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Mutual Coupling in MIMO Wireless Systems: A
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Abstract—A new framework for the analysis of multiple-input
multiple-output (MIMO) wireless systems is introduced to account
for mutual coupling effects in the antenna arrays. The multiport
interactions at transmit and receive are characterized by repre-
senting the channel using a scattering parameter matrix. A new
power constraint that limits the average radiated power is also in-
troduced. The capacity of the MIMO system with mutual coupling
is defined as the maximum mutual information of the transmit
and receive vectors over all possible transmit signaling and receive
loading. Full-wave electromagnetic antenna simulations combined
with a simple path-based channel model are used to demonstrate
the utility of the method.

Index Terms—Antenna array mutual coupling, information
theory, MIMO systems.

I. INTRODUCTION

MULTIPLE-INPUT MULTIPLE-OUTPUT (MIMO)
wireless systems, characterized by multiple antennas

at the transmitter and receiver, have demonstrated the po-
tential for increased capacity in rich multipath environments
[1]–[3]. For example, when the channel matrix coefficients are
well-represented as independent identically distributed (i.i.d.)
complex Gaussian random variables, linear increase in capacity
with the number of antennas is possible. This independence of
the channel coefficients is generally achieved by constructing
antenna arrays with wide inter-element spacings (several wave-
lengths). For many mobile subscriber units, such separations
are often unrealistic.

Close antenna element spacing inevitably leads to mutual
coupling [4], [5]. Generally speaking, this coupling means that
current induced on one antenna produces a voltage at the ter-
minals of nearby elements. Recent studies have demonstrated
that two closely-spaced coupled dipoles exhibit a lower corre-
lation coefficient than identically spaced uncoupled dipoles [6],
[7] due to the modification of the coupled antenna radiation and
reception patterns. Other studies have examined the effect of
mutual coupling on pattern characteristics for a variety of com-
munications applications [8]–[12].

While these prior studies have presented important findings
concerning the effect of array mutual coupling on MIMO
system performance, they have neglected two key concepts.
First, coupling at the transmitter impacts computation of the
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radiated power, a quantity that must be properly constrained
in capacity formulations. Second, the power collection capa-
bility and pattern characteristics of coupled antennas depend
on impedance matching of the array to the communication
electronics, implying that the effective channel transfer matrix
depends on loading. Therefore, a true definition of capacity
requires the selection of optimal loading at the receiver.

This work overcomes these difficulties by applying an
exact network theory framework to automatically account
for mutual coupling in the analysis of point-to-point MIMO
systems. This framework includes a new constraint that limits
the actual radiated power for coupled transmit antennas. New
expressions for capacity are derived that maximize the mutual
information of transmit and receive signals over all possible
loading networks, providing a true upper bound on system
performance. The network theory framework also allows
more flexibility in specifying the dominant source of noise
in the system. Consequently, two realistic noise models are
presented, and conclusions concerning their impact on capacity
are provided. This new framework offers the appropriate tools
for definitively answering questions about the impact of mutual
coupling on MIMO capacity.

The organization of the paper is as follows. Section II
presents the communication system network models and
formulates the radiated power constraint for coupled transmit
antennas. Section III discusses two realistic noise models and
derives closed-form capacity results for the traditional and the
new radiated power constraint. To demonstrate the application
of the new capacity expressions, Section IV describes full-wave
finite-difference time-domain (FDTD) simulations of coupled
2-element arrays and uses the results to compute capacity as
a function of element spacing for a simple stochastic channel
model. The results are also compared to existing methods for
computing capacity in MIMO systems with mutual coupling.

II. NETWORK ANALYSIS

Array mutual coupling studies typically use impedance ma-
trices to represent the antenna network [13], [14]. However, we
have found the use of scattering parameter (S-parameter) ma-
trices to be a more natural representation for the capacity formu-
lation. This S-parameter description can be generally expressed
as

(1)

where the vectors and denote the complex envelopes
of the inward-propagating and outward-propagating waves,

respectively, and is the S-parameter matrix. We will adopt
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Fig. 1. Network model for the receive subsystem along with incident and
reflected wave definitions.

the standard convention [15] that the total voltage and cur-
rent on the th port are given as and

, where is a chosen reference
impedance used for computing the S-parameters. This normal-
ization leads to the expression that the total power flowing into
the th port is simply .

