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Abstract— In antenna diversity systems, mutual coupling
of closely-spaced antennas alters the element radiation and
impedance properties, thereby impacting the system diversity
performance. Past studies have emphasized the effect of the
distorted pattern and largely neglected the effect of altered
impedance (and therefore receive signal-to-noise ratio) on the
diversity behavior. Here, we present a new network analysis
which facilitates a complete characterization of the system and
comparison of diversity performance for various impedance
terminations. Representative results reveal that for closely-spaced
antennas, the termination can play a noticeable role in determin-
ing the diversity gain offered by coupled antennas.

I. INTRODUCTION

Antenna arrays play a crucial role in wireless communica-
tions over multipath fading channels, with antenna diversity
being the topic of considerable research for many decades
[1]. When using multiple antenna elements for diversity
implementation on small personal communications devices,
mutual coupling between the closely-spaced antenna elements
alters both their terminal impedance and radiation pattern
characteristics. Past studies on the impact of this coupling
on diversity performance emphasize the influence of distorted
element radiation pattern [2]-[6] and neglect the effect of the
altered impedance on the received power. Even when this latter
effect is included, typically only a single termination [7], [8]
or a limited set of terminations [9] is considered.

In this paper, we present a network theory analysis of cou-
pled diversity antenna systems that includes the impact of both
radiation pattern and antenna termination. This framework
allows comparison of the diversity performance for different
terminations, including an optimal multi-port conjugate match.
The analysis shows that this optimal match not only maximizes
power to the load, but also perfectly decorrelates the received
branch signals. Computational results for mutually-coupled
dipoles demonstrate the achievable diversity performance for
different antenna terminations. These results indicate that for
close spacing, the termination can play a key role in the
achievable system diversity performance.

II. COUPLED ANTENNA NETWORK REPRESENTATION

A. S-Parameter Network Description

For high frequency systems such as mutually-coupled an-
tenna networks, the S-parameter matrix representation [10]
provides a convenient analysis framework. In this description,

the voltages and currents on each of the N ports are decom-
posed into inward (a) and outward (b) traveling waves that
satisfy the relation b = S a, where S is the N×N S-parameter
matrix or S-matrix. The voltage on (vn) and current into (in)
the nth port are related to an and bn according to

vn = Z
1/2
0 (an + bn) in = Z

−1/2
0 (an − bn), (1)

where Z0 is a normalizing impedance.
Consider now the network depiction of the coupled receiv-

ing antenna system shown in Figure 1. In this diagram, each
element of the coupled array is characterized by a generator
whose signal passes through a coupling matrix Sc with a block
representation

Sc =

[
Sc,11 Sc,12

Sc,21 Sc,22 = SS

]
, (2)

where 1 and 2 refer to input and output ports respectively.
Here, we have used the notation Sc,22 = SS to emphasize
that this block represents the traditional “source termination”
encountered in S-parameter circuit analysis. It is also notewor-
thy that SS is the coupled S-parameter matrix measured at the
antenna element input ports. Rather than try to characterize the
remaining blocks of Sc, we will simply represent the excitation
signal at the antenna ports as bS so that

a1 = SSb1 + bS . (3)

The N -port antenna in Figure 1 is attached to the M -
port load network SL through a matching network with S-
parameter matrix SM consisting of blocks Sij , i, j ∈ 1, 2
arranged in a form similar to that in (2). Here, we will consider
networks having the same number of input and output ports
(M = N ). The input reflection coefficient which will be used
in later analysis can be expressed as

Γin = S11 + S12(I − SLS22)−1SLS21. (4)

B. Lossless Matching Networks

Lossless, passive matching networks are of particular inter-
est since they exhibit low noise figures. Such networks must
satisfy SH

MSM = I , leading to relationships between the sub-
blocks Sij . Substitution of the singular value decomposition
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Fig. 1. System model of a coupled diversity antenna array connected to a
multiport matching circuit and individual loads.

(SVD) of these sub-blocks Sij = U ijΛ
1/2
ij V H

ij yields the
constraints

V 21Θ21 = V 11 Λ21 = I − Λ11

V 12Θ12 = V 22 Λ12 = I − Λ22, (5)

where Θ21 and Θ12 are diagonal phase shift matrices with
arbitrary complex elements of unit magnitude.

