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Abstract—Multiantenna systems such as devices for mul-
tiple-input–multiple-output (MIMO) communication can the-
oretically use array superdirectivity to optimally exploit the
propagation channel. In traditional analyses of MIMO systems,
such superdirectivity is not observed due to the commonly applied
constraint that limits the excitation current magnitudes. However,
when an electromagnetically appropriate constraint on the power
radiated by the array is applied, the computed capacity can in-
clude effects of transmit superdirectivity. A similar result occurs at
the receiver for spatially colored noise. This paper formulates the
MIMO system capacity under these circumstances and provides a
framework for computing this capacity when the level of tolerable
superdirectivity (as measured by the superdirectivity factor)
is constrained. Example computations using the framework il-
lustrate the impact that superdirectivity can have on achievable
MIMO system performance.

Index Terms—Antenna gain, information theory, multiple-input
multiple-output (MIMO) systems.

I. INTRODUCTION

MULTIPLE-input–multiple-output (MIMO) systems that
exploit multiple antennas at both ends of the link have

demonstrated clear advantages over single antenna systems
when used in multipath propagation environments [1], [2].
Typical analyses of MIMO links use the channel capacity to
determine the system upper performance bound for a given
propagation channel. Formulations for this capacity specify the
properties of the optimal excitation and receive beamformer for
the channel under consideration.

When dealing with these optimal excitations or beamforming
weights for closely spaced antennas, we must consider the pos-
sibility of array superdirectivity behavior [3]–[7] characterized
by very high array directivity in preferred directions. While this
phenomenon theoretically allows the system to advantageously
exploit the propagation channel spatial characteristics, its im-
plementation is typically considered impractical for a variety of
reasons [4]. Therefore, analyses of multiantenna systems should
include a mechanism for observing the potential impact of su-
perdirectivity and limiting its influence on the system perfor-
mance.

It appears that superdirectivity in MIMO systems has not yet
been considered, likely due to the traditional transmit excita-
tion constraints and assumed receiver noise characteristics. In
this paper, we formulate an electromagnetically consistent con-
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Fig. 1. Basic diagram showing the relevant quantities and coordinates for
defining the MIMO channel model.

straint on the system radiated power and a model for noise gen-
erated external to the receive array. We demonstrate that these
conditions lead to transmit and receive superdirectivity, respec-
tively. We then provide a framework for computing the capacity
under these circumstances for cases where the transmitter is
aware and unaware of the channel. The formulation includes a
mechanism for limiting the superdirectivity effects, as measured
by the array factor [5]–[7], to within a bound that can be set.
The approach is applied to specific examples that highlight the
effect of superdirectivity on the capacity bound for multipath
channels.

II. ANALYSIS FRAMEWORK

Our objective is to illustrate how superdirectivity impacts
MIMO system performance and how to assess this performance
when the level of tolerable superdirectivity is limited due to
practical considerations. We therefore present a communi-
cation model wherein the effect of superdirectivity can be
observed and formulate the MIMO system capacity when this
superdirectivity is constrained. Throughout this discussion, a
narrow-band channel is assumed with sinusoidal steady-state
variation . Additionally, boldface uppercase and
lowercase letters will describe matrices (matrix with th
element ) and column vectors (vector with th element

), respectively.

A. Communication Channel Model

We will use a generalized communication scenario so that
the developed framework can be adapted to specific antenna
configurations and propagation environments. Consider an ar-
bitrary propagation channel linked by transmit and receive ele-
ments which are confined to the volumes and , respec-
tively. For simplicity, local coordinate systems are assumed for
the transmit space and receive space . Fig. 1 shows a
simple diagram of this scenario.

The transmit antenna elements will be represented by a
set of vector basis functions so that the transmit current
distribution is given as

(1)
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where is a complex weight. The vector radiation pattern in
the far-field can then be expressed as [8]

(2)

(3)

where represents a direction in solid angle with elevation and
azimuth angles and , respectively. The function ,
which is the th column of , represents the radiation pat-
tern of the th basis function for unit driving current
with all other basis functions open-circuited ( for ).
The dyadic Green’s function relates the current distribu-
tion to the radiated fields in the far-zone and is normalized by
the spherical wave factor , with the free-space
wavenumber, so that the transmitted field pattern depends only
on the observation angle.