A. Receive Subsystem: Matching Networks

We first consider the network model depicted in Fig. 1 for the
receive subsystem. This model treats the -element antenna
array as a source that creates the source wave vector due to
the received electromagnetic wave. This implies that if a load
of characteristic impedance is placed on each source port,
the total power collected in the loads is equal to ,
where is the Hermitian or conjugate transpose operator.
The source is further characterized by a (full) S-parameter ma-

trix such that . A matching network with

S-parameter matrix is used to maximize the power transfer
from the source to the loads of resistance . We partition
this matrix as

(2)

where the subscripts 1 and 2 refer to input and output ports,
respectively.

Ideally, the matching network is formed with passive, reactive
elements so that it is lossless and reciprocal. If the network is

lossless, where is the identity matrix. If it is

reciprocal, ( , where is the transpose operator)

we also have . It can be shown that the singular

values of each matrix lie on the range . Also, if is
set to be any matrix with singular values on the range , one
can use the matrix properties for lossless, reciprocal networks

to specify the necessary form of , and as shown in
the Appendix.

Insertion of a lossless matching network between the source

and the loads can increase the power collection if . In
this case, the forward wave into the loads is

(3)

and the total power collected is proportional to

(4)

For a lossless network, we have the condition that

, and the collected power becomes

(5)

where

(6)

The Appendix proves that for a fixed (but arbitrary) , the

collected power in (5) is maximized when . In this
case, (6) reduces to

(7)

Setting the input S-parameters of the matching network equal to
the conjugate transpose of the source S-parameters is the mul-

tivariate extension of conjugate matching [13], [16]. If is

a passive (nonamplifying) network, the singular values of
will all lie on the range . In this case, one can show that a

reciprocal, lossless network exists such that is sat-
isfied and the collected power is maximized.

B. Transmit Subsystem: Constrained Radiated Power

Traditional analyses of MIMO wireless systems have gener-
ally ignored the effect of mutual coupling on radiated power.
Consider a transmit antenna array with elements and net-

work S-parameters . The net power flowing into the net-
work is which, for lossless antennas, equals
the instantaneous radiated transmit power . Since

, we have

(8)

where is defined as the coherence matrix and denotes a
transmit signal vector. For zero mean signals, the average radi-
ated power is given by

(9)

where and denotes an expectation.
Section III-C considers the capacity under a transmitted power
constraint based upon this formulation.

C. Communication System Model

Fig. 2 depicts an S-parameter block representation of a real-
istic communication system. The transmit antenna ports are
excited by independent generators to create the inward at out-
ward-traveling waves and , respectively. The signals at the
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Fig. 2. Network model for the entire MIMO communication system.

receive antenna ports are similarly defined as and . A
unit gain element matched to the reference impedance is in-
cluded to allow the addition of noise in the receiver. Each port in
the chain is terminated by a matched load , the voltage across
which is . Because the output ports of the matching network

are terminated in , only the outward-traveling wave
will exist at this point.

The antennas are embedded in a linear scattering medium
so that the antenna/channel combination is represented by the
block S-parameter matrix

(10)

For this analysis, we assume that , which means that
power reflected from the receive antennas does not couple sig-
nificantly back into the transmit antennas. This assumption in-
dicates that the transmit and receive antennas are separated by
a relatively large distance, presumably in the far-field of each
other.

In the noiseless case, the sampled voltages are related to the
transmit signal according to

(11)

where the dependence of the effective channel matrix

on the matching network has been emphasized.

III. MIMO CHANNEL CAPACITY

The expression in (11) indicates that a true definition of ca-
pacity [17] requires maximization of the mutual information of

and not only over all possible transmit excitations ,

but also over all allowed matching networks . Since this
maximization is dependent on the noise source, we consider two
realistic noise models for microwave systems.

A. Channel Noise Model

If the dominant source of noise in the system is from the
channel (co-channel interference, channel instability, cosmic ra-
diation, etc.), we may neglect noise additions in the receiver.
When no signal is present and the receive antenna ports are ter-
minated in , we define the resulting forward traveling noise
wave on the th receive port as , where is

an effective noise voltage. With the matching network inserted,
the forward traveling wave becomes

(12)

Superimposing the signal and noise vectors yields the result

(13)

leading to the channel equation

(14)

Assuming complex Gaussian signaling at the transmitter and
Gaussian channel noise, the mutual information of and is
expressed as [17]

(15)

where represents differential entropy and

. If is nonsingular, this expression can be simpli-
fied to the form

(16)

This analysis indicates that, since the signal and noise
undergo the same transformation in the matching network,
matching does not change the mutual information. The only

exception to this observation occurs when is singular, which
implies loss of information in the network. For simplicity, the

physical matching network can be removed ( and

) and, under the assumption of i.i.d. complex Gaussian

noise with , the mutual information becomes

(17)

Computation of the capacity for this equation is considered in
Section III-C.

