{5°,10°,20°,40°}. The time-variant nature of the clusters

Record Length (wavelengths) is obtained by estimating the basis coefficients from the
_ o o time average of the measured Bartlett spectra, keeping the
Fig. 3.  Average rejection rates for three multivariate normal tests ffominant basis functions (collectively representing 90% of
Locations 1-8 at 2.55 GHz. . . - @
the power spectrum), and estimating the optimal coefficients
at each time step for this fixed basis. Because the initial
double-directional estimate with the full basis can be very
costly, we reduce the dimensionality by applying a single-

case, synthetic channels are generated stepwise as

B _ ZX A (10) directional version of the method to the average transmit and
ij = Tynn' 45 receive spectra individually, thus allowing a smaller set of
i important basis functions to be retained.

(n) _ (n) (n)
H = ZXS’Z-].J.,J»,B

i’j”

(12) Synthetic channels are generated by assundingys per
T cluster, and computing the channel response as
where X, = R/;/2, Xp = R(Sn)1/2’ R,T ot = R¥l77b/—7l)' i Hz(]n) =L 1/2 Zéa;()n)lmﬂpf wR,i(QbR,p@) wT,j(Q/)T,pf)a (17)
andj are stacked when used as a covariance indexA%ﬁc\l " ) —
are matrices of i.i.d. complex normal elements. where ¢s 0 ~ N(9g,,0%,), Bpe ~ CN(0,1), ¢g,, and
A nice feature of the MVCN model is that its parameters an%yp are the mean and variance of the departures/arrivals
directly extracted from the measured data. The main drawbagig cluster p, and N (u,0?) and CN(u,0?) are the real
however, is the large number of parameters required to specifyd complex normal distributions with meanand variance
the distribution. Also, little physical insight is obtained fromy2, respectively. Extensions to the model include allowing a
these parameters. different number of rays (richness) in each cluster, rays that
B. TVC Model dynamically appear or disappear in time, a time-variant set
: of clusters, etc. For this work, a fixed set 6f = 50 rays
Another modeling approach for the time-varying MIMOper cluster is assumed for a each realization of the model.
channel is an extension of the cluster modeling strategyso, note that this current model only attempts to fit the
described in [5]. In this variant, we first obtain the doubleshannel covariance, and has no provision for including non-

directional Bartlett spatial spectrum for time steas fading components (channel mean).
- () Figure 4 plots an example double-directional spectrum
PM(Q) = b (Q)Rb(Q), (12) estimate for Location 1 at 2.55 GHz.
where Q = (¢r,9r), bix(Q) = Yri(dr) Yri(or) is the C. Model Comparisons
joint steering vector with)s,;(¢s) = exp[j2m(zs,cosds +  To demonstrate the ability of the specified models to capture

ys.isingg)], S is eitherT or R for transmit or receiveps the time-variant characteristics of MIMO channels, we apply
is azimuth angle, and; andy; arex andy coordinates of the proposed time-variation metrics directly to measured data
the ith antenna. Given a true diffuse arrival power spectrugs well as synthetic channels generated with the MVCN and

of A(Q2), the covariance is TVC models. When computing covariance, mean, and time-
variation metrics from data, we consider 8 frequency bins

R= /dQA(Q)\IJ(Q), (13) separated by 10 MHz as statistically independent realizations,

thus creating an effectively larger sample size. For the models

where ¥(Q) = Tr(ér) ® Ur(ér) and Tg(os) at each location, 10 independent temporal evolutions (realiza-

H : : tions) are considered.
:‘J:J%(c(?i%)nﬁs((éﬁljgte'rs[))élec(?{?p\/?/zlnhga\%e true spectrum into basi Figure 5 shows a typical result for the RCD capacity metric
PR (4), taken from Location 5 at 5.2 GHz. In most cases, the
_ RCD capacity for the MVCN model dropped too quickly and
Al = ZCLPAP(Q)’ (14) the TVC model provided a better fit. On the other hand, the
P MVCN model matched TCD capacity very well. This result
and the Bartlett spectrum becomes is not surprising, however, since the RCD capacity depends
on the small scale variations, which may not be captured very
(n) _ _ ’ N H / well by forcing separability of time and space. TCD capacity,
P(Q) = Wid] = /dQ AP (QT(Q)b(Q)  (15) on the other hand, is governed only by the long term spatial
statistics, which will be matched almost exactly by MVCN.
= ZC‘PW[AP]' (16) Table | lists the metrics applied to measured data and
P synthetic channels at 2.55 and 5.2 GHz, where all metrics



