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Abstract— A diffuse spectrum estimation method is presented
that is suitable for direction finding for channels with diffuse
electromagnetic scattering. The diffuse channel may be the result
of physical phenomena (e.g., rough-surface scattering) or limited
angular and temporal discrimination of the channel probing
equipment. The method decomposes the ideal non-coherent
spectrum into a sum of power-weighted basis functions. The basis
function coefficients are obtained through a linear programming
solution. The method is applied to recent radio channel data
collected on the Vienna University of Technology campus. Param-
eters for a path-based model are extracted using the technique.
Site-specific spectra and global capacity comparisons indicate the
utility of this new method.

I. I NTRODUCTION

The double-directional channel concept has emerged as
a powerful system-independent representation of point-to-
point wireless channels [1]. When the channel is correctly
characterized by the double-directional transfer function, the
response of the channel for arbitrary antenna arrays may then
be computed. In previous work, the double-directional channel
has been assumed to consist of a discrete sum of plane waves,
referred to herein as thespecular assumption. In this case,
parametric techniques such as ESPRIT [2], [3] can be used to
jointly compute direction of departure (DOD) and direction of
arrival (DOA) for each multipath component.

Unfortunately, methods assuming specular scattering break
down in environments that are inherentlydiffuse. A diffuse
channel may result from physical scattering phenomena, such
as rough-surface scattering. In very rich scattering environ-
ments, the number of multipath components may be too large
to be individually resolved by the finite number of antennas
and frequency samples, leading to a quasi-diffuse channel,
regardless of the underlying scattering mechanism. In diffuse
environments, conventional beamforming techniques may be
employed [3], yielding a continuous spectrum for the direc-
tional channel response. For double-directional probing, a joint
spectrum is appropriate [4]. DOAs and DODs then loosely

correspond to the peaks of the joint spectrum. However, such
methods are somewhat problematic from a double-directional
modeling perspective, since the continuous joint spectrum
represents an infinite set of parameters.

In this work, we present a new estimation technique that
represents the directional channel response as a set of arbitrary
basis functions. These basis functions correspond roughly to
clustersof multipath departures/arrivals, where each multipath
component cannot be identified individually. We show that
when the underlying functional form of the the clusters is
known, the method identifies DOD/DOA and cluster angular
spread with high accuracy. The method fits well with the
double-directional concept, since the channel is represented by
a small set of parameters, i.e. cluster shape, DOA/DOD, and
cluster angular spread. The method is general and applicable to
arbitrary transmit and receive arrays. Finally, due to the natural
compatibility with multipath cluster models, such as the Saleh-
Valenzuela angular (SVA) model [5], [6], the method allows
model parameters to be computed from data and realistic
channel covariance matrices to be generated synthetically.

II. CONVENTIONAL DIRECTIONAL ESTIMATION

Consider a very rich scattering environment where mul-
tipath components arrive in Laplacian-shaped clusters with
15◦ angular spread. The channel is probed with a single
omni-directional transmitter. The receive array is a uniform
linear array (ULA) consisting of0.4λ separated directional
antennas, each having a 3 dB beamwidth of120◦. We can
obtain 360◦ coverage by rotating the array to 3 different
positions separated by120◦ as depicted in Figure 1. The
solid line in Figure 2 depicts one possible realization of
the true spectrum, generated with the single-directional SVA
model. Given a receive element covariance matrix, how do we
estimate directions of arrival?

We may first think of applying a parametric technique such
as ESPRIT. Since we have a ULA structure, we can apply
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Fig. 1. Directional 8-element array (8 active elements and 2 dummy elements)
assuming three possible orientations.
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Fig. 2. Example illustrating the difficulty of directional estimation in a diffuse
environment.

ESPRIT to each of the three separate orientations. Since the
spectrum is diffuse, the model order is very difficult to specify.
Simply choosing three arrivals for each look direction, we
obtain the crosses in Figure 2, indicating arrival directions and
powers. Readily apparent are artifact arrivals and missed weak
arrivals, likely due to the violation of ESPRIT’s underlying
plane wave model.

Another option is to apply a conventional spectral method
such as Capon’s beamformer, indicated by the dashed line
in Figure 2. Here, we apply the beamformer over120◦ for
each of the three ULA orientations. Encouragingly, Capon’s
beamformer generates peaks where the true spectral peaks
lie. Although the peak smoothing and loss of small peaks
with Capon’s beamformer may be acceptable, how do we
characterizearrivals from such a picture? Ideally, we would
like to parameterize the spectrum in terms of arrival angles
and angular spreads. Since Capon’s beamformer only gives an
estimate of the spectrum, an additional estimation step would
be required to obtain these parameters.