After propagation through the channel, the field is received
by antennas represented by the vector basis functions

each with far-field radiation pattern

(4)

If represents the dyadic gain function relating the
field radiated at angle and received at angle , the voltage
received by the th sensor function is

(5)

where the integrations are over spheres surrounding the transmit
and receive spaces, is a transpose, and is noise. Sub-
stitution of (3) into (5) yields the linear system

(6)

where the discrete transfer matrix elements are given as

(7)

B. Superdirectivity

With the communication model of (6), we are prepared to
discuss the superdirectivity characteristics of the transmit and
receive arrays. There are a variety of practical problems asso-
ciated with superdirectivity excitations, including high antenna
currents (which lead to high ohmic loss), extreme sensitivity
to the excitation weights, and narrow operating bandwidth [4].
While metrics exist for quantifying the level of superdirectivity
associated with an array excitation in terms of these practical
impacts, we seek a metric that is closely tied to the multiantenna
capacity formulation. We will see that the superdirectivity geo-
metric factor [5]–[7], which quantifies the usable bandwidth

of the array, is a particularly convenient metric for this analysis.
To compute this metric for the transmit array, we construct the
Hermitian matrix

(8)

where is the matrix conjugate transpose. Assuming that
all basis functions are identical other than their positions in
space, we can normalize this matrix to have unit entries along
the diagonal as

(9)

The superdirectivity factor for this array for a vector of
transmit currents is then given as

(10)

The product of and the quality factor of the individual
array elements represents the quality factor of the antenna array
for the excitation vector [3]. Therefore, a high factor cor-
responds to a small usable bandwidth. For example, suppose
we use an element that has when operating in iso-
lation. This corresponds to a 10% frequency bandwidth, some-
thing easily obtainable by practical elements such as a half-wave
dipole. If the array configuration leads to a modest factor of
ten, the overall array quality factor will be 100, leading to a fre-
quency bandwidth of only 1%. Therefore, the attempt to use
superdirectivity to enhance system performance will in most
cases fail due to this bandwidth reduction (in addition to the
other practical difficulties outlined previously). Since the goal
of using MIMO technology is to obtain high spectral efficiency,
this severe bandwidth reduction can be considered counterpro-
ductive to this fundamental goal.

When the array is used for information communication, the
excitation vector and therefore will be time-variant. We
can, however, gain insight into the value from (which
depends only on the array properties). Let the eigenvalue
decomposition (EVD) of be represented by
[9], where is a unitary matrix of eigenvectors and is a
diagonal matrix of real eigenvalues (since is Hermitian).
If we expand the current at time using the eigenvectors
as , where is a vector of weights, then

. will therefore be large
(indicative of superdirectivity) when the current is aligned with
eigenvectors associated with small eigenvalues, and reaches a
maximum value of , where repre-
sents the smallest eigenvalue.

For the following, we will define as the highest factor
that we will tolerate for the transmit array. The matrix rep-
resents the eigenvectors in associated with eigenvalues in
that are greater than . Similarly, we can construct the ma-
trix using (8) and (9) with the replacements
and . Using the EVD and defining the
threshold represents the eigenvectors in associated
with eigenvalues in that are greater than 1 .
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C. Noise and Receive Superdirectivity

Noise can be introduced by sources external to the receiver
(interference) and by components within the receiver (thermal
noise). We will first consider the case of external interference,
where a noise field impinges on the receiver. The noise
vector contains zero-mean complex Gaussian random variables
where the contributions from different directions are uncorre-
lated, leading to the expression

(11)

where is an expectation, is the identity matrix,
represents the noise angular power spectrum, and is the
Dirac delta function. According to the convention presented in
(5), the vector of received noise voltages is

