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Abstract—Multiple-input–multiple-output (MIMO) wireless
systems use multiple antenna elements at transmit and receive to
offer improved capacity over single antenna topologies in mul-
tipath channels. In such systems, the antenna properties as well
as the multipath channel characteristics play a key role in deter-
mining communication performance. This paper reviews recent
research findings concerning antennas and propagation in MIMO
systems. Issues considered include channel capacity computation,
channel measurement and modeling approaches, and the impact
of antenna element properties and array configuration on system
performance. Throughout the discussion, outstanding research
questions in these areas are highlighted.

Index Terms—Antenna arrays, multiple-input–multiple-output
(MIMO) systems, propagation.

I. INTRODUCTION

MULTIPLE-INPUT–MULTIPLE-OUTPUT (MIMO)
wireless systems, characterized by multiple antenna

elements at the transmitter and receiver, have demonstrated
the potential for increased capacity in rich multipath environ-
ments [1]–[4]. Such systems operate by exploiting the spatial
properties of the multipath channel, thereby offering a new di-
mension which can be used to enable enhanced communication
performance.

While coding and signal processing are key elements to
successful implementation of a MIMO system, the propagation
channel and antenna design represent major parameters that
ultimately impact system performance. As a result, consider-
able research has been devoted recently to these two areas. For
example, assessing the potential of MIMO systems requires
a new level of understanding concerning multipath channel
characteristics. Furthermore, while we have extensive informa-
tion concerning the behavior of antenna diversity in multipath
channels [5], recent activity surrounding MIMO communica-
tions has exposed new issues related to the impact of antenna
properties and array configuration on system performance.

The goal of this paper is to provide both a brief tutorial on
MIMO systems suitable for those involved in antenna and prop-
agation research as well as a review of some of the significant
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Fig. 1. Simple multipath propagation environment showing two paths
between transmit and receive. The arrays are capable of resolving the
individual multipaths, enabling increased data throughput.

findings related to antennas and propagation within the context
of this communication strategy [6], [7]. However, as with any
emerging research arena, the volume of material that has ap-
peared is too large to summarize in one brief paper. As a result,
this summary will focus on a subset of these issues, believed by
the authors to be key considerations that may spawn additional
research activities within the antennas and propagation commu-
nity. Related findings from multiple independent studies will be
synthesized to provide a broader perspective of the state-of-the
art in this exciting research field.

The remainder of the paper is divided into three main parts.
First, Section II provides a tutorial on MIMO systems and
demonstrates how the use of multiple antennas can lead to
increased capacity bounds. Section III then discusses different
measurement and modeling approaches for multipath MIMO
channels. Finally, Section IV focuses on the impact of antenna
parameters on MIMO system performance. Throughout the
discussion, possible future research activities are highlighted.

II. MIMO SYSTEM TUTORIAL

Before embarking on a detailed discussion of recent research,
it is useful to establish some notation, provide a common frame-
work for discussion, and present tutorial material relating to
MIMO communication. Throughout this paper, matrices and
column vectors are represented as boldface uppercase and low-
ercase letters, respectively, is the element occupying th row
and th column of the matrix , and is the th element of the
vector .

A. MIMO Multipath Communication

The concept of using spatial (array) processing to enhance
communication performance has been well explored. For
example, consider a wireless communication node equipped
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Fig. 2. Block diagram of a generic MIMO wireless system.

with an -element antenna array that must send data to
distinct users. Using traditional beamforming (or null-steering),
the system can synthesize an array response to transmit data
to a single user while placing nulls on the remaining
users. Therefore, by synthesizing a unique pattern for each user
and encoding a unique data stream on each pattern, the system
can simultaneously communicate with all users with a spectral
occupancy equal to that of a single data stream.

This same principle can be used in a point-to-point multi-
path channel. For example, consider the scenario depicted in
Fig. 1 which shows two propagation paths between a trans-
mitter and receiver. If the arrays can resolve the two multipaths,
the system can encode a unique data stream on each propaga-
tion path, resulting in an increase in communication capacity
without an increase in required bandwidth. As typical wireless
channels consist of many different closely spaced (in angle)
paths, resolution of individual multipaths is often not possible.
Therefore, MIMO implementations must use more advanced
array signal processing to exploit the channel spatial resources.
Before discussing these concepts in more detail, however, we
first define a model for the MIMO communication system to
facilitate the presentation.

B. Communication System Model

A general model of a MIMO communication system is
represented in Fig. 2. For simplicity, the channel is assumed
time invariant over the interval of a transmission block. The
figure is divided into 1) signal processing and coding (bottom)
and 2) the channel (top). The radio frequency (RF) components
are included in the channel since they influence the end-to-end
transfer function.

In this system, a set of independent data streams rep-
resented by the symbol vector ( is a time index) are

encoded into discrete-time complex baseband streams
at the transmitter. The coding can distribute the input symbols
over the outputs (space) and/or over samples (time). The
pulse-shaping block converts the discrete-time samples into
continuous-time baseband waveforms ( is frequency)
and feeds them to the channel inputs (RF chains and
antennas). The channel combines the input signals to
obtain the element output (receive) waveform vector .
The matched filter then produces the discrete-time baseband
sample stream , and the space/time decoder generates es-
timates of the transmitted streams .

