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Abstract— Accurate modeling of indoor multiple-input
multiple-output (MIMO) channels is an important prerequisite
for multi-antenna system design. In this paper, a new model
for indoor MIMO channels is proposed, and a closed-form
expression for the spatio-temporal cross-correlation function
between any two subchannels is derived. This new analytical
correlation expression includes many key physical parameters
of interest such as mean angle-of-departure at the transmitter
and mean angle-of-arrival at the receiver, the associated angle
spreads, the distance between transmitter and receiver, etc.,
in a compact form. Comparison of this model with channel
correlations and capacity, using the collected indoor MIMO
data, exhibits the utility of the model.

I. INTRODUCTION

The utilization of antenna arrays at the base station (BS)
and the mobile station (MS) in a wireless communication
system leads to a form of spatial diversity that can result in a
significant increase in achievable capacity. This capacity has
been shown to increase with the number of spatial subchan-
nels between the transmitter and receiver, provided that the
environment is sufficiently rich in multi-path components [1].
This gives rise to the need for accurate channel models that
can sufficiently capture various parameters of a multiple-input
multiple-output (MIMO) environment, facilitating the decision
making for system design.

An important aspect of MIMO channels is the cross-
correlation between the various elements of the channel ma-
trix. Currently, a popular correlation model makes use of the
separability argument between the transmitter and receiver,
which entails modeling the transmit and receive correlation
matrices separately, and then finding the product of the two
in order to obtain the final correlation matrix. See [2] and [3]
and references therein for further information. However, the
explicit connection between the elements of such a channel
correlation matrix and the physical characteristics of the
channel such as the mean angle-of-arrival (AoA) and angle-
of-departure (AoD), the associated angle spreads, etc., are not
clear. On the other hand, it is important for the system designer
to know how the correlation matrix is affected as the parame-
ters of the channel change. This contribution proposes a joint

correlation model which takes into account the distribution of
the scatterers at each end of the radio communication link and
the parameters associated with such distributions.

A physical model has been recently proposed for outdoor
MIMO channels [4] with the advantage of having a closed
form expression for MIMO spatio-temporal cross-correlation
(STCC). In order to come up with a mathematically tractable
indoor correlation model, much needed for analytical calcu-
lations and system design, we extend the model of [4] in
several ways. The measurement data collected at Brigham
Young University [5] is used to evaluate the accuracy of the
new model.

The rest of the paper is organized as follows. The proposed
two-ring model for indoors is presented in Section II, whereas
a compact result for the STCC function between any two
subchannels is derived in Section III. In Section IV we
compare the proposed model with measured data. Concluding
remarks are given in Section V.

II. THE TWO-RING MODEL

The proposed model is shown in Fig. 1, where the scatterers
local to BS and MS are modeled to be distributed on two
separate rings. The main difference between our model and
other two-ring models [6][7] is that we consider single-bounce
scatterings only, conceptually consistent with [8], which allows
us to obtain closed form and mathematically tractable results.
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Fig. 1. Geometrical configuration of a 2 × 2 channel with local scatterers
around the MS and BS, with single-bounce rays shown in the forward channel



Now we proceed to discuss the analytical framework for
derivation of the MIMO STCC function for our two-ring
model.

According to Fig. 1, in the forward channel, the MS receives
single-bounce rays from scatterer Si around the MS (shown
in Fig. 1 by dotted lines) and scatterer S ′

k around the BS
(shown in Fig. 1 by dash-dotted lines). D is the distance
between the MS and BS, while R and R′ are the radii of
the rings of scatterers around the MS and BS, respectively,
whereas αpq and βlm are the directions of BS and MS arrays,
respectively. For the frequency non-selective communication
link between the the element BSp and the element MSl

(the forward channel), let hlp(t) denote the complex low-
pass equivalent channel gain. Mathematical representation of
the superposition of rays at the MS results in the following
expression for the channel gain

hlp(t)=
√

η′Ωlp lim
N ′→∞

1√
N ′

N ′

∑

k=1

g′k exp{jψ′
k−
j2π

λ
(ξ′pk+ξ′kl)

+ j2πfd cos(ϕ′
k − γ)t} +

√

ηΩlp lim
N→∞

1√
N

N
∑

i=1

gi

× exp{jψi −
j2π

λ
(ξpi + ξil) + j2πfd cos(φi − γ)t}. (1)