(12)

where forms the th column of the matrix .
Using this result with (11), the noise covariance
is given as

(13)

To accommodate this nondiagonal (spatially colored) noise
covariance matrix, it is customary to prewhiten the signal using
the beamformer [10]. If, at a given time instant, the
vector is aligned with an eigenvector of corresponding to a
small eigenvalue, then the beamformer will create a large signal
gain. However, we recognize that in (13) is very similar to

computed using appropriate substitutions in (8). In fact, if
, then , indicating that this gain repre-

sents superdirectivity. Physically, the array is using superdirec-
tivity to attenuate the external noise power while maintaining
high gain for the desired signal. This will only occur when the
noise and signal arrivals are characterized by different angular
power distributions.

Our goal is to ensure that the system does not try to exploit
superdirectivity beyond a predetermined level. Using our defi-
nitions in Section II-B, we therefore first apply the beamformer

represented by to create the signal

(14)

where the noise has covariance . With
this projection, any subsequently applied receive beamforming
weights characterized by a factor above will lie in the
null-space of and therefore will not contribute to the capacity.
Application of the prewhitening filter gives

(15)

where the noise has covariance .
When the dominant noise source is thermal noise generated in

the receiver front-end, we typically assume that the vector con-
sists of zero-mean complex Gaussian elements with covariance

. A beamformer applied to the received signal plus
noise can no longer suppress this spatially white noise through
selective spatial filtering. Mathematically, we observe that the
prewhitening beamformer is simply a scaled identity matrix and
therefore will not introduce small eigenvalues (and therefore su-
perdirectivity).

D. Radiated Power Constraint and Transmit Superdirectivity

A traditional transmit power constraint for the system repre-
sented in (6) would be [11]

(16)

where and represents a trace. However,
(16) does not represent the actual power radiated by the currents,
which is typically the quantity constrained by regulating agen-
cies. To properly formulate this radiated power, we use (3) to
compute the radiated power averaged over one sinusoidal cycle
(assuming the complex envelope of the current remains constant
over this interval) as

(17)

where is the intrinsic impedance of free space. The average
radiated power obtained by taking the expectation of (17) is

(18)

where the last inequality represents the constraint placed on the
radiated power.

The effect of the radiated power constraint of (18) can be
readily observed when it is applied to determine the system ca-
pacity. For the communications model in (15), the mutual infor-
mation between and satisfies [12]

(19)

where is a determinant and equality occurs when is
drawn from a complex Gaussian constellation. Observing from
(18) that and substituting this result into
(19) shows how the small eigenvalues in can lead to spa-
tial channels with high gain. Since , it is evi-
dent that this condition corresponds to transmit superdirectivity.
Physically, the multiplication by operates as a transmit
beamformer that directs power into angular directions with high
channel gain.

It is important to emphasize that since the traditional power
constraint does not limit the radiated power, it does not penalize
a solution that puts power into the directions that do not strongly
couple to the receiver. For this reason, its use does not typically
lead to the transmit superdirectivity introduced as a result of the
radiated power constraint of (18).
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We can limit the transmit superdirectivity to have a factor
below by requiring the excitation to remain within the sub-
space spanned by . To enforce this constraint, we parameterize
the covariance using the basis as

(20)

where is a positive semidefinite matrix. From (18)

(21)

where , which leads to .
Using this result and (20) in (19) leads to

(22)

where

(23)

We point out that since and share the same eigenvectors,
, which represents the diagonal matrix of eigenvalues

of corresponding to the eigenvectors in .

E. Capacity

Equation (22) provides a concise mutual information expres-
sion that can be maximized to determine the system capacity
under the applied constraints. Under the assumption that the
transmitter is aware of the channel transfer matrix , the co-
variance that maximizes capacity can be constructed from
the water-filling solution [2], [11] using the power constraint

from (18).
For scenarios where the transmitter is unaware of the channel

matrix, we use , where is the dimension-
ality of [1], [11]. Placing this covariance in (22) leads to the
uninformed transmitter capacity

(24)

We note that the approach used in this paper is overly restric-
tive since there may exist excitations or beamforming weights
not confined to the subspaces spanned by and that lead to

factors below the specified thresholds. Unfortunately, it is not
clear how to formulate linear constraints on the transmit and re-
ceive covariances that allow these excitations, and we will there-
fore proceed with the analysis as formulated.