For linear channel elements, the MIMO channel input–output
relationship may be written as

(1)

where is additive noise produced by the channel (in-
terference plus noise from the RF front end) and the matrix
dimensions are as specified. Each element represents
the transfer function between the th transmit and th receive
antenna. Since the transmit vector is projected onto in
(1), the number of independent data streams ( ) that can be
supported must be at most equal to the rank of . More
generally, the properties of , such as the distribution of
its singular values, determine the performance potential for the
MIMO system. Factors such as antenna impedance matching,
array size and configuration, element pattern and polarization
properties, mutual coupling, and multipath propagation char-
acteristics influence these properties. Therefore, poor design of
system components or incorrect assumptions about the channel
could lead to drastic reduction in system performance.

For convenience, we will usually drop the frequency de-
pendence and consider narrowband communication, which
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is justified when the channel response is constant over the
system bandwidth (flat fading) or when signals are divided into
narrowband frequency bins and processed independently. This
highlights the effect of the spatial dimension, a unique factor
of MIMO communications, and ignores the complexity of the
wide-band channel response.

C. MIMO Beamforming

We now consider the situation where the transmitter and re-
ceiver know the channel matrix . Let the unencoded 1
transmit vector in the waveform domain be denoted as . Using
the singular value decomposition (SVD) , where

denotes a conjugate transpose, we encode the transmit
vector as . Since each element of multiplies the
corresponding column of , this operation suggests that each
column of represents array weights for each signal stream.
The receiver performs the operation , indicating that
each row of (column of ) represents the receive array
weights for each stream. Because and are unitary, from
(1) we obtain

(2)

where . Since the matrix of singular values is di-
agonal, (2) indicates that is a scaled version of the transmit
vector corrupted by additive noise. Therefore, beamforming
using the singular vectors of as array weights has produced
eigenpatterns that create independent (spatially orthogonal) par-
allel communication channels in the multipath environment (see
[8] for detailed discussion). Note that each of these eigenchan-
nels in general exploits all multipath components. Also, in rank
deficient channels, the number of independent streams should
correspond to the number of singular values that are above the
noise floor. In this case, only the first columns of , , and

should be used in the processing and analysis. In practice,
the fraction of power allocated to each eigenchannel should be
chosen to optimize the capacity, a topic considered briefly in
Section II-D.

Under certain circumstances, these eigenpatterns can be di-
rectly related to the propagation scenario. Consider the example
of ten vertical dipoles along the axis with a uniform spacing of

, where is the free-space wavelength. Three “clusters” of
plane waves with propagation vectors in the horizontal plane ar-
rive at the receiver, with each cluster consisting of a central plane
wave with two additional waves, 10 either side of the center,
with field strengths 0.7 times the central wave strength. The
clusters are centered at ( ),
( ), ( ).
The receive eigenpatterns corresponding to the three largest sin-
gular values, shown in Fig. 3(a), are focused on these clusters.
Fig. 3(b) shows the eigenpatterns that result when a three-ele-
ment array is used for the same channel. Here, it becomes clear
that if the array cannot resolve the multipaths, then the eigenpat-
terns achieve a superposition of the waves in an effort to maxi-
mize performance.

Because the eigenchannels are the most efficient “basis” for
communicating over the channel, use of the SVD encoding/de-
coding coupled with optimal power allocation over the eigen-

Fig. 3. Dominant three receive eigenpatterns created for a channel consisting
of three plane wave clusters centered at the angles indicated by the arrows:
(a) ten-element array and (b) three-element array.

channels provides optimal communication performance. How-
ever, a simpler strategy, often providing excellent performance,
is simply to communicate using the individual element pat-
terns, one for each data stream. This accomplished by directly
applying each element of to each antenna. If ,
then the maximum likelihood estimate of the vector can be
obtained (under the assumption of spatially white Gaussian
noise) from

(3)

where represents a pseudo-inverse operation. This is the
basic principle behind the well-publicized VBLAST algorithm
[9], [10]. This scheme is attractive as it does not require the
transmitter to know , which typically must be fed back from
the receiver where channel estimation is performed. The key
liability with this uninformed transmitter approach, however,
is that if the propagation environment creates a rank-defi-
cient channel matrix , the performance deteriorates rapidly.
Compromise techniques have also been proposed wherein
the transmit beamforming is accomplished using long-term
channel statistics rather than deterministic channel knowledge.
Certainly, choice of an approach will depend on anticipated
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channel characteristics coupled with complexity/performance
constraints.

D. MIMO System Capacity

It is convenient to define a single metric that captures both the
signal-to-noise ratio (SNR) and multipath spatial characteristics
to represent the quality of the MIMO channel. The Shannon
channel capacity [11] has emerged as the de facto measure of
choice for MIMO system analysis [12]. Intuitively, this quan-
tity represents the highest error-free MIMO transmission rate
for a given transfer matrix under optimal space/time-coding and
modulation.