III. DIVERSITY PERFORMANCE

A. Received Signal Covariance

The performance of antenna diversity systems depends
upon the signal strength on each antenna branch as well
as the signal correlation between branches. To assess these
metrics for different degrees of antenna coupling and receiver
terminations, we will compute the covariance matrix for the
voltages received on each branch. For the network in Figure 1
with Z0 = 1, the received voltages are given by

vL = b2 + a2 = (I + SL)(I − S22SL)−1S21a1 (6)

where we have used that b2 = S22a2 +S21a1 and a2 = SLb2.
Using (3) with b1 = Γina1 in (6) leads to

vL = (I + SL)(I − S22SL)−1S21(I − SSΓin)−1︸ ︷︷ ︸
Q

bS . (7)

The covariance matrix is therefore given as RL =
E

{
vLvH

L

}
= Q RSQH , where RS = E

{
bSbH

S

}
is the

covariance of bS and E {·} represents an expectation.
To relate bS to the physical antenna properties, consider

an antenna array consisting of N arbitrary antenna elements
embedded in a reciprocal medium. The far-field radiation
pattern of the array is

E(Ω) =
∑

n

Fn(Ω) in = F (Ω) i, (8)

where in is the current on the nth element, Fn(Ω) is the
vector far-field radiation pattern of the nth element when all
other elements are open-circuited (ik = 0 for k �= n), and Ω
represents a direction in solid angle. F (Ω) represents all of
the far-field patterns (one per column) stacked into a single
matrix.

Now, assume a plane wave arrives from the solid angle
direction Ω0 with complex field strength E0 = A exp(jφ) (A
real) and electric field polarization vector ê. If the antennas are
open-circuited, then by reciprocity the voltages on the antenna
elements are given by

v = 2 c1E0F (Ω0)T ê, (9)

where c1 is a complex constant. Equating this response to the
voltage obtained assuming that port 1 in Figure 1 is open-
circuited, we arrive at the expression

bS = c1E0(I − SS)F (Ω0)T ê = c1E0F
′(Ω0)T ê (10)

where we have included the impedance mismatch factor (I −
SS) in the effective radiation pattern F ′(Ω0).

The covariance of bS may now be written explicitly as

RS = |c1|2
∫

dΩ dê dA p(Ω, ê, A)A2F ′(Ω)T ê êT F ′∗(Ω)

(11)
where p(Ω, ê, A) represents the probability density of the
incident field angle of arrival, polarization, and amplitude.
For the following, we make the common assumptions that:
1) the antennas and incident waves have the same single
polarization, 2) arrival angles are restricted to and uniformly
distributed on a solid angle sector ∆Ω, and 3) field amplitudes
are independent of arrival angle and have a variance E2. Under
these contraints, we have

R∗
S = |c1|2E2

∫
∆Ω

dΩ F ′H(Ω)F ′(Ω)∫
∆Ω

dΩ
= c2P , (12)

where c2 = (|c1|2E2)/
∫
∆Ω

dΩ. The covariance of bL can now
be written as

RL = c2Q P ∗QH . (13)

Sometimes a more descriptive model of the channel is
available (such as a path-based model [11]). In this case, bS

can be computed from (10), with E0 and ê obtained from
the model, for a set of Monte Carlo channel realizations. The
covariance RS = E

{
bSbH

S

}
can then be constructed using a

sample mean to estimate the expectation.

B. Source Covariance for Full Angular Spread

Under the special case that the multipath arrival sector
∆Ω extends over the full angular range of the propagation
environment, a simplification can be introduced. For the array
operating as a transmitter, the power radiated by the array is
given as

Prad = c3

∮
dΩ ‖E(Ω)‖2 = c3a

HPa (14)

where c3 is a real constant and we have used (1) and (8).
For a lossless antenna, the power radiated is equal to the

power delivered to the antenna network Pnet = ‖a‖2−‖b‖2 =
aH

(
I − SHS

)
a. Equating (14) to this expression and using

(12) leads to the source covariance

RS = c2P
∗ = c(I − SH

S SS)∗ = c(I − SSSH
S ), (15)



where c = c2/c3 and the last equality stems from assuming
that the antenna and transmission media are reciprocal (SS =
ST

S ). The key observation concerning (15) is that under the
propagation conditions outlined, the covariance matrix can
be computed without resorting to integration of the radiation
patterns, as previously observed in [8].

C. Simplifications for Practical Terminations

This section shows how the general equations for the co-
variance matrix is simplified for several practical terminations.
For all cases except for open-circuited terminations, we use
the (realistic) load network consisting of one resistor of value
Z0 = 1 on each port, leading to SL = 0. Since this results in
Γin = S11, the matching network is used to create the desired
antenna port terminations.