TABLE |
COMPARISON OFMETRICS FORINDOOR DATA/MODELS

1.0 (@) 2.55 GHz
0.5 dr (A dr (\)
Loc. | Data MVCN TVC Data MVCN TVC
0.0 1 0.28 0.14 0.21 7.8 6.1 > 30.0
2 0.28 0.14 0.28 175 6.7 > 30.0
3 0.21 0.14 0.14 1.7 0.3 13.5
4 0.21 0.14 0.21 3.2 1.5 12.6
> 5 0.21 0.14 0.21 7.2 6.2 > 20.0
s 1.0 6 021 014 021 >200 >200 > 20.0
8 7 0.21 0.14 0.21 2.0 0.3 26.8
o 0.5 8 0.21 0.14 0.21 3.0 1.1 32.7
> o = 0.09 0.02 - 25 15.4
< 0.0 ELCR; (1/N) ELCR; (1/X)
[T} Loc. | Data MVCN TVC Data MVCN TVC
o 1 0.31 0.83 0.37 0.40 0.96 0.42
2 1.21 1.42 0.39 1.05 1.57 0.47
1.0 3 0.81 1.17 0.55 0.52 1.09 0.56
’ 4 0.58 0.83 0.37| 0.67 0.86 0.44
5 0.76 0.99 0.44| 047 1.11 0.52
0.5 6 040 077 0.32| 056 0.98 0.46
7 0.33 0.71 0.30| 0.44 0.69 0.33
0.0 8 0.72 0.89 0.43 0.56 1.11 0.56
360 o - 0.31 0.26 - 0.46 0.14
0 (b) 5.2 GHz
180 270 dr (X dr (\)
H H R T
Transmit Angle 360 0 Receive Angle Loc. | Data MVCN TvC | Data MVCN  TVC
1 0.28 0.28 0.28 39.6 355 >70.0
Fig. 4. Example time-average spatial spectrum estimate for Location 1 at | 2 0.28 0.28 0.28| 285 23.1 33.0
2.55 GHz: (a) measured and (b) modeled Bartlett spatial spectra and (c)| 3 0.28 0.14 0.14 3.4 15 19.7
estimated true spectrum. 4 0.28 0.14 0.70| 18.3 18.6 44.9
5 0.28 0.14 0.28 27.3 27.6 30.1
6 0.28 0.14 0.28| > 50.0 47.5 > 50.0
18 ‘ 7 028 028 028 27.8 145 >70.0
16 8 0.28 0.14 0.14 25.5 21.3 > 70.0
— o - 0.09 0.09 - 4.0 20.9
T 14 ELCR; (1/)) ELCR; (1/X)
> Loc. | Data MVCN TVC Data MVCN TVC
- 12 T 025 061  0.25] 035 0.71 0.29
5 10 2 0.25 0.58 0.32| 0.42 0.69 0.49
g 3 0.22 0.60 0.54| 0.57 0.74 0.51
> 8 4 0.41 0.57 0.29 0.56 0.72 0.43
g 5 0.25 0.63 0.20| 0.41 0.70 0.46
s 6 6 0.42 0.70 0.32 0.47 0.76 0.37
S 4 7 0.20 0.69 0.29| 0.31 0.49 0.37
8 0.43 0.65 0.45| 0.51 0.85 0.50
2 ! ! ! ! o - 0.32 0.10 - 0.26 0.07
0 0.2 0.4 0.6 0.8 1

Displacement (wavelengths)

variation are generally longer due to less multipath. Also,
future work is needed to produce models that can accurately
predict all metrics with relatively few parameters.

are in terms of wavelengths ando is average absolute devi- ACKNOWLEDGMENT
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