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Termination-Dependent Diversity Performance of
Coupled Antennas: Network Theory Analysis

Jon W. Wallace, Member, IEEE, and Michael A. Jensen, Senior Member, IEEE

Abstract—A new analysis of mutually coupled diversity antenna
systems is presented that includes the effects of coupling on the ra-
diation pattern and received power. This analysis, based upon the
network scattering parameters, makes use of the singular value de-
composition to both specify the characteristics of and analyze ter-
minated antenna networks. The approach facilitates a simplified
proof of the multiport conjugate matching condition as well as de-
velopment of expressions for diversity performance as a function
of various impedance terminations. Application of the analysis to
coupled dipole antennas characterized using full-wave electromag-
netic analysis leads to a comprehensive examination of the diver-
sity performance obtainable for such antennas under different ter-
mination conditions. The results from this paper reveal that for
closely spaced antennas, the termination can play a noticeable role
in determining the diversity gain offered by coupled antennas.

Index Terms—Antenna array mutual coupling,
methods, impedance matching.

diversity

I. INTRODUCTION

NTENNA arrays play a crucial role in wireless commu-

nications over multipath fading channels, with antenna
diversity being the topic of considerable research for many
decades [1]. When using multiple antenna elements for di-
versity implementation on small personal communications
devices, the resulting closely spaced antenna elements exhibit
the well-known mutual coupling [2], which alters both their
terminal impedance and radiation pattern characteristics. These
changes obviously impact the diversity performance of the
multiantenna system.

A variety of studies have appeared that examine the diver-
sity performance of coupled antennas. Most such studies have
emphasized the effect of coupling on the antenna radiation pat-
tern and the resulting correlation between the received signals
[3]-[8]. Generally, these studies neglect the impact of the al-
tered impedance on the received power. Even when this effect
is included in the analysis, typically only a single termination
[9]-[11] or a limited set of terminations [12] is considered. As
of yet, there does not appear to be a comprehensive study in-
cluding both the pattern and power implications of mutual cou-
pling for different termination conditions, particularly optimal
antenna matching schemes.
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Fig. 1. System model of a coupled diversity antenna array connected to a
multiport matching circuit and individual loads.

In this paper, we present a framework that includes the im-
pact of antenna termination in assessing the diversity perfor-
mance of coupled systems. The analysis exploits singular value
decompositions (SVDs) of the scattering-parameter (S-param-
eter) [13] representations of the antenna, matching network, and
load. The framework facilitates a simple proof of the multi-
port conjugate matching condition [10], [14]-[16] and reveals
that proper termination not only maximizes received power but
also can perfectly decorrelate the received signals. Furthermore,
the methodology provides new tools for multiantenna or multi-
port system analysis and allows mathematical definition of the
multiport optimal matching network. Computational results for
mutually coupled dipoles demonstrate the achievable diversity
performance for different antenna terminations. These results
indicate that, for close spacing, the termination can play a key
role in the achievable diversity performance of the system.

II. COUPLED ANTENNA NETWORK REPRESENTATION
A. S-Parameter Network Description

For high-frequency systems such as mutually coupled an-
tenna networks, the S-parameter matrix representation [13] pro-
vides a convenient analysis framework. In this description, the
voltages and currents on each of the N ports are decomposed
into inward (@) and outward (b) traveling waves that satisfy the
relation b = Sa, where S is the Nx N S-parameter matrix or
S-matrix. The voltage on (vy,) and current into (4, ) the nth port

are related to a,, and b,, according to

1/2

U = 25" " (an + by)

in =75 (an — by) (1
where Zj is a normalizing impedance.

Consider now the network depiction of the coupled receiving
antenna system shown in Fig. 1. In this diagram, each element of
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the coupled array is characterized by a generator whose signal
passes through a coupling matrix S, with a block representation

?C _ Ec,ll §c 12 )
Sc,21 SC 22 — SS

where “1” and “2” refer to input and output ports, respectively.
Here, we have used the notation S.. 22 = S5 to emphasize that
this block represents the traditional “source termination” en-
countered in S-parameter circuit analysis. It is also noteworthy
that S is the coupled S-parameter matrix measured at the an-
tenna element input ports. Rather than trying to characterize the
remaining blocks of S.., we will simply represent the excitation
signal at the antenna ports as bg so that

4 = Sgby + bs. 3

The N-port antenna in Fig. 1 is attached to the M -port load

network S, through a matching network with S-parameter ma-

trix Sp; consisting of blocks ?ij, 1,7 € 1,2, arranged in a form

similar to that in (2). Here, we will consider networks having the

same number of input and output ports (M = N). We briefly
discuss implications of M # N in Section III.