For the waveform channel in (1), capacity represents the
transmission rate per Hertz of bandwidth (bits/s/Hz). However,
if pulse shaping and matched filtering are included, a dis-
crete-time channel relating and results, the capacity
of which represents the bits conveyed per transmission time slot
(bits/use). For optimal pulse shaping and matched filtering, the
continuous and discrete domains are related through Nyquist
sampling [11]. These conditions lead to bits/use for an
underlying waveform channel with bits/s/Hz. Therefore,
capacity expressions below are valid for complex baseband
channels in both discrete and continuous time provided that
proper signal/noise power definitions are used.

To see how parallel spatial channels can increase capacity,
consider the simple case of uncoupled transmission lines. If
only one transmission line is used to send data, the Shannon
channel capacity will be [11]

(4)

where is the receiver SNR. If the transmit power is instead
equally divided among the lines, the capacity becomes

(5)

where we have assumed equal receiver noise. The increase in
capacity is observed by recognizing that the multiplication by
outside the logarithm more than offsets the division by inside
the logarithm.

For the MIMO system described by (1), we assume that
has independent Gaussian-distributed elements with equal vari-
ance . For a transmit vector whose elements are com-
plex Gaussian-distributed random variables, the expression for
channel capacity is

(6)

(7)

where is an eigenvector decomposition
(EVD), is the identity matrix, is the determinant,
is the trace, and is the total transmit power. The diagonal
elements of the transmit covariance , where

is the expectation, represent the transmit power from
each antenna, and therefore the constraint

limits the total transmit power. The off-diagonal elements of
represent the correlation between the transmitted signal

streams, with increased correlation resulting in decreased
capacity [reduction in some values in (7)]. Note that the
term represents the covariance
of the received signal in the absence of noise, so that the
eigenvalue represents the received signal power level in the
th eigenchannel. Therefore, the form in (7) explicitly shows

the relationship between MIMO capacity and the model in
(5), although here the channels may have unequal SNR values

.
1) Water-Filling Capacity: Determining capacity involves

identifying the covariance that maximizes (6). If the scheme
presented in Section II-C based on the SVD of is used, then
we see that (since is unitary) and define

. With this definition, it can be shown
that must be diagonal to maximize (6)[4]. Note that this is
consistent with the notion that the unencoded transmit streams
represented in are independent. The capacity expression then
becomes

(8)

where represents the optimal transmit power on the th
unencoded stream ( th orthogonal eigenpattern), and is the
power gain of the th eigenchannel. The values of that
maximize (8) can be determined using Lagrange multipliers
to obtain the water-filling solution [4], [11], [13], [14]. This
method allocates power to the high-gain channels and in gen-
eral does not use weaker channels.

A simple computational example serves to illustrate the ca-
pacity gains available from this solution. Fig. 4 shows the cu-
mulative distribution function (CDF) of capacity obtained via
the water-filling solution for the cases where

(1,1), (4,4), and (12,4) [8]. The channel matrix is con-
structed using Monte Carlo simulations with the channel model
discussed in Section III-A2. The SNR for the (1,1) case is 20 dB.
Significant capacity gain is observed when moving from 1 to 4
antennas. For the case (12,4), only four parallel channels can be
constructed from the system. Therefore, the increased capacity
stems from improving the quality of these channels (increasing
the magnitudes of the four largest singular values of ) due to
enhanced ability to create transmit radiation patterns that best
excite the propagation environment.

2) Uninformed Transmitter Capacity: When the transmitter
does not know , it can equally divide the power among
the transmit antennas to form independent streams, or

. Substitution into (6) results in the unin-
formed transmit capacity [2]

(9)

For full-rank channel matrices at high SNR, the penalty paid for
an uninformed transmitter is relatively small [14].

3) Channel Matrix Normalization: Since capacity depends
on receive SNR, it is important to properly normalize channel



2814 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 52, NO. 11, NOVEMBER 2004

Fig. 4. CDF of capacity for (M = N ;N = N ) = (1; 1), (4, 4), and (12, 4) for a simple channel model and a (1, 1) SNR of 20 dB. Reprinted from [8] with
permission (© 2000 IEEE).

matrices for correct interpretation of results. For channel ma-
trices , , normalized channel matrices are com-
puted as

(10)

where is the Frobenius norm. When normalized matrices
are used in the capacity expressions, represents the
average SNR of a single antenna system and is referred to as the
single-input single-output (SISO) SNR. The differences in path
loss among a number of channel matrices may be removed by
normalizing each matrix independently, or . Using

preserves the relative power levels among the channels.

E. Diversity and Spatial Multiplexing

We have established that MIMO systems exploit the channel
spatial degrees of freedom to increase communication perfor-
mance. In traditional antenna diversity, these resources are
used to transmit and/or receive duplicate copies of a single
information stream to increase the reliability of detection. In con-
trast, spatial multiplexing indicates sending distinct information
streams over the channels to increase throughput and spectral
efficiency. The mix of diversity and spatial multiplexing accom-
plished with a MIMO system will depend on the throughput
and quality-of-service requirements of the application [15].

