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1 Introduction

Studies of wireless multiple-input multiple-output (MIMO) channel capacity gener-
ally treat the channel as a propagation environment coupled with an antenna array.
However, it is well known that altering antenna properties can have a dramatic
impact on the MIMO performance. This motivates definition of a capacity bound
that depends only on the propagation environment and is independent of the an-
tenna geometry. This paper provides a framework for formulating this capacity, and
demonstrates its behavior for several representative scenarios.

2 Traditional Channel Description

We will use boldface uppercase and lowercase letters to describe matrices and column
vectors, respectively. A dyadic Green's function Grt relates the vector transmit
current distribution j(rt) to the received electromagnetic fields according to

er (rr) = Jdr' Grt (rr, r')j (r') + e,7(rr), (1)
AVt

where e,7(rr) is additive noise. If we consider this integration as a compact oper-
ator acting on the currents, we can expand (1) using a basis set of orthonormal
eigenfunctions pm(rr) and rm(rt) to obtain [1]

Ym = XmHm + 7m, (2)

Hm = Jdrrf dr'p$ (rr)Grt(rr,r')rm(r') (3)
Vr AVt

qm = drrPt (rr)et,(rr), (4)
AVr

where Hm are channel eigenvalues. Typically, the channel eigenfunctions will span
a finite-dimensional space. Even if these eigenfunctions span an infinite-dimensional
space, for practical channel representations only a finite set of these eigenfunctions
will lead to significant eigenvalues Hm that will be used in a water-filling capacity
formulation. Therefore, we can formulate the capacity using matrix notation.

To formulate the capacity, we require a power constraint and a noise model. The
continuous-space analog of the traditional power constraint in discrete-space MIMO
capacity analysis can be manipulated under this basis expansion to

Jdrt E{Iij(r)t |}=2 3E{m2}=n (R). PT, (5)
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where -l12 denotes an L2 vector norm, R = E {xxt } and PT is the maximum
allowable transmit power. For thermal noise generated in the receiver, e,,(rr) is a
spatially uncorrelated zero-mean complex Gaussian random process, which yields
R1,mp= E {7lmJ;} = O6mp2 These assumptions lead to the capacity expression

C = max log2 det [HRH/Ht/,2 + I] (6)

where H is a diagonal matrix containing the eigenvalues Hm. The optimal covariance
R. can be determined using the water-filling solution with (5).

The set of channels and transmit/receive volumes for which the eigenfunctions can
be determined in closed form is limited. In this case we numerically approximate
these eigenfunctions using sub-basis functions according to

'r(rt) = CqE niq(rt) Pm(rr) = BpmPp(rr). (7)
q p

Generalizing (3) by replacing -r,2 with -n and using (7) gives

Hmn = | drrJ dr' [Bpmnp(rr) Grt(rrr') Cqn'q(r') (8)

or H = BtHC. Representing H in terms of its singular value decomposition (SVD)
H = USV', we assign C = V and B = U to obtain H =S which is diagonal
as desired. Also, since r and p6 are orthonormal and U and V are unitary, this
assignment ensures that T- and p are also orthonormal.

To illustrate application of this technique, we assume a single electromagnetic po-
larization with propagation confined to the horizontal plane and described by the
model in [2]. We allow the identical transmit and receive regions to be infinite in the
z direction with square cross-sectional areas characterized by side lengths A\x = Ay.
The sub-basis functions are pulse functions with height N/ /A.xAy, where N is the
number of subdivisions in x and y.

We use lAx = Ay = lA and 2A, where A is the free-space wavelength, along with
a single realization of the statistical path-based channel model consisting of 78 dif-
ferent paths. Using a single sub-basis function in the transmit and receive volumes
(N = 1), we compute the channel gain H11 and define SNR = PTIH11j2/.2. The
value of <ris then chosen to obtain an SNR of 20 dB, and this value is held constant
as the number of sub-basis functions increases. Fig. 1 shows the capacity obtained
from this computation as a function of N for the two aperture dimensions. The
capacity approaches an upper bound as the number of sub-basis functions increases.