In Eq. (1), Ωlp is the power transmitted through the BSp−
MSl link, i.e., Ωlp =E[|hlp|2]≤1, whereas η′ and η show the
contributions of BS and MS rings to Ωlp such that η′ + η=1,
N and N ′ are the number of independent scatterers around
the MS and BS, respectively, the positive variables gi and g′k
represent the amplitudes of the waves scattered by the Si and
S′

k, respectively, ψi and ψ′
k are the associated phase shifts,

and ξ’s and ξ′’s are the distances shown in Fig. 2, ϕi and φ′k
are the AoD of the waves traveling from the BS, and φi and
ϕ′

k are the AoA of the waves toward the MS. The sets {gi}∞i=1

and {g′k}∞k=1 consist of independent positive random variables
with finite variances, independent of {ψi}∞i=1 and {ψ′

k}∞k=1.
We assume that {ψi}∞i=1 and {ψ′

k}∞k=1 are uniform and i.i.d
random variables with uniform distributions over [0, 2π). We
also set N−1

∑N
i=1E[g2

i ] = 1 and N ′−1
∑N ′

k=1E[g′2k ] = 1
which result in the desired identity E[| hlp(t) |2] = Ωlp.

III. THE MIMO CORRELATION

Based on the statistical properties of {gi}∞i=1, {g′k}∞k=1,
{ψi}∞i=1 and {ψ′

k}∞k=1, the normalized STCC between the two
subchannel gains hlp(t) and hmq(t), defined as ρlp,mq(τ) =
E[hlp(t)h

∗
mq(t+τ)]/(ΩlpΩmq)

1/2, can be written as the fol-
lowing form:

ρlp,mq(τ)= lim
N ′→∞

(1 − η)

N ′

N ′

∑

k=1

E[g′2k ] exp
{

−j 2π

λ
(ξ′pk−ξ′qk+ξ

′
kl

−ξ′km) − j2πfd cos(ϕ′
k − γ)τ

}

+ lim
N→∞

η

N

N
∑

i=1

E[g2
i ] exp

{

−j 2π

λ
(ξpi−ξqi+ξil−ξim)−j2πfdcos(φi − γ)τ

}

. (2)

For not so small N ′ and N , the small power contributions
from Si and S′

k, out of the total power Ωlp, are proportional
to E[gi

2]/N and E[g′k
2
]/N ′ respectively. This is equal to

the infinitesimal powers coming from the differential angles
dφ and dφ′ with probabilities fMS(φi)dφ and fBS(φ′k)dφ′,
respectively, i.e. 1

NE[g2
i ] = fMS(φi)dφ and 1

N ′
E[g′2k ] =

fBS(φ′k)dφ′ (see p. 23 of [9]), where fMS(·) and fBS(·) are the
PDF’s of the AoA and AoD of the MS and BS respectively.
Then Eq. (2) can be represented by the following integral form:

ρlp,mq(τ)=(1−η)
∫ π

−π

exp
{

− j2π

λ
(ξ′px−ξ′qx+ξ′xl−ξ′xm)

− j2πfd cos(ϕ′
x − γ)τ

}

fBS(x)dx+ η

∫ π

−π

exp
{

− j2π

λ
(ξpy

−ξqy+ξyl−ξym) − j2πfd cos(y − γ)τ
}

fMS(y)dy, (3)

where x and y denote respectively independent angular vari-
ables φ′k and φi; Note that, for example, ξ′px is the length
of the path between the antenna element BSp and the point
on the ring of scatterers around the BS, determined by φ′

k,
and so forth. For any given fMS(·) and fBS(·), Eq. (3) can be
calculated numerically, according to the following relations,
based on the application of the law of cosines in appropriate
triangles in Fig. 2.

ξ′2px =(δ2pq/4)+R
′2−δpqR

′ cos(αpq−x)
ξ′2qx =(δ2pq/4)+R

′2+δpqR
′ cos(αpq−x)

ξ′2xl =(d2
lm/4)+ξ

′2
x −ξ′xdlm cos(v−βlm)

ξ′2xm =(d2
lm/4)+ξ

′2
x +ξ′xdlm cos(v−βlm)

ξ2py =(δ2pq/4)+ξ
2
y−ξyδpq cos(αpq−w)

ξ2qy =(δ2pq/4)+ξ
2
y +ξyδpq cos(αpq−w)

ξ2yl =(d2
lm/4)+R

2−dlmR cos(y−βlm)

ξ2ym =(d2
lm/4)+R

2+dlmR cos(y−βlm), (4)

in which v and w denote ϕ′
k and ϕi, whereas ξ′x and ξy are

continuous versions of ξ′k and ξi, shown in Fig. 2). Besides,
for any given x, v and ξ′x can be determined by the application
of the law of sines to the triangle O′S′

kO

D/ sin(v−x)=R′/ sin(π − v)=ξ′x/ sin(x). (5)

In a similar manner, for a given y,w and ξy can be calculated
by the application of the law of sines in the triangle O′SiO

D/ sin(y−w)=R/ sin(w)=ξy/ sin(y). (6)

The assumption D � max(R′, R) � max(δpq, dlm) is true
in many practical cases of interest. We use the approximate
relations