This relationship implies that the traditional mechanisms
used in diversity systems for reducing branch signal correlation
generally work to improve MIMO performance as well. We
emphasize, however, that low correlation is a necessary but
not sufficient condition for good MIMO performance, since
the propagation environment must also possess the appropriate
characteristics (keyhole channels discussed in Section III-C
support this statement). This low correlation is achieved when

each antenna provides a unique weighting to each individual
multipath component based on its DOD/DOA. This weighting
can be on the arrival phase due to antenna location (spatial
diversity), or on magnitude and phase due to antenna pattern
(angle diversity) or polarization characteristics (polarization
diversity) [5], [16]. Many systems use some combination of
these mechanisms. Note that low correlation generally occurs
for a large set of multipaths with large angular spread. The
rich scattering required to achieve this condition generally
also produces low SNR, which in turn decreases the channel
capacity [17]–[19].

Channel measurements have been conducted to explore the
effect of branch correlation on MIMO channel capacity. As an
example, we examine data taken indoors at 2.45 GHz using
uniform linear arrays of quarter-wavelength dipoles [20]. The
number of elements in the array are varied while the overall
array length is maintained at . Fig. 5 shows the resulting
complementary CDF (CCDF) of capacity per number of
transmit and receive antennas. Monte Carlo simulations using
the channel model in Section III-A2, which neglects signal
correlation, are also shown. The results indicate an excellent
agreement between the measured and ideal 2 2 channel due
to the wide antenna separation and resulting low correlation. As
we pack more antennas into our array, the capacity per antenna
drops due to higher correlation between adjacent elements.
Several other studies have used experimental observations and
analytical or simulation results to arrive at the same conclusion
that increased signal correlation significantly degrades MIMO
performance [21]–[26].

III. MIMO CHANNEL MEASUREMENT AND MODELING

Assessing the performance of MIMO systems in realistic
environments requires a detailed description of the multipath
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Fig. 5. Capacity CCDF’s per number of antennas for transmit/receive arrays of
increasing number of elements. Suffixes M and S correspond to measured (solid
lines) and simulated (dashed lines) channels, respectively. The array length is
2:25� for all cases.

channel. This description must go beyond traditional models
or measurement campaigns, as we must accurately repre-
sent a matrix of transfer functions. In some cases, channel
measurements are used to fully characterize these channels.
However, since relatively few such campaigns have been per-
formed and the resulting data is not widely available, many
researchers have turned to channel models that capture the key
behaviors observed in the experimental data [27]–[31]. When
accurate, these models facilitate performance assessment of
potential space-time coding approaches in realistic propagation
environments.

A. Transfer Matrix Characterization

1) Transfer Matrix Measurement: The most straightforward
approach to characterizing the MIMO wireless channel is to de-
ploy a system that directly measures the channel ma-
trix . In this case, all components in the top box in Fig. 2 are
embedded in the channel, and the measurements will only be
applicable for the analysis of systems employing the same array
configurations and antenna elements.

A variety of measurements have appeared using such direct
measurement platforms [17], [20], [32]–[55]. Results from such
campaigns include channel capacity, signal correlation structure
(in space, frequency, and time), channel matrix rank, path loss,
delay spread, and a host of other quantities. Many of the de-
ployed instruments use a true array system, where all antennas
operate simultaneously. Such systems most closely model real-
world MIMO communication and can accommodate channels
that vary in time. The drawbacks, however, include the mutual
coupling of the antenna array and the cost of the parallel transmit
and receive electronics. The measured data shown in Fig. 5 was
obtained with such a system.

Fig. 6 shows the evolution of capacity with distance traveled
for an urban environment (Manhattan, New York City) obtained
with a true array system at a SNR of 10 dB [37]. The linear
transmit and rectangular receive arrays each used 16 elements
of alternating polarization. This data shows the variation in ca-
pacity as the quality of the channel varies with position. More
will be addressed about the “predicted” curve in this plot in Sec-
tion III-A2.

Fig. 6. Measured capacity as a function of location using 16-element
transmit/receive arrays in an urban environment compared with simulated
capacities. Reprinted from [37] with permission (© 2003 IEEE).

Other measurement systems employ either switched array or
virtual array architectures. Switched array designs use a single
transmitter and single receiver to measure the transfer function,
with high-speed switches sequentially connecting all array el-
ements to the electronics [56], [57]. Switching times for such
systems are generally very low (2 to 100 ms), indicating that
the measurement over all antenna pairs can be conducted be-
fore the channel changes appreciably for most environments of
practical interest. Virtual array instruments use precision dis-
placement (or rotation) of a single antenna element to prescribed
locations [18], [58], [59]. Although this method has the advan-
tage of eliminating mutual coupling, a complete channel matrix
measurement often takes several seconds or minutes, requiring
a long channel mean stationary time. Therefore, virtual arrays
are most suitable for fixed indoor measurement campaigns when
activity is low.