3 Modified Channel Description
Consider now the case where we limit the power radiated by the transmit array and
assume the noise is generated external to the receive array. The power radiated by
the currents can be written as

Prad= 2 J- drtJ drt2it(rti) [f dQt O*(rtl,Qt)?/(rt2,Qt)] j(rt2) (9)Prd=2ZI .vt AVt
jr2 9

where Zo is the free-space impedance and 4(r, Q) - eik(sinOcos+ysinOsin++zcQsO)
If we use the constraint E {Prad} < PT, we must find currents that do not waste
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Figure 1: Numerically computed ca- Figure 2: Capacity and number of
pacity versus N for the traditional eigenfunctions versus Qo for commu-
channel model. nication using circular cylinders.

power by radiating into the null space of the channel operator, and therefore must
find a complete (infinite-dimensional) basis for representing the transmit current.
Letting r,(rt) be the eigenfunctions of the operation in (9) transforms this equation
to Prad = En XAnxn where An is obtained from (9) with j replaced by r. Since
the operator in (9) is self-adjoint, the eigenvalues An will be real. We can therefore
define xn = V7A47xn so that Pr,1 = En IXnI2
For noise generated external to the receive sub-system, we assume that a zero-
mean complex Gaussian noise field n(Q,) with E {f(nAr)nt(Q7)} -= 216( r-Qr)
impinges on the receive volume. With this model, the received noise in (4) has
cross-covariance R,0,mp = E {17m77p} given by

R,mp = 2rB J drr, J drr2Pt (rrl) [JdQr ok*(rri, flr) I(rr2, r) pp(rr2). (10)
We therefore choose pm(rr) as the mth eigenfunction of this operation so that
RN,,mp = 0 for m $& p.

With these transmit and receive basis functions, we obtain

Ym = ZHmnxn + 71m = ; m [ZHmnXn + ?m1 R,j,m mPm (11)
n n

Hmn = Jdrrf dr't (rr)Grt(rr,r')rn(r') (12)J,\Vr AVt
t;

If Hmn -O 0 as m, n -+ oo, then the water-filling solution will select a finite set of
eigenfunctions over which to communicate and the capacity will remain bounded.
However, due to supergain effects [3], these coefficients can have constant magnitude,
and therefore the capacity remains unbounded. In this case, we can define a practical
capacity bound by limiting the allowable supergain ratio [3], which for the transmit
array is given as Qtn = Ixnl2/(lxn12aAn) = 1/(aAn) where a is a scale factor. For
the receive array, we have Qrm = 1/(/3RA,1mm). To avoid difficulties associated with
determining a and ,B, we will normalize these ratios as Qtn = Amna/An and Qrm =
Ri7,max/R,mm. We now use only the eigenfunctions whose normalized supergain
ratio is below a certain threshold, denoted here as Qo. The system capacity is then

C = max log2 det [HRHt + I] (13)
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where Rx = E {kit }. The optimal covariance Rz can be determined using the
water-filling solution.

This problem can be solved in closed
form for currents flowing in the ax-
ial (z) direction on the surface of a
circular cylinder of radius at and re-
ceived field sampled on the surface
of an identically-oriented cylinder of
radius ar. Fig. 2 plots the capacity
as well as the number of eigenfunc-
tions used as a function of Qo for
cylinders with at = ar = A/2 for a
line-of-sight (plane wave) propagation
model. These curves emphasize the
extremely large supergain ratios pos-
sible as well as the unbounded capac-
ity growth with the number of excita-
tion and receive modes.
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Figure 3: Numerically computed capac-
ity versus N for the modified channel
model for different values of the thresh-
old Qo (Ax = Ay= 1A).

For more general problems, we can solve the problem numerically in a fashion sim-
ilar to that outlined in Section 2. Fig. 3 plots the resulting capacity versus N for
an aperture with Ax = Ay = 1A for different values of Qo. These results illustrate
that as long as a limit is placed on the allowable supergain ratio, the capacity of the
channel approaches an upper bound, with a larger allowable supergain ratio pro-
ducing a higher capacity limit. Also, the number of sub-basis functions required to
effectively approximate the true eigenfunctions changes depending on the threshold
value Qo. This occurs because the modes with higher supergain ratios are associated
with high-frequency variations in the transmit currents (and receive weights), and
therefore their representation requires a higher density of sub-basis functions.

4 Conclusion

This paper has presented a framework for determining the available capacity of
continuous-space electromagnetic channels independent of the physical antennas
used for different constraints on the transmit excitation and different assumptions
about the receiver noise. The formulation illustrates that while antenna supergain
can lead to infinite capacity, placement of practical constraints on the system leads
to a finite capacity bound for fixed antenna dimensions.
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