For the network in Fig. 1, the input and output reflection co-
efficients can be expressed as

= pr— = pr— pr— _1: pr—
Fin =811+ S12 (I - 5L522) S8 4)
= _1:
St) Sa ©
1

fout = §S§12 (6)

where the two forms for T, are equivalent.

B. SVD Network Representation

The SVD of the S-parameter matrices facilitates analysis and

provides a useful interpretation of the circuit’s fundamental be-
—1/ 2—H

havior. This decomposition is given by S =TA , where

1/ 2’ .
T and V are unitary matrices of singular vectors, A is a di-

agonal matrix of corresponding ordered singular values (largest
to smallest), and {-} is the conjugate transpose operation. We
may therefore write the S-matrix relation b = Sa as

U bh=AV a 7)
~ ~—~—
zl E/

Considering vectors b and @ , the response of the network is
now characterized by IV one-port elements, where the nth ele-
. . . 1/2
ment presents a positive reflection coefficient Ay}, .
Network loss characteristics are an important consideration
for matching networks. Consider the net power delivered to a

network that, using (7), is given as
= =—H—
(I - S S> a )

—}jl— ) las,|? ©)

where A\, = A,,,,. Thus, the network loss behavior is primarily
defined by A. For lossless networks, Pt = 0, so that \,, =
for all nn. For lossy networks, Pt > 0, so that A,, < 1 for all .

Poee = [[all* — [[pl]* =a"

C. Lossless Matching Networks

Lossless matching networks are of particular interest since
they may be constructed from all passive components exhibiting
—H — =

low noise figures. Such networks must satisfy §M§1\1 =1,
resulting in the conditions

S11511 + 891521

=1
—H— —H— =
511512 + 52152 =0
512512 + 52252 =1. (10)
= — =1/2—=H
Substitution of the SVD of the subblocks Si; = U;;A;; V;

into (10) yields

?21621=§11 Aoy =1— 1y,

V12012 =V Ay =1— Ry (11)

where ©5; and O, are diagonal phase shift matrices with arbi-
trary complex elements of unit magnitude. This operation also
produces the condition

—1/ —H — — 1/2:
Ay ULU (1 Azz) O12

—H = — \l/2—

Relations (11) also constrain the singular values of the
subnetworks. Since Sj; is lossless, S1; and S, must be
nonamplifying (0 < A1q,,, A22,, < 1). Otherwise, an excita-
tion could be found that violates the lossless condition. This
observation coupled with the constraints in (11) indicates that
0 < Ai2,n, A21,n < 1 as well. It should also be mentioned
that if we alj§o require the matching network to be reciprocal

(Syr = Sy, where {-}T is the transpose operator), addi-
tional constraints are placed on the matching network SVD
representation.

III. OPTIMAL ANTENNA MATCH

A study of termination-dependent diversity performance
would be incomplete without considering an optimal termina-
tion that maximizes received power. While such a multiport
conjugate match has been discussed in prior work [10],
[14]-[16], the SVD analysis proposed hlgre facilitates a signif-

icantly simplified proof that S;; = Sg results in maximum
power transfer to the load. We therefore provide here an
abbreviated version of this proof.

A. Load Match

To begin the derivation, we remove the source coupling block
in Fig. 1 to arrive at the network in Fig. 2. The power to the load
will be maximized for any possible excitation (@) if and only
=0.

