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I. INTRODUCTION

With perfect channel state information (CSI) at the receiver and/or transmitter, multiple-input multiple-output (MIMO)
wireless systems exhibit a large capacity improvement over their single-input single-output (SISO) counterparts. How-
ever, when the MIMO channel is time variant, CSI is either imperfect or unavailable, leading to severe reductions
in the available capacity [1]. Although a few studies have appeared that characterize the extent of time variation in
measured MIMO channels [2], [3], to our knowledge there is no work that presents a comprehensive framework for
characterizing and modeling this phenomenon.

In this paper, we present a framework for characterizing MIMO channel time variation based on wideband8×8 MIMO
channel measurements in indoor environments. The paper introduces several new metrics which are useful for assessing
the severity of time variation. Furthermore, this work investigates the ability of two different time-varying models to
capture key behaviors observed in the measured MIMO channels.

II. MEASUREMENTS

Fig. 1 shows a block diagram of the wideband8×8 MIMO channel sounder developed at Brigham Young University
(BYU). At the transmitter, an arbitrary waveform generator creates a multi-tone signal with up to 100 MHz of
instantaneous bandwidth, which is up-converted to a range between 2-8 GHz, amplified, and fed through an 8-way
switch to the transmit array. At the receive side, an 8-way switch routes signals from the array to a common RF
receiver consisting of low noise amplification, down-conversion, automatic gain control (AGC), and up to 500-MS/s
PC-based A/D conversion and storage. Control of the antenna switches is accomplished by a synchronization unit that
scans all possible antenna combinations with a selectable dwell time. The transmit and receive antennas are 8-element
uniform circular arrays consisting of omnidirectional monopole elements withλ/2 inter-element spacing. Highly stable
10 MHz rubidium time/frequency references provide system synchronization at transmit and receive.

The number of consecutive channel snapshots that can be acquired is limited by the memory depth (512 MB) and
sample rate (12.5-500 MS/s) of the A/D card. A “multiple record” feature allows delays to be placed between channel
snapshots, thus extending the acquisition length. The number of locations probed in a single campaign is limited by
hard drive space on the PC, where 100 GB can hold about 200 locations.

MIMO channel time variation was studied by placing the transmitter in a fixed position and moving the receiver at a
constant speed over a prescribed path of up to 4.5 m. The transmit signal consisted of 80 tones with 1 MHz separation,
an antenna dwell time of 50µS, and a center frequency of either 2.55 or 5.2 GHz. Channels were acquired either
back-to-back every 3.2 ms (fast mode) or with multiple record every 25.6 ms (slow mode), allowing investigation of
both small- and large-scale variations.

For the indoor data presented here, the transmitter was stationary in a hallway, while the receiver was placed in
8 different rooms. In each room, different measurements were performed. First, measurements with the transmitter
turned off and the receiver stationary indicated that neglibible interference was present in the 2.55 GHz band. Second,
a measurement with the transmitter and receiver stationary showed that the Doppler component due to the channel
was less than 1 Hz, much smaller than the 10-20 Hz Doppler component observed when the receiver was moving at
0.3 m/s. Finally, measurements with the receiver moving (0.3 m/s) with fast and slow acquisition revealed that the slow
sample rate was sufficient to capture the channel time variation.
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Fig. 1. Simplified block diagram of the8×8 wideband MIMO channel sounder used to measure time variation of indoor and outdoor MIMO
channels

III. MIMO TIME-VARIATION METRICS

Key to this work are a set of metrics that indicate the degree of time variability of measured channels. Our goal in
defining these metrics is not only to allow various measured channels to be classified, but also to assess the accuracy
of time-varying models and to provide a connection between MIMO channel variation and the performance of other
communications layers. Although our metrics are intended fortime-varying channels, we characterize variation versus
distance, allowing the results to be scaled for different movement speeds.

A. Eigenvalue/Eigenvector Metrics
The singular value decomposition (SVD) of a single channel matrixH is given by H = USVH , whereU and
V are the matrices of left and right singular vectors, andS is the diagonal matrix of ordered singular values. We
refer to σi(H) = S2

ii as theith channel eigenvalue and column vectorsui and vi as theith transmit and receive
eigenvectors, respectively. Sinceσi represents a power gain, we can apply standard single-antenna metrics to each
eigenvalue. Eigenvalue level crossing rate for the theith eigenvalue (ELCRi) is computed as the number of times that
σi(H) drops below a specified threshold divided by the distance traveled. Eigenvalue average fade duration (EAFDi)
is the average fraction of path distance that the waveform lies below the threshold. The threshold will depend on the
application, and in this work we use 2 dB below the mean.