F. Signal Correlation

It is noteworthy that the effective transmit and receive beam-
formers observed in (23) can impact the correlation between the
channel matrix elements. For example, the elements of corre-
sponding to closely spaced antenna elements will generally be
highly correlated. However, because superdirectivity can create
effective beams that are nearly orthogonal, the elements of
may have reduced correlation.

We will assess this impact for uniform linear arrays by as-
suming that the channel matrix elements are zero mean and

that indicates the transfer function between elements at
and , where is the element

spacing. The transmit and receive correlations taken at the an-
tenna terminals are

(25)

(26)

where represents the number of unique pairs of transmit
(receive) antennas separated by a distance . The expecta-
tion can be approximated by an average taken over an ensemble
of channel matrix realizations. The transmit and receive corre-
lation coefficients are then constructed using
and , respectively. The correlation coefficients
at the input of the transmit beamformer and output of the receive
beamformer can be computed by the same procedure with
used in place of .

III. REPRESENTATIVE APPLICATION

The derivations in Section II provide a general framework for
determining the capacity of an MIMO system under the con-
straint that superdirectivity is limited. It is instructive to now
apply the technique to a specific set of transmit and receive basis
functions. For simplicity, we will consider two-dimensional ar-
rays of Hertzian dipoles at the transmit and receive coupled
with a two-dimensional, single-polarization description of the
propagation channel. The arrays at transmit and receive will be
identical.

The use of Hertzian dipoles has some consequences that must
be understood. First, such elements themselves have infinite
quality factor, which means they cannot be used over any band-
width. However, since the superdirectivity factor represents
the quality factor created by the array geometry and does not ac-
count for the element quality factor, these elements will allow
us to observe the superdirectivity behavior. Because half-wave
dipoles have radiation patterns similar to those of the Hertzian
dipole, the results obtained here will be representative of what
would be observed for the more practical longer dipole antenna.
Second, because the Hertzian dipole does not suffer current de-
formations due to mutual coupling and since the formulation
here uses open-circuit voltages to represent the received signal
(so that mutual impedances do not enter into the formulation),
we can assess the impact of superdirectivity without the added
complication of the effect of electromagnetic coupling. Such
coupling effects can be included if desired using the alternate
formulation in Section IV. This model problem therefore pro-
vides computational simplicity while demonstrating the key fea-
tures of MIMO systems impacted by superdirectivity effects.

A. Basis Functions and Channel Description

Because we are operating in a single polarization environ-
ment, the basis functions can be expressed as scalars. The
Hertzian dipoles are represented as
and , where and

indicate the locations of the th transmit
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and th receive dipole, respectively. With this basis, we can
use the (normalized) free-space scalar Green’s function [8]

(27)

(28)

The radiation patterns at transmit and receive become

(29)

(30)

We next assume a directional channel model consisting of
plane waves confined to the horizontal plane with the th

plane wave characterized by departure direction
, arrival direction , and com-

plex gain . In this analysis, the plane waves are grouped into
angular clusters at transmit and receive, with the angles of the
clusters distributed uniformly in the horizontal plane and the
angles of the arrivals within a cluster satisfying a Laplacian
distribution. The complex gains are drawn from a complex
Gaussian distribution. The details of these distributions as well
as a detailed demonstration of the model accuracy are provided
in [13]. For our single-polarization environment, the path-based
channel can be expressed as

(31)

which when used in (7) leads to

(32)

To construct , we use (8) with our basis to obtain

(33)

where represents the magnitude and is the zeroth-
order Bessel function. For identical arrays as used here,

. When considering external noise, we will assume it arrives
isotropically so that leading to . When
thermal noise is assumed, .