III. D IFFUSESPECTRUMESTIMATION

The key to this new technique is to assume from the outset
that the underlying spectrum is diffuse. That is, the directional
channel response is characterized by a continuous power spec-
trum, and under small-scale fading conditions (small move-
ment or frequency sweep), no permanent phase relationship
exists between power propagating in distinct directions. For
simplicity, we limit the discussion here to single-directional
estimation, although the techniques may be naturally extended
to the double-directional case.

A. Relation to Cluster Models

To motivate this diffuse model, let us consider a single-
directional version of the SVA model from [5]. The elements
of the covariance matrix may be written as

Rmn =
∫ ∞

−∞
gm(θ)g∗n(θ) exp[jψmn(θ)]

L∑

`=1

|β`|2f(θ − θ`)

︸ ︷︷ ︸
A(θ)

dθ,

(1)
where gm(θ) is the (complex field) gain pattern of themth
antenna,exp(·) is an array factor term,L is the number of
clusters,|β`|2 is the power of thè th cluster, andf(θ) is the
probability density function (pdf) of multipath arrival angles
within the clusters. The termA(θ) is the ideal arrival spectrum
that would be measured by an array with infinite angular
resolution, and this spectrum is diffuse because infinite rays
within each cluster were assumed.

B. Problem Definition and LP Solution

In rich-scattering environments, this model is plausible and
motivates writing the diffuse spectrum as a sum of power basis
functions or

A(θ) =
NB∑

i=1

aiAi(θ), (2)

whereNB is the number of basis functions,ai and Ai(θ)
are the power and angular shape associated with theith basis
function. In general, we may have an overcomplete set of basis
functions. SubstitutingA(θ) into (1), we obtain the relation

Rmn =
NB∑

i=1

ai

∫ ∞

−∞
Ai(θ)gm(θ)g∗n(θ) exp[jψmn(θ)]

︸ ︷︷ ︸
Qmn,i = Qki

dθ. (3)

Stackingm and n into a single indexk = m + (n − 1)N ,
whereN is the number of antennas, we obtain the matrix
equationr = Qa. Sincea is always real, we can split real
and imaginary parts ofr andQ to obtain

[
rR

rI

]
=

[
QR

QI

]
a, (4)

which may be written asr′ = Q′a. The obvious way to
solve this linear equation is through a simple (pseudo) matrix
inverse. Unfortunately, solutions that minimize the 2-norm of
a tend to distribute significant energy into all basis coefficients,



leading to an intractably high model order. Even worse, a
simple inverse does not constrain the coefficients (power)
to be positive. On the other hand, assuming equality can
be achieved, this equation can be solved directly by linear
programming (LP). A cost function ofc =

∑NB

i=1 ai minimizes
the 1-norm ofa, favoring a sparse representation [7].

In order to use the method for cluster estimation, we choose
a set of basis functions that coincide with all of the cluster
arrival angles and shapes we think are possible. For example,
Laplacian, Gaussian, and Dirac delta functions might form
a reasonable basis. Given a measuredr and knownQ, the
LP solution returnsa, which contains the estimated power in
each cluster. The sparse nature of the 1-norm will match the
known covariance with only a few basis functions (clusters),
thus producing a tractable and intuitive model.

In this development, we have assumed that relation (3) holds
exactly. Equality may not be possible due to sources of error
such as imperfect estimates ofr or imperfect array calibration.
To alleviate this difficulty, we writer′ = Q′a+ εP − εM and
enforce the bounds0 ≤ εPi ≤ ε+i and0 ≤ εMi ≤ ε−i . The cost
function then is chosen to minimize both the 1-norm ofa and
the absolute error, orc = ca

∑NB

k=1 ak + cε
∑N

i=1(εPi + εMi),
whereca andcε are properly chosen weights. The LP matrix
equation in standard form becomesy = Mx, where

y =




r′

ε+

ε−


 x =




a
εP

εM

p
m




M =




Q′ I −I 0 0
0 I 0 I 0
0 0 I 0 I


 ,

(5)
p andm are vectors of slack variables,I is the identity matrix,
and0 is the zero matrix.

C. Equation Pruning

We may wish to remove some of the equations in (5), due
to redundancy or uncertainty in the covariance matrix. For
example, due to shift-invariance, the covariance matrix of a
ULA only has a single row or column that is unique. Also,
the exact phase relationship between certain antenna elements
may be unknown or imprecise. Pruning the vectorr (as well as
y andM) back by removing elements that are either redundant
or uncertain reduces the number of equations in (5).