2) Transfer Matrix Modeling: The simplest channel models
directly compute the transfer matrix based upon a statistical
description. For example, in a non line-of-sight (NLOS) propa-
gation environment, it is commonly assumed that the transfer
function between one transmit and one receive antenna will
have a magnitude and phase that follow Rayleigh and uniform
distributions, respectively [5]. This combination indicates that
the individual complex elements of are circularly symmetric
complex Gaussian random variables. In this case, the distribu-
tion is completely specified by the complex covariance matrix

, where and stacks the
columns of the matrix argument into a single column vector. In
cases where only power correlation information is available, the
elementwise square root of the power covariance matrix (the co-
variance of the vector with elements ) is sometimes used
instead of the complex covariance matrix.

Many studies assume no correlation between the signals on
different antennas, or , leading to independent matrix
entries. If correlation structure is to be included, a covariance
matrix must be constructed either directly from measured data
or from a correlation model. If the fading statistics at transmit
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and receive are assumed to be independent, a separable covari-
ance structure, referred to as the “Kronecker” product model
[37], [60]–[62], can be created with the form ,
where and are covariance matrices for signals on the
transmit and receive arrays, respectively, and represents the
Kronecker product. Furthermore, if the multipath arrivals are
uniformly distributed in angle in the azimuthal plane, then these
covariance matrices can be computed from [5]

(11)

where is the zeroth order Bessel function, is the coordi-
nate of the th antenna element in the plane, and is the
vector norm.

This approach is very simple to implement, and therefore
facilitates assessment of space-time codes using Monte Carlo
simulation approaches. Some studies have shown that this
model is highly effective in matching measured results for
systems with up to four antenna elements [61], [62]. However,
recent work has demonstrated key deficiencies in this Kronecker
product model [63]. In fact, one study has demonstrated that the
Kronecker structure leads to high errors not only in the computed
capacity but also in the covariance matrix representation [64].
Fig. 7 shows a plot of the normalized error

as a function of , where , ,
and represent the total, transmit, and receive covariance
matrices, respectively, estimated from measured data. These
estimates are computed from data taken over a measurement
distance of about . The two curves are for taking the
expectation over the entire distance and over segments of
lengths (and then averaging the 10 covariance results).
Very large error is apparent, particularly as the array sizes
grow. The error is reduced when the computation is performed
over larger segments, perhaps due to more variation in the
structure of the propagation environment [64].

The “predicted” curve in Fig. 6 is obtained using this com-
plex Gaussian model, but using covariance matrices estimated
directly from the experimental data. While the general trend is
accurate, clearly some discrepancies exist. Another study has
confirmed this error in the capacity as well as error in the joint
statistics of the resulting transfer matrix [65]. These results
imply that while the statistics of the transfer matrix elements
are marginally complex Gaussian, the joint statistics are not.
Nevertheless, the simplicity of this model makes it an attractive
starting point in the analysis of any MIMO system, and recent
augmentations have been shown to provide some increased
accuracy [66]. Improved accuracy can then be achieved using
more sophisticated models as outlined below. An important
research activity involves finding models with this level of
simplicity that properly capture the channel behavior.

B. Multipath Characterization

Another philosophy regarding MIMO channel characteriza-
tion is to directly describe the properties of the physical multi-
path propagation channel, represented by the small dotted box in
Fig. 2. Ideally, such measurements are independent of the prop-
erties associated with the measurement antennas. While early

Fig. 7. Error associated with estimating the covariance matrix of measured
data using the Kronecker product structure as a function of the array sizes.

work in this field has set the stage for more current activities,
it is the recent double-directional channel characterization that
is most useful for MIMO channel assessment [67]. This repre-
sentation models the channel in wavenumber space according
to the directional impulse response , where and
are vectors associated with receive and transmit wavenumber
(direction), is time, and single polarization has been assumed.
Assuming only far-field propagation mechanisms, and are
unit vectors in the propagation direction, with wave propagation
at the speed of light. For simplicity, the fields at the receiver are
typically modeled as a discrete set of plane-waves according to

(12)

where is the Dirac delta function, and the th multipath
component has amplitude , phase , time of arrival (TOA)

, direction of arrival (DOA) , and direction of departure
(DOD) . Intuitively, each multipath component corresponds
to a plane wave arriving at a specific time and direction at the
receiver due to energy launched in a specific transmit direc-
tion. When the true channel behavior is well represented by
(12), the multipath parameters may be measured using conven-
tional beamforming [68], basis matching techniques [69], or
parametric estimation algorithms such as ESPRIT [67], [70],
[71].

With the directional impulse response known, the transfer
matrix elements for particular transmit and receive antenna ar-
rays (assuming ideal voltage sampling) are obtained through the
relationship shown in (13) at the bottom of the next page, where

and are field radiation patterns and and are phase
center coordinates for the th receive and th transmit antennas
in the receive and transmit spaces, respectively. If
is specified as in (12), the elements of the wide-band channel
matrix become

(14)
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Fig. 8. Diagram of an outdoor backyard environment with plane wave departure and arrivals obtained through measurement. Reprinted from [72] with permission
(© 2002 IEEE).