B. Receiver Noise Model

In single-user point-to-point transmission systems, the
receiver front end is often the major source of noise. In this
case, the amplifiers in Fig. 2 contribute the noise vector at
the output, leading to the relation

(18)
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In this case, the mutual information expression is

(19)

where is given in (6), the noise vector is i.i.d. complex

Gaussian with , and . In general,

is a Hermitian positive semi-definite matrix, so that we can

use the eigenvalue decomposition (EVD) of to write

(20)

with . Thus, maximization of the mutual-in-

formation for a fixed (but arbitrary) requires maximization
of

(21)

over all possible values of and .
This multivariate maximization is simplified by the fact that a

simple conjugate match will always maximize (21) for fixed but

arbitrary . To show this, we use the result from Section II-A
that

(22)

for all possible values of and . Letting and

, we obtain

and, therefore

(23)

For two positive definite matrices and

(24)

if and only if the singular values of are all less than or
equal to 1 [18]. Hence, relation (24) implies that

(25)

leading to the conclusion [compare to (23)] that

(26)

Therefore, for arbitrary will maximize (21)
and the mutual-information expression reduces to

(27)

Finding the value of that maximizes this equation will,
therefore, lead to an expression for channel capacity.

Since is Hermitian and positive definite, (27)
can be manipulated into the form

(28)

where

(29)

is an EVD and

(30)

The capacity for this case is considered in Section III-C.

C. Modified Water-Filling (mwf) Capacity

The mutual information expressions (17) and (28) for the two
different noise models are both of the general form

(31)

where represents the channel matrix. For the traditional

power constraint of , the capacity
[17] of such a system can be formulated assuming that the
transmitter has no knowledge (Uninformed Transmitter) [2]
or perfect knowledge (Standard Water-Filling) [3] of the

channel matrix . When mutual coupling is properly consid-
ered, however, the power constraint based upon (9) becomes

. While the Uninformed Transmitter
capacity expression remains the same under this change, the
Water-Filling (wf) capacity solution must be modified in order
to accommodate this new constraint.

Using the EVD , we can rewrite the power

constraint as with

(32)

Solving for and substituting into (31) leads to an expression
that can be maximized using the standard wf approach. Unfor-
tunately, this computation may be numerically sensitive when

has poor conditioning.
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To avoid these numerical instabilities, we instead first per-

form the singular value decomposition (SVD) to
obtain

(33)

and express the resulting power constraint as ,

where , and . If ,
and the singular values are ordered from largest to smallest, we
now consider only the largest singular values that satisfy

, where is some maximum allowed conditioning

number. The matrices , and are then truncated to con-
tain only the leading rows and columns. In any model where

and are consistent, this truncation ensures that has suit-
able conditioning, since transmit vectors yielding low radiated
power will also yield low gain through the channel.

Next, we apply the substitution

(34)

where we have performed the EVD of .
The mutual information expression in (33) becomes

(35)

with the power constraint . This expression may
now be maximized using the wf solution approach [3].

IV. CAPACITY SIMULATIONS

To demonstrate application of the analysis framework devel-
oped in this paper and to illustrate the impact of mutual coupling
on the capacity of MIMO systems, we will explore transmit and
receive arrays consisting of two coupled dipoles. Specifically,
we focus on the receiver noise capacity expression from Sec-
tion III-B. While analytical solutions exist for computing the
impedance matrix for coupled dipoles, we are not aware of a
good analytical model for predicting the effect of coupling on
the radiation patterns, an integral part of the capacity analysis.
As a result, full-wave FDTD simulations will be used to con-
struct antenna network S-parameter descriptions and radiation
patterns. These results are combined with a simple path-based
channel model to construct the effective channel matrix.