To show that S 99 = S is sufficient to ensure that Fm =0

for arbltrary exc1tat10n we use the SVD representations Soy =
—H

1/2= = =1/2
SL = [ULAL VL] and S1; = U11Ay; V4. We also make
the reasonable assumption that the singular values A1 5, < 1

if we can find .S M for a l(}?sless network such that T;,,

(?11 is lossy), since otherwise we could find an input signal
that would be completely reflected, violating the zero reflection
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Fig. 2. Setup for the load matching problem. To ensure maximum power
transfer, we must find S, such that T;,, = 0.

condition. Using the constraints in (11) coupled with (5) leads
to

= = =1/2 = /= = \-1/2=1/2

Iin = [U11A11 + U2 (I - AL) Ap

— —H— 1/2
©12V U (I All) 921} V11 (13)

Since §L is lossy, we can rewrite (12) for this problem as

(%) K807, 0n (T-50) 6

= —U,,U11hy, (14

which upon substitution into (13) results in

inz[UHAH—UHUUUHAH} V=0 5

Therefore, choosing §22 = ?f is sufficient to ensure that ﬁn =
0 for arbitrary excitatiolq. ~ _ L

Next, we show that I';, = 0 implies that Sy = S , indi-
cating that this latter condition is also  necessary for max1mlzmg
power transfer. Multiplying (5) by S’ 19> assuming Ty, = 0, and

making appropriate substitutions from the lossless conditions
(10), we obtain

[—522 n <I _ 522522> 5, (I _ SQZSL) }521 —0.

M
_ (16)
We now recognize that S51 must be full-rank, since otherwise
we would have Asq ,,, = 0 and Ayy ny, = 1 for some n that
could lead to complete reflection. Therefore, (16) can only be
satisfied if M = 0, which after simplification yields Soo =

—H
S . The combination of the two preceding proofs indicates that

maximum power transfer is achieved if and only if 5’22 = S I-

B. Source Match

We now consider the problem of matching the arbitrary (cou-
pled) source element in Fig. 1 to a set of uncoupled identical
loads of impedance Z;. In this case, Sz, = 0 so that @, = 0 and

Tin = Si1. If we collapse the matching network and load net-
work into a single network block, then our equivalent network
is in the form of Fig. 2 with S, replaced by S. and S, replaced
by the collapsed network with input reflection coefficient S;.
Based upon our work above and since the matching network is
lossless, we know that all avaﬂable power will be transfered to

the loads if and only if S 11 = S S -

C. Bilateral Hermitian Match
To demonstrate the bilateral conjugate match condition, we

first set S L= F ut 1N (4) and subsequently use (6). Then, as-

suming that Sy, is full-rank (invertible) and applying the loss-
less conditions in (10) leads to the simplified expression

- _H /(= —H—H\"}
Iin =S5 <I 511SS> (I 511Fm>- (I7)

—H
Obviously, F =5 Ss

Therefore, Fout

isa (unique) solution to this equation.
—H

S; implies that Tw=25 S -

D. Unequal Number of Input and Output Ports

To illustrate the impact of assuming M # N, consider the
load-matching problem with more input ports (M) than output
ports (). Our requirement that So; be full rank is certainly
violated, and therefore we cannot find a matching network that
will provide maximum power transfer for arbitrary excitation.
However, if input signals are limited to an /V-dimensional sub-
space, we can find a linear element that takes signals on the M
input ports and converts them to N output ports, and a suitable
matching network can then be found. Alternately, if M < N
we have no difficulties, since we can simply add input ports that
are not connected to the source. Similar arguments exist in the
source matching problem.

IV. TERMINATION-DEPENDENT DIVERSITY PERFORMANCE
A. Received Signal Covariance

The performance of antenna diversity systems depends upon
the signal strength on each antenna branch as well as the signal
correlation between branches. To assess these metrics for dif-
ferent degrees of antenna coupling and receiver terminations,
we will compute the covariance matrix for the voltages received
on each branch. For the network in Fig. 1 with Zy = 1, the re-
ceived voltages are given by

U =by + @y = (?+§L)52

= (7+§L> (?—?22?14) §2151 (18)

where we have used that by = Sooliy + 8017 and Gy = S 1.bs.

Using (3) with b; = Ty,a; in (18) leads to
—1_
) bs.

v = (T+52) (T-5251) S (T-5sTn

Q
19)
The covariance matrix is therefore given as
pr— :H
RL —E{’UL’UL} = QRsQ (20)
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where Rgs = E{Esgg} is the covariance of bs and E{-} rep-
resents an expectation. The form of @ in (19) represents the
general voltage transfer function and is relatively complicated.
However, for cases of practical interest, this expression is sig-
nificantly simplified, as demonstrated in Section IV-C and -D.