√
1 + χ ≈ 1 + χ/2, sin(χ) ≈ χ and cos(χ) ≈ 1,

when χ is small enough to simplify (4). To begin with, the
first equation in (6) yields w ≈ ∆sin(y) as w and ∆ are
small, and the first equation in (5) yields π − v ≈ ∆′ sin(x).
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Fig. 2. Detailed version of Fig. 1

As a result, (4) can be written as:

ξ′px≈R′−(δpq/2) cos(αpq−x)
ξ′qx≈R′+(δpq/2) cos(αpq−x)
ξ′xl≈ξ′x+(dlm/2)[cos(βlm)−∆′ sin(βlm) sin(x)]

ξ′xm≈ξ′x−(dlm/2)[cos(βlm)−∆′ sin(βlm) sin(x)]

ξpy ≈ξy− (δpq/2)[cos(αpq)+ ∆ sin(αpq)sin(y)]

ξqy ≈ξy+ (δpq/2)[cos(αpq)+ ∆ sin(αpq)sin(y)]

ξyl≈R−(dlm/2) cos(y−βlm)

ξym≈R+(dlm/2) cos(y−βlm). (7)

In this paper we consider two independent von Mises
distributions for fBS(·) and fMS(·) (see [4] for the definition
of von Mises distribution). This, together with (7), reduces
the STCC function in (3) to the following key closed form
expression:

ρlp,mq(τ) ≈ (1−η) exp
{

− j[blm cos(βlm) − a cos(γ)]
}

I0(κ′)

× I0

(

{

κ′2− a2∆′2 sin2 γ − b2lm∆′2 sin2(βlm) − c2pq

− 2blmcpq∆
′ sin(αpq) sin(βlm) + 2a∆′ sin(γ)[cpq sin(αpq)

+blm∆′ sin(βlm)]−j2κ′[a∆′ sin(µ′) sin(γ)−blm∆′ sin(βlm)

× sin(µ′)−cpq cos(αpq −µ′)]
}1/2

)

+η
exp

{

j[cpq cos(αpq)]
}

I0(κ)

× I0

(

{

κ2 − a2 − b2lm − c2pq∆
2 sin2(αpq) + 2cpq∆sin(αpq)

×[a sin(γ)−blm sin(βlm)]+2ablm cos(βlm−γ)−j2κ[a cos(µ

−γ)−blm cos(βlm−µ)−cpq∆sin(αpq) sin(µ)]
}1/2

)

, (8)

where a = 2πfdτ , blm = 2πdlm/λ, cpq = 2πδpq/λ, I0(·) is
the zeroth-order modified Bessel function, µ′, µ ∈ [−π, π)
account for the mean direction of AoD and AoA respectively,
and κ′, κ≥0 control the angular spreads of AoD and AoA,

respectively. Eq. (8) gives the final closed-form STCC function
of the new two-ring model. Comparison of this model with
measured indoor MIMO data is carried out in Section IV. For
indoors, due to the low mobility of the receiver, we set fd =0,
which simplifies Eq. (8) significantly.

IV. COMPARISON OF THE MODEL WITH DATA

We now apply the previously discussed correlation model
in Eq. (8) to the data collected at Brigham Young University.
Details of the measurement campaign and room layouts can be
found in [10]. The MIMO channel was 10×10, with the same
λ/4 element spacing at both the transmit and receive arrays.

Before computing the correlation matrix, some kind of
normalization is necessary to remove the effect of path loss.
In [11], the normalization is done according to

√
n′nH(l)

‖H(l)‖F
for

each l, where H(l) is a snapshot of the 10×10 channel matrix
at time instant l, and n and n′ are the number of MS and BS
elements, respectively, and ‖ · ‖F is the Frobenius norm. In
[12], normalization is done to guarantee the so-called single-
input single-output (SISO) gain

L−1
L
∑

l=1

‖ H(l) ‖2
F = n′n, (9)

where L is the total number of snapshots available. These
methods can not guarantee equal unit power for each sub-
channel, which we need to compare our model in (8) with
data. In this paper, the normalization is done on a subchannel
by subchannel basis such that each subchannel has zero mean
and unit variance, i.e., hij(l)−mij

σij
, where mij and σ2

ij are the
mean and variance of the ijth subchannel, calculated from
{hij(l)}L

l=1.

A. Correlation

Here we consider four different correlations, i.e., parallel,
crossing, transmit and receive correlations, defined by the



following equations:

ρparallel(τ),E[hlp(t)h
∗
(l+n)(p+n)(t+ τ)]

ρcrossing(τ),E[hlp(t)h
∗
pl(t+ τ)]

ρTx(τ),E[hlp(t)h
∗
lq(t+ τ)]

ρRx(τ),E[hlp(t)h
∗
mp(t+ τ)]. (10)

These correlations have been estimated from the data, for each
possible antenna spacing, over all possible antenna elements.
The correlation values obtained are then averaged over all the
relevant data sets for different locations. For data collected on
11/07/00, there are 24 locations, 20 sets per location, and 124
snapshots of the 10×10 channel matrix per set; For 11/08/00,
we consider the first 3 locations, 63 sets totally, and 124
snapshots of the 10×10 channel matrix per set.