A. FDTD Antenna Simulations

A likely candidate for characterizing coupled dipoles is the
Moment Method since it is computationally efficient and well-
suited for wire antenna analysis [5]. However, the thin-wire as-
sumption commonly used in this approach models the current as
constant in azimuth around the wire radius, and as a result the
simulations become less accurate for very close dipole spacings
where this assumption is violated. As a result, a more detailed
modeling of the antenna currents is required. In this case, we

Fig. 3. FDTD simulation volume showing the geometry of the coupled dipole
antennas.

have chosen to use FDTD [19], [20] for its computational sim-
plicity, and have used very dense gridding in order to capture the
detailed current behavior. This FDTD approach is also excellent
for extending computations to more complex antennas, since it
easily accommodates a wide variety of geometrical and mate-
rial complexities. Obviously, other simulation approaches could
be used for the computations. However, since the goal of this
section is to demonstrate typical application of the developed
framework rather than focus on the best computational tech-
nique suited for coupled antenna analysis, the choice of FDTD
is suitable for purposes of simulating our model problem.

Fig. 3 depicts the FDTD geometry used for the coupled
antenna simulations. Half-wave (total-length) dipoles with wire
radius and separated by a distance are located at the
center of the domain. Because we are considering narrowband
systems, single-frequency antenna excitation is used. The
FDTD grid uses 80 cells per wavelength in the direction and
200 cells per wavelength in the and directions to accurately
model the current variations on the finite-radius wire for close
antenna spacings. A quarter-wavelength buffer region is placed
between the antennas and the terminating 8-cell perfectly
matched layer absorbing boundary condition with a quadratic
material profile [19]. The antennas are excited using a simple
voltage source across the center FDTD cell of the wires, with
resulting currents obtained using a contour integration around
the source point [19], [20]. Each simulation runs for 10 sinu-
soidal cycles to allow the transient response to die down, after
which current and field sampling is performed over one entire
sinusoidal cycle. These quantities are then used to compute self
and mutual impedances and radiation patterns [19], [20].

Fig. 4 plots the self and mutual impedance as a function of
the element spacing. These results reveal a high degree of cou-
pling, with the mutual impedance remaining significant even for
antenna spacings greater than . Fig. 5 compares the radiated
far-field patterns in the horizontal plane for four different dipole
spacings. For this computation, the left antenna is driven by a
source having an internal impedance of and the right an-
tenna is terminated with a load of impedance , where is
defined in Fig. 4. Each pattern is normalized to have unit mean.
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Fig. 4. Self and mutual dipole antenna impedances as a function of dipole
separation d.

Fig. 5. Far-field coupled dipole patterns in the azimuthal plane for four
different antenna spacings. The second antenna is terminated in Z .

These results indicate that the coupling noticeably impacts the
patterns, particularly for smaller spacings.

B. Path-Based Channel Model

When the transmit and receive arrays and scattering objects
are all in the far-field of one another, a simple path-based model
can be used to approximate the channel. Here, we derive a
simple two-dimensional single-polarization path-based model
for use in the subsequent simulations.

Assuming a transmitter with antennas, we can write the
total radiated far-field in the azimuthal plane as

(36)

where is the transmit azimuthal angle, is the trans-
mitted field per unit excitation current of the th antenna in the
direction of , and is the transmit excitation current applied
at the th antenna terminals. We also assume a channel with
paths for propagation from transmit to receive, with the th path
characterized by departure and arrival angles and , respec-
tively, and a complex channel gain . When an element
array is placed in the incident receive field, the voltage on the
th receive element may be written as

(37)

Fig. 6. Correlation coefficient versus dipole spacing for different antenna
terminations compared to Jakes’ model (neglecting mutual coupling).

where is the reception pattern of the th receive

antenna. The underbrace makes it clear that represents
a trans-impedance matrix relating receive antenna voltages to
transmit antenna currents. We also emphasize here that the
radiation patterns are computed using the FDTD approach and,
therefore, include the effects of the antenna mutual coupling.

The coupled transmit and receive arrays are characterized by

the impedance matrices and , respectively, which are
also obtained from the FDTD simulations. Because we are ne-
glecting feedback through the channel , we can in-

dividually convert and into and [15]. The

block is found by exciting an inward-traveling wave at the
transmitter and measuring the outward-traveling wave at the

receiver . To ensure , the receive ports are terminated
with loads . This procedure yields the relation

(38)

C. Correlation and Power Collection

The correlation coefficient of the complex baseband signals
on two antennas is often used as a metric for assessing diversity
performance. Correlation has also been used to draw con-
clusions about capacity, since a channel with transfer matrix
coefficients that are complex Gaussian with low correlation
exhibits high capacity. Here, we model the 2-element array
with matching networks creating open-circuit, self-impedance
matched load , and optimal multiport conjugate match
terminations. The voltage correlation coefficient is computed
as , where is the voltage at the th output
port of the antenna matching network. The expectation is taken
over plane wave azimuthal arrival angles which are uniformly
distributed on .