To relate bs to the physical antenna properties, consider an
antenna array consisting of N arbitrary antenna elements em-
bedded in a reciprocal medium. The far-field radiation pattern
of the array is

21

= an(ﬂ) i

where 1,, is the current on the nth element, FH(Q) is the vector
far-field radiation pattern of the nth element when all other ele-
ments are open-circuited (i, = 0 for k£ # n), and 2 represents
a direction in solid angle. We may stack all of the far-field pat-
terns (one per column) into a single matrix to obtain

EQ)=F(Q)i. (22)
Now, assume a plane wave arrives from the solid angle direc-
tion {2 (propagating in the —€2y direction) with complex field
strength Fg = A exp(j¢) (A real) and electric field polarization
vector é. If the antennas are open-circuited, then by reciprocity
the voltages on the antenna elements are given by
T=2c1EgF(Q)Te (23)
where c; is a complex constant. Equating this open-circuit an-
tenna response to the voltage obtained assuming that port 1 in
Fig. 1 is open-circuited, we arrive at the expression

55 =c1 by (? - ?5) f(QO)Té = 61E0 (QO) é 24)

where we have included the impedance mlsmatch factor
(7-5s
simplicity.

We emphasize here that the choice of using element patterns
computed with all other elements open-circuited is only one of
a variety of possibilities. For example, we could have chosen
to compute patterns with all other ports terminated in the
system impedance Zy. In this case, however, the superposition
in (22) and formulation leading to (24) would need to change
appropriately.

The covariance of bs may now be written explicitly as

) in the effective radiation pattern 7 (Qp) for later

—/*
Rs = s /dQ dé dA p(Q, A)A2 (Q)TééTF (Q)
(25)
where p(2, é, A) represents the probability density of the inci-
dent field angle of arrival, polarization, and amplitude. For the
following, we will make the standard assumptions that:

1) the antennas and incident waves have the same single
polarization;

2) arrival angles are restricted to and uniformly distributed
on a solid angle sector A(2;

3) field amplitudes are independent of arrival angle and have
a variance E2.

Under these contraints, we have

—/H =/
—x o dQF  (Q)F (Q
RS:|61|2E21AQ ( ) ( )
B Jaq a9
=coP (26)
where ¢; = ([c1[2E?)/ [\, d€2. The covariance of by, can now
be written as
— —x—H
RL=cQPQ . 27

In some cases, a more descriptive statistical model of the
channel is available (such as a path-based model [17]-[19]). In
this case, bs can be computed from (24), with E and ¢ obtained
from the model, for a set of Monte Carlo channel realizations.
The covariance Rs = E{bsb 5 } can then be constructed using
a sample mean to estimate the expectation.

B. Source Covariance for Full Angular Spread

Under the special case that the multipath arrival sector A2
extends over the full angular range of the propagation environ-
ment, a simplification can be introduced. To see this, consider
the array operating as a transmitter. Using (22), the power radi-
ated by the array is given as

Prad =C3 j{ dQHF(Q)H2

=i [7{ dQ?H(Q)f(Q)] i

where c3 is a real constant. From (1) with Zy = 1, we know that
i = (I—Ss)a, where in this case @ represents the voltage waves
incident on the antenna ports. The radiated power becomes

Prad = czalt I SS VdQF Qfﬂ)} (?-?S)a

(28)

= 3@ {7{ dOF (Q)F(Q)} a. (29)

P
For a lossless antenna, the power radiated is equal to the
power delivered to the antenna network as expressed in (8).
Equating (29) and (8) and using the result in (26) therefore leads
to the source covariance

= % = —H— *
RSZCQP :C<I—SSSS> (30)

where ¢ = c¢o/cs. If the antenna and transmission media are

.
reciprocal, then S s = Sg, resulting in

Eszc<?—§£s>.

The key observation concerning (31) is that under the propaga-
tion conditions outlined, the covariance matrix can be computed
without resorting to integration of the radiation patterns, as pre-
viously observed in [10].