Open-Circuit Terminations: For open-circuit termination, the
matching network is removed (S11 = S22 = 0, S12 = S21 =
I) such that Γin = SL = I . Under these conditions, the
covariance matrix simplifies to

RL,oc = 4(I − SS)−1RS(I − SH
S )−1. (16)

Characteristic Impedance Terminations: In this case, we again
remove the matching network but use Γin = 0. This results in
Q = I such that

RL,Z0 = RS . (17)

Self-Impedance Match: Self-impedance match refers to the
condition where port n is terminated in the self-impedance
of antenna n. In this case, Γin = S11 = diag{S∗

S}, where
the diag{·} operator creates a diagonal matrix from the diag-
onal entries of the operand. The resulting covariance matrix
becomes

RL,self = S21(I −SSS11)−1RS(I −SSS11)H(−1)SH
21. (18)

D. Optimal Hermitian Match

Maximizing the power transfer to the load requires a multi-
port conjugate match, which for our network means that S11 =
SH

S [8]. As a framework for analysis, let Γin = S11 = SH
S ,

which leads to the covariance matrix

RL,opt = S21(I − SSSH
S )−1RS(I − SSSH

S )−1SH
21. (19)

Using the conditions for lossless matching networks from
Section II-B, the two relevant blocks of the matching network
are represented using

S11 = SH
S = V Λ1/2UH

S21 = U21(I − Λ)1/2Θ21U
H . (20)

These conditions transform (19) to the form

RL,opt = U21Θ21(I − Λ)−1/2UHRSU

×(I − Λ)−1/2ΘH
21U

H
21. (21)

Under the conditions considered in Section III-B where
multipath components arrive uniformly from all angles of
arrival, we use (15) along with (20) to obtain

RS = cU(I − Λ)UH . (22)

Placing this result in (21) yields the simplified expression

RL,opt = cU21Θ21ΘH
21U

H
21 = cI. (23)

This result implies that under these circumstances, the op-
timal Hermitian match perfectly decorrelates the signals on
the loads. Other studies have noted the reduced correlation
associated with termination [2], [9], but have not provided a
framework for arriving at this perfectly diagonal covariance.
It is important to realize that this decorrelation is simply the
result of recombination of the received signals, and therefore
does not necessarily enhance the diversity performance of the
system. Nevertheless, it is interesting to be able to mathe-
matically predict this behavior using the proposed analysis
approach.

When full angular spread does not exist, the optimal
matching network can be further specified to diagonalize the
covariance matrix. Consider again (21) and let

T = (I − Λ)−1/2UHRSU(I − Λ)−1/2 = UT ΛT UH
T (24)

where the last equality represents the eigenvector decomposi-
tion (EVD) of T . Since U21Θ21 is arbitrary as long as it is
unitary, we can choose U21Θ21 = UH

T to obtain

RL,opt = ΛT , (25)

the diagonal matrix of eigenvalues of T . In the case of two
vertically oriented dipoles, the problem symmetry leads to
2 × 2 real Toeplitz symmetric matrices that share common
eigenvectors. The result is that the diagonalization can be
accomplished by choosing U21 = I .

IV. COMPUTATIONAL EXAMPLES

To demonstrate application of the analysis framework devel-
oped in this paper and to illustrate the impact of termination
on the diversity performance of mutually coupled antennas,
we will explore a receive array consisting of two coupled
dipoles. While closed-form expressions for coupled dipole
impedance matrices exist (for reasonable antenna spacings),
expressions for the patterns do not, motivating the use of full-
wave electromagnetic solutions. Furthermore, simple thin-wire
simulations assume that the current does not vary in azimuth
around the wire, an assumption that is violated for very
closely-spaced dipoles [12] leading to inaccurate impedance
calculations.

In this work, it is desired to characterize the coupled
antennas as the spacing is reduced to zero. As a result, we
have chosen to use the finite-difference time-domain (FDTD)
method [4] to perform detailed simulations that return both
S-parameter and radiation pattern descriptions for the dipole
antennas. In this analysis, the z-oriented half-wave (total-
length) dipoles with wire radius 0.01λ and separated by a



distance d are located at the center of the computational
domain. Because we are considering narrowband systems,
single-frequency antenna excitation is used. The FDTD grid
uses 80 cells per wavelength in the z direction and 200 cells
per wavelength in the x and y directions. This finer resolution
is required to adequately model the current variations in the
azimuthal direction on the finite-radius wire for close antenna
spacings.

Because of the fine grid resolution, a relatively small buffer
region of only a quarter wavelength (to minimize simulation
memory) is placed between the antennas and the terminating
8-cell perfectly matched layer (PML) absorbing boundary
condition (ABC). The impact of this small buffer region was
investigated by reducing the x and y resolution to 100 cells per
wavelength and comparing impedances and radiation patterns
for half- and quarter-wavelength buffer thicknesses with a
dipole spacing of 0.13λ. The resulting fractional change in self
and mutual impedances was only 1.4× 10−4 and 1.9× 10−4,
respectively. The maximum fractional change in the radiated
electric field intensity when a single antenna was excited was
1.5 × 10−4.