D. Example Application

We demonstrate application of the technique by considering
the diffuse spectrum in Section II. Figure 3 depicts the true
cluster arrivals (angle/power) and corresponding spectrum with
boxes and the solid line, respectively. For diffuse spectrum
estimation (DSE), a basis consisting of Laplacian clusters was
chosen with angular spreads of5◦, 10◦, ..., 35◦ and arrival an-
gles of0◦, 2.5◦, ..., 360◦. LP solutions were obtained with the
PCx LP solver. DSE arrivals (basis coefficients) and spectrum
are plotted as crosses and the dotted line, respectively. Notice
that the DSE spectrum is almost exactly the same as the
actual spectrum. However, there is quite a discrepancy between
the estimated and actual cluster amplitudes and angles. This
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Fig. 3. Example application of diffuse spectrum estimation with a full basis
(DSE) and a reduced basis (DSER). Lines represent spectra and symbols
represent cluster arrival angle and power.

problem arises because the actual clusters arrive at angles
that are between the specified basis functions, and a nonzero
coefficient arises on each side. A reduced basis is obtained
by only keeping the basis function with the highest power
when we have two or more adjacent nonzero basis coefficients.
Diffuse spectrum estimation with a reduced basis (DSER)
generates cluster arrivals and spectrum shown by X’s and
the dashed line, respectively. Although the spectrum changes
slightly, the cluster parameters are closer to the true values.

IV. A PPLICATION TO MEASUREDDATA

Now we apply the diffuse spectrum estimation method to
measured indoor wireless data at 5.2 GHz, indicating that
realistic results can be obtained. Further, we estimate the
parameters of the Saleh-Valenzuela angular (SVA) model [5]
and compare resulting modeled and measured capacity pdfs.

A. Channel Measurements

Channel matrices were measured in the electrical engineer-
ing building on the Vienna University of Technology campus
at 5.2 GHz [8]. The transmitter consisted of a positionable
monopole antenna on a20×10 xy grid with λ/2 inter-element
spacing. The receiver employed a directional 8-element ULA
provided by T-Systems Nova GmbH, having0.4λ inter-
element spacing and a 3 dB beamwidth of120◦. The channel
was probed atNF =193 equi-spaced frequency bins covering
120 MHz of bandwidth. The transmitter assumed a single
fixed location in a hallway. The receive array assumed many
different locations in several offices connected to this hallway,
as well as three possible orientations: (1)0◦ (hallway axis),
(2) −120◦, and (3)−240◦. The data set for locationX and
orientation Y is referred to herein asXDY . The transfer
coefficient from thejth transmitter to theith receiver in the
kth frequency bin for orientationY is referred to asH(Y,k)

ij .
For details on the measurements see [4], [8].

Transmit covarianceR(Y )
T and receive covarianceR(Y )

R for



receive orientationY were computed as

R
(Y )
T,j1j2

=
1

NFNR

NF∑

k=1

NR∑

i=1

H
(Y,k)
ij1

H
(Y,k)∗
ij2

(6)

R
(Y )
R,i1i2

=
1

NFNT

NF∑

k=1

NT∑

j=1

H
(Y,k)
i1j H

(Y,k)∗
i2j , (7)

whereNT andNR are the number of transmit and receive
antennas, respectively, and(·)∗ is complex conjugate. To allow
360◦ of angular view at the receiver, a virtual receive array
was created by generating a block diagonal covariance matrix
RR = diag(R(1)

R ,R(2)
R ,R(3)

R ), wherediag(·) creates a block
diagonal matrix from its arguments. Setting off block-diagonal
elements to zero is fine, since these equations were pruned
during estimation. A single transmit covariance matrixRT

for 360◦ of view at the receiver was obtained by averaging
the three receive orientations, orRT = (1/3)

∑3
Y =1 R(Y )

T .
Since ULAs were involved in the measurement, we im-

proved covariance estimates by enforcing the shift-invariance
condition. Specifically, the shift invariant covarianceRSI is
obtained from the standard covarianceR as

RSI
ij =

1
Nij

∑

{`,m:`−m=i−j}
R`m, (8)

whereNij is the number of elements in the sum for theijth
element. After shift invariance is enforced, only a single row
of the covariance matrix (per orientation) need be retained.

B. Example Location

Next, we show the performance of the new technique and
compare to Capon’s beamformer. The basis was the same as
in Section III-D. Cluster parameters were estimated separately
at transmit and receive to provide better covariance estimates
and allow faster convergence of the LP algorithm.

Here, only receive location 9 is considered. For transmit,
a 7×7 element cross array (superposition of two 7-element
ULAs) was formed. Spatial smoothing was performed inx and
y within a10×10 grid to improve the covariance estimates. For
receive, a virtual 24-element array was formed by considering
all orientations as a single array and creating a block diagonal
covariance matrix as explained in Section IV-A.