Fig. 8 shows an outdoor scene (backyard) with the estimated
DOA/DOD of the multipaths obtained using ESPRIT on data
taken with a virtual transmit array/switched receive array
channel probing system [72]. The system center frequency
and bandwidth were 5.2 GHz and 120 MHz, respectively. The
vector length corresponds to the gain of each estimated path.
This data can then be used to assess the MIMO performance for
any desired transmit/antenna configuration as well as for local
movement of the arrays within this environment. Fig. 9 plots
the 10% outage capacity (which simply means that the capacity
is lower than this only 10% of the time), for different array
sizes using this concept. This post-measurement flexibility is
not possible with direct measurements of , since in that case
the antennas become part of the measured channel.

A limitation of characterizing the measured channel as
discrete plane waves is that realistic scattering often generates
fields poorly represented by this model. For example, rough
surfaces and random media produce diffuse scattering, gen-
erating a continuum of departure and arrival directions. Also,
if scattering objects are not in the far field of the antennas,
curved wavefronts or evanescent fields may be present that
do not conform to the model. Finally, even if the multipath is
discrete, the multipath components may be so numerous that
the system resources (number of elements, bandwidth) are
inadequate to resolve them all. When the assumptions of the

Fig. 9. Capacity versus array size obtained from simulations using measured
multipath parameters in line-of-sight (LOS) and nonline-of-sight (NLOS)
environments. Reprinted from [72] with permission (© 2002 IEEE).

model are violated, channels reconstructed from (12) will most
likely under predict capacity due to lost information and power.
More research is needed to determine the properties of realistic
propagation and to evaluate the accuracy of channel response
reconstructions based on (12).

Models capturing multipath behavior range in complexity
from deterministic site-specific ray-tracing to simpler statistical
descriptions. A fairly complete review of directional modeling
techniques can be found in [27]. Here we briefly describe a few
techniques that have recently been applied to MIMO modeling.

(13)
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Further work is needed to explore these models and improve
their ability to represent key physical channel characteristics.

1) Deterministic Ray-Tracing: Deterministic site-specific
modeling begins by creating a two dimensional (2-D) or 3-D
computer model of a propagation environment. The response of
the model to electromagnetic excitation may then be computed
through computational techniques. Such models can also pro-
vide statistical channel information by applying Monte Carlo
analysis on many random transmit/receive locations and/or
model geometries.

ffRay-tracing [73]–[78] has emerged as the most popular
technique for the analysis of site-specific scenarios, due to its
ability to analyze very large structures with reasonable com-
putational resources. The technique is based on geometrical
optics, often supplemented by diffraction theory to enhance
accuracy in shadowed regions. Recent studies have further
combined ray-tracing with full-wave electromagnetic solvers
to model objects with features that are comparable to the
illumination wavelength [79], [80].

Ray-tracing techniques have demonstrated reasonable accu-
racy in predicting large-scale path loss variation, with error stan-
dard deviations of 3–7 dB being reported. However, preliminary
comparisons of ray-tracing predictions with measurements indi-
cate that the simulations tend to underestimate MIMO channel
capacity [81], likely due more to over-simplification of the ge-
ometrical scenario representation than failure of the electro-
magnetic simulation approach. Other recent work [82] shows
promising agreement in exact DOAs of measured and simu-
lated micro-cells. In this case, the results can be combined with
a random distribution for phase [82]–[85] to create a complete
model. Further work is needed to identify how much model de-
tail is required to correctly represent the channel.

Ray-tracing simulations have been used to study MIMO
channel characteristics such as spatial-signature variation with
small-scale movement [86], capacity variation with array lo-
cation and antenna spacing [26], [87], and angular clustering
of multipath arrivals [88]. Ray-tracing studies have also led
to the development of simpler statistical models such as those
described in Section III-B.3.

2) Geometric Discrete Scattering Models: Due to the
high computational cost of rigorous ray-tracing simulations,
more approximate models have appeared that assume simpli-
fied geometries and scattering mechanisms. For example, in
[89]–[96], scatterers are modeled as discrete objects located
about the receiver and/or transmitter. These objects can repre-
sent site-specific obstacles, or their locations and cross-sections
can be defined statistically. Assuming either a single-bounce
or double-bounce scattering mechanism, the channel response
may be rapidly computed. These models also allow for dynamic
channel evolution by computing the response as the transmitter
or receiver moves through the environment. Finally, statistical
scatterer characterization can lead to convenient, closed-form
statistical distributions on delay spread, angular spread, and
spatial correlation [97]–[100].

3) Statistical Cluster Models: Statistical cluster models di-
rectly specify distributions on the multipath DOD/DOA, TOA,
and amplitude. Most current models are based on initial work
by Turin, et al. [101] who observed that multipath components
can be grouped into clusters that decay exponentially with in-

Fig. 10. Comparison of capacity PDFs for 4� 4 measured data and multipath
channel model simulations.

creasing delay time. Intuitively, a single cluster of arrivals might
correspond to a single scattering object and the arrivals within
the cluster arise due to smaller object features. Later work ap-
plied the model to indoor scenarios [102] and added directional
information [65], [69], [93], [103]. In more advanced models,
the “birth” and “death” of clusters due to movement of the sub-
scriber can be taken into account [104]. Statistical descriptions
of the multipath arrival parameters have been obtained through
measurements [69], [92], [105]–[109] and ray-tracing [104].
Other work has combined the cluster and discrete scattering
models to include both distant and local scattering [110], [111].