Similarly, eigenvector angular deviation (EAD) quantifies how quickly the transmit and receive eigenvectors rotate in
complexM -dimensional space, whereM is the number of antenna elements. We define EAD as

θk =
1

N − k

N−k∑
n=1

cos−1 |v(n)Hv(n+k)|, (1)

where k is the distance between two channel snapshots,N is the total number of snapshots, andv(n) is the nth
snapshot of a given left or right singular vector.

B. Capacity Degradation
Although the eigenchannel metrics are useful for system specification and design, they do not indicate the loss of
channel quality in an information theoretic sense. Consider the case oftransmit CSI degradation(TCD) where the
receiver has perfect CSI but the transmitter only has the delayed channel estimateĤ. We may define capacity for
delayed transmit CSI as

CT = log2

∣∣∣∣∣
HQ(Ĥ)HH

σ2
+ I

∣∣∣∣∣ , (2)

whereH is the true channel,σ2 is the receiver noise variance,Q(Ĥ) is the optimal transmit covariance given by the
water-filling solution (assumingH = Ĥ), I is the identity matrix,Tr {Q} ≤ PT , andPT is total transmit power. In
the results that follow,PT andσ2 are chosen such that the average SISO SNR is 10 dB. As the estimateĤ becomes
increasingly outdated,CT will tend to decrease. The termdT represents the distance at which the delayed capacity
drops below the uninformed transmit capacity (CT with Q = I).

Next, consider the case ofreceive CSI degradation(RCD), where both transmit and receive have outdated CSI. With
perfect CSI, parallel channels may be formed by using the channel matrix singular vectors as beamformers. Imperfect



estimates of the channel̂H = ÛŜV̂H cause “cross-talk” among these parallel channels. Since we make no assumptions
about the distribution ofH, we consider the worst case where the interference is i.i.d. Gaussian, resulting in

CR =
∑

i

log2(1 + piSii/qi), (3)

where qi =
{
MPMH

}
ii

+ σ2, M = ÛHHV̂ − ΦΦΦŜ, P = diag(p), andΦΦΦ is a complex diagonal matrix whose
diagonal elements have unit magnitude. In this work, we assumearg(Φii) = arg({ÛHHV̂}ii), thus masking the
effect of average phase variations of the individual eigenchannels and focusing on the changing spatial structure. We
refer to the point at whichCR drops to 50% of its maximum value as the distancedR.

IV. TIME-VARIANT MIMO CHANNEL MODELS

Since accurate models are critical for the design and analysis of MIMO architectures, we investigate two different
modeling strategies for time-variant MIMO channels: (1) a random matrix model following the multivariate complex
normal (MVCN) distribution and (2) a time-variant clustering (TVC) model.

A. MVCN Model
We represent the complex gain from thejth transmitter to theith receiver at time indexn for a single frequency bin as
H

(n)
ij . If these gains follow a (possibly time-varying) MVCN distribution in both time and space, the spatio-temporal

variation of the MIMO channel is completely characterized by the multivariate mean (M) and covariance (R) of H.
Here, we consider a process characterized by a mean and covariance that vary slowly in time, allowing estimation by
weighted sample averages. In this work, we apply an exponential window, of the formws = exp(−|s/`c|), where`c

is the correlation length. If the process is determined to be nearly stationary overNs samples, faithful estimates can
be obtained with4`c = Ns.

To determine a suitable value for`c, three different tests for multivariate normality were applied to the data: (1)
Mardia’s tests for multivariate skewness and (2) kurtosis [4], and (3) the Henze-Zirkler test [5]. Fig. 2 depicts the
average rejection rates for a significance level of 5% and a varying record length (sample size) for2×2 subsets of the
MIMO indoor data at 2.55 GHz. Very similar plots are obtained for 5.2 GHz. The results indicate that over distances
of 4−8λ the rejection rates are acceptable, and we therefore let`c = 2λ.

Once the time-varying mean and covariance have been estimated from the data, we assume that the covariance is
separable in the time and space dimensions orR

(n,m)
ij,k` = R

(n)
S,ij,k`R

(n,m)
T . Synthetic channels can then be generated

stepwise as
B

(n)
ij =

∑

n′
XT,nn′A

(n′)
ij H

(n)
ij =

∑

i′j′
X

(n)
S,ij,i′j′A

(n)
i′j′ , (4)

whereXT = R′1/2
T , XS = R(n)1/2

S , R′T,nn′ = R
(n,n′−n)
T , i and j are stacked when used as a covariance index, and

A
(n′)
ij are matrices of i.i.d. complex normal elements.

B. TVC Model
Another modeling approach for the time-varying MIMO channel is an extension of the cluster modeling strategy
described in [6]. In this strategy, we first obtain the double-directional Bartlett spatial spectrum of the measured
response for time stepn. We then assume that the true diffuse arrival power spectrum can be represented as a weighted
set of basis functions, and estimate the time-variant weight coefficients for this representation based on the observed
Bartlett spectrum. Synthetic channels may then be realized by randomly generatingL rays for each of the basis functions
such that they obey the estimated diffuse arrival power spectrum. Given the space limitations of this paper, the details
of this modeling strategy will be provided in a future publication.