We emphasize that the general conclusions we will draw are
not strongly tied to our choices for channel and noise models.
As long as these models 1) lead to variation in the power trans-
ferred to the receiver as a function of the transmit (departure)
angle and 2) create different angular distributions for the re-
ceived signal and noise, the effects of superdirectivity will be
observed. Therefore, the focus in the following is more on the
observed trends than the absolute capacity numbers, which are
strongly dependent on the models used.

B. Signal-to-Noise Ratio

To compute the MIMO system capacity, we must specify
the channel average single-input single-output (SISO) signal-to-
noise ratio (SNR). To accomplish this, we first construct the
scalar for a single dipole using (33) and set so
that, for a single transmit antenna, the average radiated power

Fig. 2. Uniform linear and circular arrays of z-oriented Hertzian dipoles used
in the computations.

will be . For thermal noise where the single-re-
ceiver noise power is , the SISO SNR averaged over all pairs
of transmit and receive antennas is [2], [14]

SNR (34)

where is the matrix Frobenius norm. For the isotropic
noise field, we use to obtain the SISO SNR

SNR (35)

In either case, we set to produce the desired SISO SNR for
each channel realization. This value is then used to construct the
noise covariance as outlined in Section II-C.

C. Example Computations

In the following computations, we consider uniform circular
arrays with circle diameter and uniform linear arrays with
length , as illustrated in Fig. 2. The array spacing for all ar-
rays is smaller than what might be encountered in typical appli-
cations in order to emphasize the superdirectivity effects. The
SISO SNR is set to 20 dB. When Monte Carlo simulations are
used, 500 realizations of the stochastic channel model are gen-
erated, and the results displayed represent the average over the
realizations.

We first consider a 16-element uniform circular transmit array
with , where is the free-space wavelength. As dis-
cussed in Section II-B, the inverse of each eigenvalue of rep-
resents the factor associated with an excitation that equals
the corresponding eigenvector. Fig. 3, which plots these values,
demonstrates the large range of factors possible for this array.
Certainly, the larger values observed in this plot will not permit
transmission of waveforms with even a modest bandwidth. This
fact, coupled with the other problems associated with superdi-
rectivity, motivates the need to assess the performance of mul-
tiantenna systems when the effect of superdirectivity is con-
strained.

It is next interesting to explore the impact of the radiated
power constraint on the capacity. Using eight-element uniform
circular transmit and receive arrays, we compute the capacity
and the optimal transmit covariance for each of the 500
channel realizations using the water-filling solution with the
traditional and modified
power constraints. We also compute the radiated power

for each solution. The average capacity and radiated
power for thermal noise and are shown
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Fig. 3. Q factors associated with each of the eigenvectors of A for a
16-element uniform circular array with diameter D = �=2.

Fig. 4. Radiated power and capacity versus array diameter for the
eight-element uniform circular array computed using the water-filling
solution with traditional and modified power constraints. The results represent
averages over 500 channel realizations.

in Fig. 4 for . For compact arrays, the traditional
constraint leads to much higher radiated power than specified
while the modified constraint produces the proper power. How-
ever, because the modified constraint enables superdirectivity,
the capacity for this case exceeds that achieved by the tradi-
tional constraint. As the array element spacing increases,
approaches a diagonal matrix and therefore the two solutions
converge.

Now, returning to the 16-element circular array with diam-
eter of , we compute the capacity averaged over the
500 channel realizations as a function of the threshold factors

. Fig. 5 plots this capacity for both thermal noise and
an isotropic external noise field using the water-filling and un-
informed transmitter (Tx) solutions. The jumps in the capacity
occur when the threshold is increased enough to increase the
dimensionality of . As expected, the water-filling so-
lution that exploits channel state information at the transmitter
is larger than the capacity for the uninformed transmitter, al-
though the difference at this large SNR of 20 dB is relatively
small [11]. Also, as increases, the receiver can use superdi-
rectivity to improve the received SNR for the case of isotropic

Fig. 5. Capacity (averaged over 500 channel realizations) for a 16-element
circular array with diameterD = �=2 as a function ofQ = Q for different
capacity solutions and noise models.