The resulting magnitudes of the correlation coefficients
are plotted versus antenna spacing in Fig. 6. Surprisingly, the
matching network offering a conjugate match always has an
output correlation of zero for nonzero spacing. It is important
to point out, however, that the optimal impedance match only

specifies the block of the matching network
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Fig. 7. Power collection (normalized to the power collected by a single
dipole) versus antenna spacing for two dipoles assuming two different antenna
terminations.

S-parameter matrix. Using the notation of the Appendix for
a reciprocal network, we are still free to specify the unitary

matrix , and here we have let for simplicity.
It can be shown analytically that this choice leads to perfect
decorrelation for this case of symmetric dipoles. Physically,
this occurs because the matching network modifies the radi-
ation patterns for the individual elements such that they are
orthogonal over in azimuth [13]. However, perfect
decorrelation does not necessarily lead to improved diversity
or MIMO performance since it also leads to unequal power in
the independent matching network outputs. The other curves
show that the correlation behavior is load dependent, with a
self-impedance match exhibiting more decorrelation than the
open circuit. The correlation curve assuming Jakes’ propaga-
tion scenario (mutual coupling is neglected) is also shown for
comparison [21].

Because capacity depends upon received signal power, the
power collection capability of compact arrays is also of interest.
Physical arguments suggest that as two antennas approach each
other, the total collected power approaches that for a single
antenna. To assess this, we examine the power collected by
the coupled dipoles normalized by the power collected by a
single dipole in the same environment for illumination by a
single plane wave. In the computation, the collected power was
computed for all azimuthal plane wave arrival angles for each
spacing, and the resulting power levels were averaged. Fig. 7
plots this normalized collected power for optimal conjugate and
suboptimal self-impedance match. Interestingly, only for very
small spacings does the power collection drop significantly. The
results also show that two closely-spaced antennas can actually
collect more power than two widely separated (noninterfering)
ones (i.e., the normalized collected power is greater than two).
One reasonable explanation for this increased effective aperture
of coupled dipoles is that a portion of the power scattered by
each receiving antenna can be recaptured by the adjacent an-
tenna, particularly when the matching network is appropriately
implemented.

D. Channel Capacity

To demonstrate application of the analysis framework devel-
oped in this paper, we examine a system employing two transmit
and two receive dipoles (2 2) and a channel consisting of

Fig. 8. Mean capacity versus transmit dipole antenna spacing for a 2� 2
MIMO system with different assumptions on mutual coupling and transmit
power constraints. The receive antennas are ideal and spaced at d = 1�.

paths. The simple path-based channel model was com-
bined with the full-wave FDTD antenna simulations (see Sec-
tion IV-A) as discussed in Section IV-B to compute the channel

matrix . The ray arrival and departure angles were indepen-
dent and uniformly distributed on . The path gains
were Rayleigh i.i.d. in amplitude and uniformly distributed in
phase. For each channel realization, the noise power was fixed
by first computing the average signal strength that would be re-
ceived if one transmit and one receive antenna were present,
with the averaging performed over random placement of the
single transmit and receive antennas. The noise power was then
computed to achieve a signal-to-noise ratio (SNR) of 20 dB rel-
ative to the average signal power. Mean capacity was computed
over 7000 realizations for each antenna spacing.

To illustrate the effect of different transmit power constraints,
simulations were run with ideal (no mutual coupling) receive an-
tennas separated by . The transmit array was simulated with
(mc) and without (nmc) mutual coupling, and the capacity was
computed using standard (wf) and modified wf (mwf) solutions.
The results of this study are shown in Fig. 8. For large spacings,
the mutual coupling is low leading to identical capacity results.
However, for very close spacings, the capacity computing using
the mwf approach is actually higher than that obtained using the
standard wf solution. Furthermore, the mwf solution properly
accounts for the power loss observed as the antennas collapse to
a single element, leading to the reduced capacity at . Be-
cause the traditional power constraint does not incorporate the
coherent interactions, it fails to properly predict this behavior.