Provided that the underlying statistical distributions are prop-
erly specified, these models can offer highly accurate channel
representations (in a statistical sense). Fig. 10 compares prob-
ability density functions (PDFs) of capacity obtained from
measurements and Monte Carlo simulations ( channel re-
alizations) from one such model for a 4 4 system operating
in an indoor environment [65]. The good agreement observed
between the measured and simulated results is superior to that
obtained with direct transfer matrix modeling approaches for
fixed covariance.

C. Keyhole (Pinhole) Channels

Keyhole channels occur when, despite the presence of scat-
terers local to the transmitting and receiving nodes, the multi-
paths travel from the area local to the transmitter to the area local
to the receiver via one dominant path. A simple example of this
would be two outdoor regions connected by a single tunnel. At
the receiver, the locally scattered components, despite poten-
tially large angle spread, will all contain essentially the same
information, leading to little or no capacity gain. A variety of
simple studies have demonstrated the possibility of such chan-
nels and have quantified the performance of MIMO systems in
this environment [30], [112]–[114]. These findings underscore
the fact that MIMO system performance cannot always be deter-
mined by traditional average metrics such as antenna signal cor-
relation, since channel capacity depends on each instantaneous
realization of the channel matrix and not just average correlation
properties. We point out that around “43” on the horizontal axis
in Fig. 6, we observe a large measured capacity drop while the
simulated capacity remains relatively high (implying low corre-
lation). This point corresponds to measurement through a tunnel
and appears to be a result of keyhole propagation.
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IV. THE IMPACT OF ANTENNAS ON MIMO PERFORMANCE

As previously mentioned, MIMO systems perform best when
the transfer matrix is full rank, a situation achieved when the cor-
relation between signals on the different antennas is low. This
section discusses how antenna properties such as pattern, po-
larization, array configuration, and mutual coupling can impact
this correlation.

A. Element Radiation Pattern

Angle diversity results when antennas have distinct radiation
patterns. Mathematically, assuming two antennas with the same
phase center (or closely spaced phase centers), a single incident
wave polarization, and that the arrival angles of the multipath
components satisfy a PDF , we desire the signal correla-
tion [115]

(15)

where is the pattern of the th antenna, to be small. When
the antenna phase centers are closely spaced so that angle diver-
sity is the dominant factor, the essentially omnidirectional pat-
tern created by most small elements results in relatively large
values of , leading to low capacity. However, when element
patterns are appropriately designed to minimize (15), then ca-
pacity gains are possible. One suggested approach for realizing
such a situation involves the use of multi-mode antennas where
the patterns for different modes exhibit high orthogonality (low
correlation) in the form of (15)[116]. Finding other antenna
topologies that offer this orthogonality in a compact form factor
remains an area of active research.

Another important aspect of element radiation pattern in-
volves the manner in which the antenna excites the multipath
environment. As an example, a recent study has compared
the capacity performance of dipole antennas with that of
higher-gain spiral antennas whose radiation patterns tend to be
more directive toward 45 and 135 in elevation [117]. Fig. 11
shows measured (using a switched array system) and simulated
(using a statistical path-based channel model) capacities for the
two antennas in an indoor environment. The results show that
the lower gain dipoles offer superior capacity (by about 10%),
since these antennas put more energy into the horizontal plane
where most of the multipath components are concentrated.

B. Array Configuration

It is important to emphasize that the transfer matrix in
(1) depends not only on the propagation environment but also
on the array configurations. The question becomes which array
topology is best in terms of maximizing capacity (perhaps in an
average sense over a variety of propagation channels) or min-
imizing symbol error rates. This is difficult to answer defini-
tively, since the optimal array shape depends on the site-specific
propagation characteristics, although some general observations
are possible.

First, there is a notable study where several different array
types were explored for both the base station and the mobile
unit in an outdoor environment [45]. The base station antennas
included single and dual polarization array and multibeam

Fig. 11. Simulated and measured outage capacities for arrays of 2 dipole and
spiral antennas in an indoor environment as a function of antenna spacing.
Reprinted from [117] with permission (© 2002 IEEE).

structures. The arrays on the mobile were constructed from
monopoles to achieve spatial, angle, and/or polarization di-
versity. All of the array configurations provided very similar
performance, with the exception of the multibeam base station
antennas which resulted in a 40–50% reduction in measured
capacity since generally only one of the beams pointed in the
direction of the mobile. These results suggest that average
capacity is relatively insensitive to array configuration.