To estimate the parameters of the new model, Λ =
(∆,∆′, κ, κ′, µ, µ′, η), the channel correlation matrix, defined
by

RH = E[vec(H)(vec(H))H ], (11)

needs to be estimated, where (·)H is the complex conju-
gate transpose and vec(·) is a column vector constructed by
stacking the columns of its matrix argument. The parameter
vector Λ is then estimated via a numerical least-square search,
i.e., minΛ‖R̂H − RH(Λ)‖F , in which R̂H is the estimate
of the correlation matrix, whereas RH(Λ) is constructed
according to Eq. (8). For 11/07/00 and 11/08/00, the estimated
parameters are Λ̂ = (π/3, π/6, 0, 0.5, 0, 5π/8, 0.2) and Λ̂ =
(π/3, π/6, 0, 0, π, 0, 0.2), respectively. Note that the directions
of transmit and receive arrays are determined from room
layouts, which are α = 168o and β = 78o, respectively. They
are same for 11/07/00 and 11/08/00 due to the same room
layout.

As shown in Fig. 3 and 4, the two-ring model provides a
good match to all kinds of correlations defined in Eq. (10).

B. Channel Capacity

Assume that H is known at the receiver but not at the
transmitter. If the total finite transmitted BS power, PBStotal

,
is allocated uniformly to all the n′ antennas of the BS array ,
then the capacity of the MIMO channel, in bits/s/Hz, is given
by [1]

C/W = log2

(

det

(

In +
PBStotal

n′Pnoise
HH

H

))

, (12)

where det(·) is the determinant and Pnoise is the noise power
at each receive element. Note that the capacity in Eq. (12) is a
random variable whose distribution depends on the distribution
of the random complex matrix HH

H .
In literature, the SNR, which is equal to PBStotal

/Pnoise, is
usually assumed to take any value between 10 dB and 20 dB
and is kept constant for all capacity calculations. This way,
the effect of SNR only appears as a scaling factor for all
the curves. Obviously, higher values for SNR mean higher
capacities. For the collected data available, SNR was found to
be close to 30 dB. For consistency with other capacity curves,
widely found in literature, we chose SNR=20dB.

In the Fig. 3 and 6, which correspond 11/07/00 and
11/08/00 respectively, four capacity distributions are shown.
The “ Empirical” capacity distribution has been calculated
according to Eq. (12), using the collected snapshots of H.
However, the “ Two-ring model” and “ Empirical Corr. Ma-
trix” capacity distributions have been obtained by first col-
oring a simulated white Gaussian vector, i.e., left multiply-
ing vec(Hiid) by the Cholesky factors R

1/2
H

(Λ̂) and R̂
1/2
H

,
respectively, and then inserting it into (12). Obviously the
“ IID” capacity distribution has been obtained via inserting
the simulated Hiid into (12).

From Fig. 3 and 6, one can conclude that the capacity
predicted by our parametric model, is almost the same as
the capacity predicted by the empirical channel correlation
matrix. However, our model characterizes the channel with
few physical parameters, whereas the empirical channel cor-
relation matrix, which is a 100×100 matrix, does not provide,
directly, information about the channel structure and physical
parameters of interests such as the mean AoD and AoA, angle
spreads, etc. Obviously, a system designer can easily study the
effect of different channel parameters on the capacity , using
our parametric model.

Interestingly, there is a gap between the “ Empirical” capac-
ity distribution and the other two distributions. This probably
could be improved by using a proper complex non-Gaussian
model for the channel matrix H.

V. CONCLUSION

In this contribution a novel parametric model for indoor
MIMO channels is proposed. This model yields a closed-
form and mathematically tractable expression for the spatio-
temporal cross-correlation among the subchannels, in terms of
few physical parameters that characterize the indoor channel.
Comparison of this correlation model with the indoor MIMO
data has demonstrated the utility of the model in describing
real data. The theoretical results of this paper, supported by
empirical observations, provide useful tools and guidelines for
efficient design of indoor multi-antenna transmission systems.
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Fig. 3. Comparison of the new MIMO model with empirical correlations
(11/07/00 data)

Fig. 4. Comparison of the new MIMO model with empirical correlations
(11/08/00 data)

Fig. 5. Comparison of the new MIMO model with empirical capacity
(11/07/00 data)

Fig. 6. Comparison of the new MIMO model with empirical capacity
(11/08/00 data)