We consider next the effect of mutual coupling at the receiver.
In this case the receive antenna spacing was varied while the
(ideal) transmit antennas were fixed at a separation of . A
normalized channel analysis (norm) was performed by termi-
nating the antennas with a self-impedance match and normal-
izing the channel transfer matrix to obtain exactly 20 dB average
single-input single-output SNR [22] for each channel realiza-
tion. This normalized channel analysis is similar to that consid-
ered in previous work [7]. Capacity was also computed with the
new mutual coupling analysis with a constant noise giving an
average of 20-dB SNR for the single antenna case with random
placement as discussed at the beginning of this section.

Fig. 9 plots the average capacity versus spacing assuming
mutual coupling with an optimal match (mc), no mutual cou-
pling with an optimal match (nmc), and mutual coupling with
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Fig. 9. Mean capacity versus receive antenna spacing for two different
capacity computations and different antenna loads. The transmit antennas are
ideal and spaced at d = 1�.

Fig. 10. Mean capacity versus transmit and receive antenna spacing for
different coupling assumptions.

a suboptimal self-impedance match (mcsi). A small offset be-
tween the normalized and full analyses exists for large spac-
ings since the SNR constraints are slightly different. In the nor-
malized analysis, mutual coupling always provides a capacity
benefit. In the full analysis, mutual coupling appears to provide
nearly the same benefit as suggested by the normalized analysis.
However, for very close spacings , the capacity curve
for the full analysis rolls off sooner than the normalized anal-
ysis. Finally, we note that although the simple self-impedance
match performs well for large spacings, capacity degradation is
apparent for spacings smaller than .

Fig. 10 demonstrates the combined effect of mutual coupling
at transmit and receive. Here, the transmit and receive antenna
spacings were equal and capacity was computed for ideal an-
tennas (nmc), mutual coupling at transmit and receive with an
optimal match (mc), and mcsi. For spacings between and

, mutual coupling provides an obvious capacity benefit.
For spacings below , mutual coupling can actually degrade
capacity. Finally, the suboptimal matching network yields a
modest capacity degradation.

V. CONCLUSION

This paper has presented a rigorous network-theory frame-
work for the analysis of mutual coupling in MIMO wireless
communications. A detailed network model was used to de-
velop a new mutual information expression and radiated power
constraint accounting for this antenna coupling. Closed-form

Fig. 11. Network model for the equivalent receive impedance matching
problem.

derivation of the system capacity was made possible by relating
the mutual information maximization problem to the multiport
conjugate matching solution. Unlike previous analyses, this new
method includes the effect of mutual coupling, and the resulting
capacity expression provides a true upper bound on system per-
formance.

The framework was used to analyze the impact of mutual cou-
pling in a simple yet realistic 2 2 MIMO system by combining
full-wave FDTD simulations with a path-based channel model.
This simple example demonstrated the usefulness of the tech-
nique and provided some insight into the impact of coupling
on MIMO performance. However, before more general conclu-
sions can be drawn concerning the effect of mutual coupling,
more extensive simulations using increased array sizes and var-
ious array configurations must be performed. Specifically, it is
anticipated that mutual coupling will more significantly impact
the performance of larger planar arrays. Fortunately, the tools
developed here provide a comprehensive framework for system-
atically conducting these important studies.

APPENDIX

Consider the problem depicted in Fig. 1. For any given , the

power available from the source block is fixed. We wish

to choose the lossless matching block such that the power
delivered to the load is maximized, regardless of the choice of

.
We can cast this problem into the equivalent problem depicted

in Fig. 11. Everything to the right of reference plane 1 has been

replaced with the block (since in Fig. 1). The source
block is now represented with as many input ports as output
ports, and the complete S-parameter matrix is given by

(39)

To make this problem equivalent to the initial one, we choose

, and to make a lossless reciprocal network

and set . The relation for waves just to the
left of plane 1 is

(40)

which is precisely the same relation we had for the initial

problem. Since is lossless, the power available to the load is

. The load will collect all of this available
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power if we can choose such that the reflection .
Relating the various inward- and outward-traveling waves, we
have

(41)

In order to solve this problem, we require expressions that

relate the subblocks of for a lossless reciprocal network. One

may ensure that is lossless with the relations

(42)

where the first equation is the SVD of and are

arbitrary unitary matrices, and is a complex diagonal matrix
whose elements have unit magnitude with arbitrary phase. If

we desire to be reciprocal , we have the additional

requirement that , and .

Using (42) and letting in (41)

results in with

(43)

Upon canceling the unitary matrices, we find that is indeed
the zero matrix, which ensures that is the zero vector for any

choice of . Therefore, the assignment ensures that
all available power is dissipated in the load, thus maximizing the
collected receive power.
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