Figure 4 compares spectra obtained with DSE and Capon’s
beamformer for the transmit side. The main discrepancy
between Capon’s beamformer and the diffuse spectrum es-
timation techniques occurs in the directionθ = 90◦. This
artifact appears to be due to aliasing in the endfire directions
when element spacing isλ/2. Thus, the strong energy in the
θ = 270◦ direction tends to alias into theθ = 90◦ direction.
Over the rangeθ ∈ [180◦, 360◦], Capon’s beamformer and
DSE look similar, with DSE providing a possible resolution
enhancement.

Figure 5 shows the comparison at the receive side. Here,
Capon’s beamformer has been applied separately to the three
ULA orientations, and small discontinuities are present. Spec-
tra for Capon’s beamformer and DSE/DSER look very similar.
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Fig. 4. Estimated transmit spectrum for receive location 9 obtained with
Capon’s beamformer and diffuse spectrum estimation.
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Fig. 5. Estimated receive spectrum for receive location 9 obtained with
Capon’s beamformer and diffuse spectrum estimation.

C. SVA Model Parameter Extraction

The diffuse spectrum estimation method was applied to
measured covariance matrices at all locations to obtain the
model cluster parameters in exactly the same manner as the
previous example. The key parameters to be obtained from the
estimated clusters are the distribution on cluster departure and
arrival angle, cluster decay constant (Γ), and cluster angular
spread at transmit (σT ) and receive (σR). Cluster departure
angle at the transmitter was found to favor propagation down
the hallway, and was approximated with a pdf proportional to
| cos(θ)|, with 0◦ as the axis of the hallway. Cluster arrival
angle appeared to have little directional preference, and was
approximated with a uniform distribution. A simple average
was taken of the cluster angular spread at transmit and receive
to obtainσT = 11◦ andσR = 17◦. The cluster decay constant
was obtained by considering the three strongest clusters for
each location and applying maximum likelihood assuming the
Poisson arrival process with unit arrival rate and exponential
cluster decay, resulting inΓ = 1.5.

D. Capacity pdf Comparisons

To show the plausibility of the extracted SVA model param-
eters, Figure 6 compares the capacity pdfs for an8×8 MIMO
system computed from the measured data (see [8]) and5×104

random realizations of the SVA model. Here capacity was
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Fig. 6. Capacity pdf of all measured channels and those synthesized with
the SVA model.

computed with the water-filling solution assuming an average
SISO SNR of 20 dB. To improve the capacity fit, the decay
constantΓ was increased to 2.0. One of the problems with
estimatingΓ is that the SVA model generates overlapping
clusters, which often look like a single cluster. However, if
two clusters were to overlap in the data, the diffuse estimation
technique would likely only find a single cluster. Therefore,
this estimation method tends to underestimateΓ and the
needed increase is not surprising.

Finally, to demonstrate that the SVA model produces more
realistic channel realizations than convenient correlation func-
tions (Jakes’ model, exponential, etc.), Figure 7 plots the
joint Fourier spectrum [3], [4] of the8×8 channel matrix
data for location 9D1. Also plotted is the joint spectrum of
a single realization of the SVA model with the parameters
found above and Jakes’ model. Note here that we are not
expecting agreement in the various joint spectra, but rather
qualitative agreement in the number of arrival clusters, cluster
shape, etc. Jakes’ model tends to over-estimate the multipath
richness, as indicated in the plot where significant power
is communicated from all transmit directions to all receive
directions. The random realization of the SVA model, on the
other hand, looks qualitatively more like spectra obtained from
measured channels. Only a few paths, or arrival/departure
clusters, support power transfer through the channel.

V. CONCLUSION

This paper has presented a new direction-finding technique
for diffuse multipath channels. Such channels occur in practice
due to rough-surface scattering mechanisms or channel prob-
ing hardware with limited temporal and spatial discrimination.
When the underlying channel is diffuse, parametric methods
(such as ESPRIT) do not produce accurate results. Although
beamforming methods may produce acceptable estimates of
the true spectrum, structure such as multipath clustering is
hidden. We have presented a new diffuse spectrum estima-
tion method that reveals cluster parameters through proper
basis function selection and a linear programming solution.
Application of the method to indoor measured radio channels
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Fig. 7. Joint transmit/receive spectra for (1) data location 9D1, (2) a random
realization of the SVA model, and (3) Jakes’ model.

at 5.2 GHz demonstrated the direction-finding capabilities of
the method. We used the method to obtain parameters for a
path-based channel model. Capacity pdfs of measured data
and synthetic channels generated with the resulting model
exhibited good agreement. The new method holds promise
for double-directional MIMO channel modeling in very rich
scattering environments, such as the indoor wireless channel.
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