Fig. 6. Capacity (averaged over 500 channel realizations) for a 16-element
circular array with diameter D = �=2 as a function of Q with Q = 10

for different capacity solutions and noise models.

noise. However, superdirectivity does not significantly enhance
the capacity for thermal noise, leading to reduced capacity for
this noise model.

Fig. 6 shows identical results for the case when is varied
while . These results reinforce the observation that
the capacity for thermal noise is relatively insensitive to
since superdirectivity does not play a large role in determining
the SNR for this scenario. However, the effect of superdirec-
tivity for the case of isotropic noise is dramatic, as expected.
Figs. 5 and 6 both highlight the significant impact that superdi-
rectivity can have on the channel capacity.

Fig. 7 plots the capacity as a function of for 4-
and 16-element linear arrays with length . An isotropic
noise model is assumed in all computations. This plot reveals
that, if the antenna apertures remain fixed, including more el-
ements within the apertures only increases the capacity if the
system is allowed to use superdirectivity. Using studies such
as this, designers can assess the practical upper bound for the
number of elements to use on small devices.
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Fig. 7. Capacity (averaged over 500 channel realizations) for 4- and
16-element linear arrays with length L = �=2 as a function of Q = Q for
different capacity solutions and isotropic noise.

Fig. 8. Magnitude of the maximum correlation observed between array
elements (or beams) and number of used elements (or beams) for a 16-element
linear array with length L = �=2 as a function of Q = Q .

Finally, we compute the correlation coefficients for the
16-element linear array with length at the terminals
of the antenna elements (channel matrix ) and the terminals
of the beamformers (channel matrix ). For the receiver, we
then search over all shifts in (26) to find the value of
with the largest magnitude, which we will denote as .
Fig. 8 plots the magnitude as a function of the threshold
superdirectivity factor. The plot also shows the number of
beams allowed by the beamformer under the superdirectivity
constraint (which is simply the number of array elements when

is used). These results show that the beamformer always
reduces the correlation relative to that observed at the antenna
terminals. They also reveal that when the superdirectivity con-
straint significantly limits the number of beams, increasing the
amount of allowable superdirectivity reduces the correlation
due to reduced beam overlap (increased beam orthogonality).
However, as the number of allowed beams increases, the
likelihood that they will have some overlap also increases,
which leads to the increasing correlation observed. Identical
conclusions result from examining the transmit correlation.

IV. ALTERNATE SIGNAL FORMULATION

The developments in Section II illustrate how superdirectivity
can be enabled in MIMO communications. It is important to rec-
ognize, however, that there are other analysis approaches that
also allow superdirectivity effects in the solution. For example,
consider a transmitting array whose terminal impedance is de-
scribed by an impedance matrix , which, due to electromag-
netic coupling, is in general full. For a transmit current vector ,
the radiated power averaged over one sinusoidal cycle becomes
[15]

(36)

Since for most arrays , we may also write
. If the computation of the impedance matrix and

the radiation patterns are performed properly, the ma-
trix constructed from (17) will be identical to that computed
from (36).

While this formulation stems from a somewhat different
model of the communication channel, the effective results are
identical. The framework developed in Section II is therefore
equally valid for this alternate signal formulation based on
coupled antennas.

V. CONCLUSION

This paper has demonstrated that, when an appropriate con-
straint is placed on the radiated power of a MIMO system or
when the receiver noise has certain characteristics, superdirec-
tivity behavior impacts the capacity of the system. Because su-
perdirectivity performance is typically impractical to achieve,
modified capacity formulations for the cases of informed and
uninformed transmitters have been developed that allow com-
putation of the capacity under the constraint that the superdi-
rectivity must remain below a predetermined threshold. Appli-
cation of the framework to the capacity of MIMO systems with
uniform circular and linear arrays has revealed that limiting the
superdirectivity can have a dramatic impact on the achievable
MIMO performance.
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