(3D

C. Simplifications for Practical Terminations

The general framework for computing the covariance ma-
trix of terminated coupled antennas is simplified for several
practical terminations. In this section, we consider the cases of
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terminating the antenna ports with open-circuit characteristic
impedance and self-impedance matched loads. For all cases ex-
cept for open-circuited terminations, we use the (realistic) load
network consisting of one resistor of value Zy = 1 on each port,
leading to S, = 0. Since this results in T';;, = S, the matching
network is used to create the desired antenna port terminations.
1) Open-Circuit Terminations: For open-circuit termina-
tion, the matching network is removed (S 11 = Sy = 0,
S = Sy = I) such that T;, = S; = 1. Under these
conditions, the covariance matrix simplifies to
-1

Ry =4(T-5s) " 7is (T- 57

2) Characteristic Impedance Terminations: In this case, we

(32)

again remove the matching network but use I';, = 0. This re-
sults in Q = I such that
Rr z, = Rs. (33)

3) Self-Impedance Match: Self-impedance match refers to
the condition where port 7 is terminated in the self impedance
of antenna n. In this case, Fm = 5’11 = dlag{S S} where the
diag{-} operator creates a diagonal matrix from the diagonal
entries of the operand. The resulting covariance matrix becomes

-1 — — = — H(-1)—=H

Rpoar=Sn (T-Ss5u) Fs(T-Ss5u) 5.
(34)
D. Optimal Hermitian Match
= = —H
As a framework for analysis, let Iy, = S11 = Sg, which

leads to the covariance matrix

= — (= = =m\"! — —H\ '—H
Ry, opt = S21 <I— 5555> Rs (I SSSS> Sor-
(35)
Using the conditions for lossless matching networks from
Section II-C, the two relevant blocks of the matching network
are represented using
—1/2—H
511 = S s =VA U
— — 1/2— —H
So1 = U (I A)

00U (36)
These conditions transform (35) to the form

1/2 —H— —

Riop=Un0n (I-%) T RsU

(1 A) et 5

Under the conditions considered in Section IV-B where mul-
tipath components arrive uniformly from all angles of arrival,
we use (31) along with (36) to obtain

= = = = :H

Rs = cU (I _ A) U (38)

Placing this result in (37) yields the simplified expression
RL,opt = CU21@21®21U21 = CI. (39)

This result implies that under these circumstances, the optimal
Hermitian match perfectly decorrelates the signals on the loads.

Other studies have noted the reduced correlation associated with
termination [3], [6]-[12], but have not provided a framework for
arriving at this perfectly diagonal covariance. It is important to
realize that this decorrelation is simply the result of recombina-
tion of the received signals, and therefore does not necessarily
enhance the diversity performance of the system. Nevertheless,
itis interesting to be able to mathematically predict this behavior
using the proposed analysis approach.

When full angular spread does not exist, the optimal matching
network can be further specified to diagonalize the covariance
matrix. Consider again (37) and let

T=(I-%)

= = =H

VP TRT = w0

(41)

where (41) represents the eigenvector decomposition of T.
Since the product Uy109; is arbltrary as long as it is unitary,

we can choose Usq @21 = UT to obtain

RL,opt = AT (42)

the diagonal matrix of eigenvalues of 7. In the case of two ver-
tically oriented dipoles, the problem symmetry leads to 2 x 2
real Toeplitz symmetric matrices that share common eigenvec-
tors. The result is that the diagonalization can be accomplished
by choosing Us; = 1.

V. COMPUTATIONAL EXAMPLES

To demonstrate application of the analysis framework devel-
oped in this paper and to illustrate the impact of termination on
the diversity performance of mutually coupled antennas, we will
explore a receive array consisting of two coupled dipoles. While
closed-form expressions for coupled dipole impedance matrices
exist (for reasonable antenna spacings), expressions for the pat-
terns do not, motivating the use of full-wave electromagnetic so-
lutions. Furthermore, simple thin-wire simulations assume that
the current does not vary in azimuth around the wire, an assump-
tion that is violated for very closely spaced dipoles [20]. The
antenna coupled impedance computations are particularly sen-
sitive to this current variation, and the computation essentially
breaks down as the antenna spacing is reduced to zero [21], [22].