Based upon the formulation in Section III-A, pattern com-
putations are performed when one antenna is excited while
the second is terminated in an open circuit. The antenna S-
parameter matrix SS is computed with the antennas terminated
in Z0. Multipath arrivals are assumed confined to the hori-
zontal plane in this study. Unless otherwise specified, arrival
angles are uniformly distributed within this plane (0 ≤ φ <
2π). As a result, the radiation patterns are normalized such
that ∫ 2π

0

P (θ = π/2, φ) dφ = 1 (26)

where P (θ, φ) is the antenna power pattern. This same nor-
malization is applied to an array of uncoupled dipoles used as
a baseline for quantifying diversity performance.

As a first example, it is interesting to compute the corre-
lation coefficient of the signals on the two antennas. This is
simply derived from the covariance matrix using

ρ =
RL,12√

RL,11RL,22

, (27)

where RL,ij represents the i, jth element of the computed
load covariance matrix. Figure 2 plots the variation of this
quantity as a function of antenna spacing for the different
terminations considered in this work. For the optimal match,
the matrix U21 is chosen as U11 and I for the cases where
RL is not diagonal and diagonal, respectively. The reduced
correlation afforded by proper termination is clearly apparent
in these results. It is noteworthy that all terminations result in
reduced correlation as compared with the result obtained for
uncoupled dipoles, confirming the results of other research [5],
[6], [9]. However, it is important to point out that this study has
included the effects of the mutual impedance and terminations
in the analysis and provides a comprehensive examination of
this effect for a variety of termination types.
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Fig. 2. Plot of branch signal correlation as a function of antenna spacing
for two coupled dipole antennas terminated with various loads. The result for
independent dipoles is shown for comparison.

The correlation coefficient provides a partial indication of
the system diversity performance, since the power on each
branch is also an important factor. In order to investigate
the full diversity benefit, we utilize the concept of Effective
Diversity Order introduced in [7]. In this metric, the diversity
benefit is measured in comparison to what is possible using
two equal power and uncoupled antennas. For this study,
the diversity order is determined from the data at the 1%
level on the diversity cumulative distribution functions and
assuming maximal ratio combining. For the coupled antennas,
diversity performance is computed using the eigenvalues of the
covariance matrix to represent two independent branches with
unequal average SNR. Full details on this metric are provided
in [7].

Figure 3 shows the diversity order as a function of spacing
for the different termination conditions. As can be seen, for
small antenna spacings, improved matching leads to improved
diversity performance. Most striking is the fact that the optimal
matching circuits lead to better performance than what is
obtainable with independent, equal power branches for small
antenna spacings (characterized as a diversity order > 2). This
behavior stems from the fact that optimally matched coupled
antennas can capture more power than can be collected by
two independent dipoles. One reasonable explanation for this
increased effective aperture is that a portion of the power
scattered by each receiving antenna can be recaptured by
the adjacent antenna. This metric also reveals the expected
result that although the matching network can diagonalize the
covariance matrix, this diagonalization comes at the expense
of unequal branch SNR and therefore does not facilitate
additional diversity gain. For this reason, the two Hermitian
match results lie on top of each other in the plot. For larger
spacings, clearly the match becomes less important, as the
curves for the different terminations tend to the same value.
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Fig. 3. Plot of effective diversity order as a function of antenna spacing for
two coupled dipole antennas terminated with various loads. Correlations are
computed assuming arrivals are uniformly distributed within the horizontal
plane.

Finally, Figure 4 shows the diversity order as a function of
spacing for when the channel is obtained using a statistical
path-based channel model [11]. This model, which provides
the angles and times of arrival for each individual multipath,
structures these arrivals as clusters in space and time. In the
simulations, 5000 channel realizations are used to estimate the
covariance matrix RS for each antenna separation. While there
certainly are some slight differences between the results in
Figures 3 and 4, the main conclusions obtained from this more
practical example are the same as those drawn from the more
simplistic, previous computation. Note that one explanation for
this similarity is that when 5000 channels are considered, the
statistical distribution of the arrival angles tends to be uniform
despite the clustered nature of a single realization.

V. CONCLUSION

This paper has presented a new analysis of multi-port
matching networks, applicable to the mitigation of mutual
coupling in compact antenna arrays. The framework leads
to relatively straightforward expressions for the covariance
matrix of signals received at the antenna terminations. These
results were used in conjunction with electromagnetic anal-
ysis of coupled dipole antennas to demonstrate the potential
diversity benefit offered by two-element arrays for different
possible termination conditions. The results revealed that for
close antenna spacing as might be encountered on portable
devices, proper matching plays a noticeable role in deter-
mining the system performance. Perhaps more importantly,
this framework provides a comprehensive analysis tool for
characterizing and analyzing the performance of arbitrary cou-
pled antenna systems, including all three relevant aspects of
radiation pattern, mutual impedance, and antenna termination.
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Fig. 4. Plot of effective diversity order as a function of antenna spacing
for two coupled dipole antennas terminated with various loads. Correlations
are computed from Monte Carlo simulations using a statistical path-based
propagation model.
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