The conclusions drawn above are based on comparisons
of average capacity for different array configurations. Alter-
natively, we can consider an adaptive system that selectively
connects a subset of available antennas to the electronic
modules. Studies have shown that an intelligently-selected
sub-array can provide improved capacity [118]–[122] or lower
probability of symbol error [123] relative to the performance
of fixed arrays.

Finally, we observe that for single antenna systems, the
capacity bound in (4) is independent of the antenna (other than
the antenna gain). The strong dependence of MIMO capacity
on array configuration is therefore troubling since this number
is not a true upper bound on the physical channel throughput.
In response to this, recent work has formulated the Intrinsic
Capacity for a specific channel and spatial antenna apertures
independent of the array configuration [124]. This creates new
research avenues in identifying antenna elements and arrays
that provide optimal or near-optimal performance.

C. Element Polarization

Recent work has suggested that in a rich multipath envi-
ronment, sensing the three Cartesian vector components of
the electric and magnetic fields can provide six uncorrelated
signals at the receiver [125]. This conclusion can be under-
stood by recognizing that for large multipath angle spread,
the combined polarization and angle diversity offered by three
orthogonally-oriented electric and magnetic Hertzian dipoles
at a point can lead to six uncorrelated signals [126], [127].
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Fig. 12. Plot of the effective number of communication channels as a function
of azimuthal angle spread for several different elevation angle spreads.

Fig. 12 plots the effective number of polarization-based com-
munication channels as a function of multipath arrival spread
in azimuth ( ) for several different elevation
spreads ( ). For a single propagation path
( ), only two channels exist corresponding to
the two possible polarizations of the incident plane wave. Six
independent communication modes are enabled only for full
multipath angle spread.

From a practical standpoint, constructing a multi-polarized
antenna that can achieve this bound is problematic. Using half-
wavelength dipoles and full-wavelength loops leads to strong
mutual coupling and nonideal pattern characteristics that can
reduce the number of independent channels. One interesting
geometry is a cube consisting of dipole antennas to obtain a
high-degree of polarization diversity in a compact form [128].
The design and fabrication of other practical antennas that can
exploit polarization remains an area where further research is
warranted.

Finally, in the common case where two polarizations are
used, typical scattering leads to a co-polarized received signal
that is 4 to 10 dB higher than the cross-polarized signal level
[129]. The result is a transfer matrix that exhibits low correla-
tion (high diversity) coupled with weak channel gain between
the two orthogonally polarized channels (reduced SNR) [16],
[20], [130]–[133]. Experimental results demonstrate capacity
gains of around 10–20% from using dual-polarization over
single-polarization spatially-separated elements in an indoor
environment [20]. The key advantage to using two polariza-
tions is that regardless of the environment, at least two parallel
channels are enabled.

D. Mutual Coupling

Antenna mutual coupling is a key issue of concern for MIMO
systems [134], [135]. It has long been known that the pattern
distortion from close antenna spacing creates angle diversity that
can lead to reduced signal correlation [115], [136]–[142]. More
comprehensive studies have examined the effect of coupling
and antenna termination on the capacity [143]–[146]. These

Fig. 13. Impact of mutual coupling on arrays of length 5� as the number of
elements increases. Reprinted from [146] with permission (© 2002 IEEE).

approaches construct the transfer function relating the signals
at the receiver electronics to signals input at the transmit
antenna terminals and accurately compute the received SNR
on each branch. Two main conclusions have surfaced as a result
of these studies. First, because of the induced angle diversity
combined with improved power collection capability of coupled
antennas [134], the capacity of two coupled dipoles can be higher
than that of uncoupled antennas (through proper termination),
particularly for small dipole spacing where coupling is high
[143], [144]. Second, for a fixed-length array, the strong coupling
between elements packed into the same physical space will
ultimately lead to an upper bound on capacity performance. For
example, Fig. 13 plots the capacity as a function of the number of
transmit and receive half-wavelength dipoles ( )
packed into a linear array of length [146]. The propagation
(field) channel model is that in Section III-A2 with covariance
computed as the product of Bessel functions [similar to that
in (11)]. This model is then augmented to include the mutual
impedance of the antennas and terminations using network
theory. Three hundred Monte Carlo realizations are used to
obtain the mean capacities given for the case where the antennas
are terminated in a self-impedance match. As can be seen, this
analysis predicts significant capacity reduction compared to a
system where coupling is neglected for spacing smaller than
about , leading to an upper capacity bound for a given
aperture length.

V. CONCLUSION

This paper has provided a tutorial on the operation of
MIMO wireless communication systems and illustrated how
multiple antennas can lead to increased system capacity for
multipath communication channels. It has also offered a review
of recent research activities and findings related to antennas and
propagation in MIMO communications, demonstrating the large
variety and volume of work that has recently been accomplished
in this arena. This review has shown that issues related to
antennas and electromagnetic propagation play a significant
role in determining MIMO system performance. Furthermore,
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the paper has highlighted potential future research directions
within this general field, revealing that a number of challenging
problems remain unsolved. It will take continued collaborative
efforts from researchers in electromagnetics, signal processing,
and communication theory to ultimately exploit the potential
of MIMO technology through practical implementation.
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