C. Model Comparisons
We now apply the proposed time-variation metrics directly to measured data as well as synthetic channels generated with
the MVCN and TVC models. When computing covariance, mean, and time-variation metrics from data, we consider 8
frequency bins separated by 10 MHz as statistically independent realizations, thus creating an effectively larger sample
size. For the models at each location, 10 independent temporal evolutions (realizations) are considered.

Fig. 3 shows a typical result for the RCD capacity metric (3), taken from an indoor location at 5.2 GHz. In most cases,
the RCD capacity for the MVCN model dropped too quickly and the TVC model provided a better fit. On the other
hand, the MVCN model matched TCD capacity very well. Tables I and II list the metrics applied to measured data
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Fig. 2. Average rejection rates for three multivariate normal tests
for all indoor locations at 2.55 GHz.
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Fig. 3. Typical RCD capacity plot taken from an indoor location
at 5.2 GHz.

TABLE I
METRICS FOR2.55 GHZ INDOOR DATA /MODELS

dR dT
Loc. Data MVCN TVC Data MVCN TVC
1 0.28 0.14 0.21 7.8 6.3 ≥ 10
2 0.28 0.14 0.28 ≥ 10 4.4 ≥ 10
3 0.21 0.14 0.14 1.7 0.3 ≥ 10
4 0.21 0.14 0.21 3.3 2.6 ≥ 10
5 0.21 0.14 0.21 7.2 5.5 ≥ 10
6 0.21 0.14 0.21 ≥ 10 ≥ 10 ≥ 10
7 0.21 0.14 0.21 2.0 0.4 ≥ 10
8 0.21 0.14 0.21 3.0 0.8 ≥ 10

ELCR1 ELCR2
Loc. Data MVCN TVC Data MVCN TVC
1 0.31 0.73 0.39 0.40 0.97 0.44
2 1.21 1.42 0.37 1.05 1.55 0.41
3 0.81 1.12 0.60 0.52 0.99 0.61
4 0.58 0.72 0.28 0.67 1.01 0.48
5 0.76 0.98 0.46 0.47 1.11 0.53
6 0.40 0.70 0.37 0.56 0.99 0.46
7 0.33 0.71 0.32 0.44 0.81 0.35
8 0.72 0.94 0.44 0.56 1.04 0.61

TABLE II
METRICS FOR5.2 GHZ INDOOR DATA /MODELS

dR dT
Loc. Data MVCN TVC Data MVCN TVC
1 0.28 0.28 0.28 ≥ 10 ≥ 10 ≥ 10
2 0.28 0.28 0.28 ≥ 10 ≥ 10 ≥ 10
3 0.28 0.14 0.14 3.38 1.8 ≥ 10
4 0.28 0.14 0.28 ≥ 10 ≥ 10 ≥ 10
5 0.28 0.14 0.28 ≥ 10 ≥ 10 ≥ 10
6 0.28 0.14 0.28 ≥ 10 ≥ 10 ≥ 10
7 0.28 0.28 0.28 ≥ 10 ≥ 10 ≥ 10
8 0.28 0.14 0.14 ≥ 10 ≥ 10 ≥ 10

ELCR1 ELCR2
Loc. Data MVCN TVC Data MVCN TVC
1 0.25 0.61 0.23 0.35 0.67 0.28
2 0.25 0.57 0.37 0.42 0.66 0.53
3 0.22 0.65 0.58 0.57 0.80 0.57
4 0.41 0.64 0.33 0.56 0.66 0.41
5 0.25 0.60 0.25 0.41 0.67 0.51
6 0.42 0.72 0.30 0.47 0.80 0.35
7 0.20 0.69 0.31 0.31 0.52 0.38
8 0.43 0.63 0.42 0.51 0.79 0.47

and synthetic channels at 2.55 GHz and 5.2 GHz, respectively, where all metrics have units of wavelengths. Although
the TVC model better predicts metrics associated with short-term variations (CR, dR, ELCR, and EAFD), the MVCN
model more faithfully captures the long-term behavior (CT anddT ).

V. CONCLUSION

Although MIMO systems exhibit high capacity with perfect CSI, imperfect CSI can lead to reductions in available
capacity. This paper provided a number of new metrics for characterizing the time-variation of MIMO channels, useful
for classifying channels, assessing modeling accuracy, and connecting time variation to the performance of higher
communications layers. A random matrix model based on the MVCN distribution and a cluster model both showed
promise in capturing the key behaviors of the time-varying channels.
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