In this paper, it is desired to characterize the coupled antennas
as the spacing is reduced to zero. As a result, we have chosen
to use the finite-difference time-domain (FDTD) method [5],
[23] to perform detailed simulations that return both S-param-
eter and radiation pattern descriptions for the dipole antennas.
In this analysis, the z-oriented half-wave (total-length) dipoles
with wire radius 0.01) and separated by a distance d are located
at the center of the computational domain. Because we are con-
sidering narrow-band systems, single-frequency antenna excita-
tion is used. The FDTD grid uses 80 cells per wavelength in the
z direction and 200 cells per wavelength in the x and y direc-
tions. This finer resolution is required to adequately model the
current variations in the azimuthal direction on the finite-radius
wire for close antenna spacings.

Because of the fine grid resolution, a relatively small buffer
region of only a quarter-wavelength (to minimize simulation
memory) is placed between the antennas and the terminating
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Fig. 3. Plot of branch signal correlation as a function of antenna spacing

for two coupled dipole antennas terminated with various loads. The result for
independent dipoles is shown for comparison.

eight-cell perfectly matched layer absorbing boundary condi-
tion. The impact of this small buffer region was investigated
by reducing the = and y resolution to 100 cells per wavelength
and comparing impedances and radiation patterns for half- and
quarter-wavelength buffer thicknesses with a dipole spacing
of 0.13\. The resulting fractional change in self- and mutual
impedances was only 1.4 x 107* and 1.9 x 1074, respectively.
The maximum fractional change in the radiated electric field
intensity when a single antenna was excited was 1.5 x 10™%.

Based upon the formulation in Section IV-A, pattern com-
putations are performed when one antenna is excited while the
second is terminated in an open circuit. The antenna S-param-
eter matrix Sg is computed with the antennas terminated in Zj.
Multipath arrivals are assumed confined to the horizontal plane
in this paper. Unless otherwise specified, arrival angles are uni-
formly distributed within this plane (0 < ¢ < 27). As a result,
the radiation patterns are normalized such that

/OQWP(ﬂngS) dp =1

where P(0, ¢) is the antenna power pattern. This same normal-
ization is applied to an array of ideal (uncoupled) dipoles used
as a baseline for defining the degree of diversity performance.

As a first example, it is interesting to compute the correlation
coefficient of the signals on the two antennas. This is simply
derived from the covariance matrix using

(43)

b= Ry 12
VERrp 1R 22

where Ry, ;; represents the 4, jth element of the computed load
covariance matrix. Fig. 3 plots the variation of this quantity
as a function of antenna spacing for the different terminations
considered in this work. For the optimal match, the matrix
Usq is chosen as Uq; and T for the cases where Ry is not
diagonal and diagonal, respectively. The reduced correlation
afforded by proper termination is clearly apparent in these
results. It is noteworthy that all terminations result in reduced
correlation as compared with the result obtained for uncoupled

(44)

—_ Z0 Termination

~~ Self-Impedance Match
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O e Hermitian Match - Diagonal

g
o
T
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/
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o
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Fig. 4. Plot of effective diversity order as a function of antenna spacing for
two coupled dipole antennas terminated with various loads. Correlations are
computed assuming arrivals are equally likely to appear at any angle within the
horizontal plane. The two Hermitian match results lie right on top of each other.

dipoles, confirming the results of other research [7], [8], [12].
However, it is important to point out that this study has included
the effects of the mutual impedance and terminations in the
analysis and provides a comprehensive examination of this
effect for a variety of termination types.

Naturally, the correlation coefficient provides only a partial
indication of the diversity performance of multiple antennas,
since the power on each branch is also an important factor. In
order to investigate the full diversity benefit, we utilize the con-
cept of effective diversity order introduced in [9]. In this metric,
the diversity benefit is measured in comparison to what is pos-
sible using two equal power and uncoupled antennas. For this
paper, the diversity order is determined from the data at the 1%
level on the diversity cumulative distribution functions and as-
suming maximal ratio combining. For the coupled antennas, di-
versity performance is computed using the eigenvalues of the
covariance matrix to represent two independent branches with
unequal average signal-to-noise ratio (SNR). Full details on this
metric are provided in [9].

Fig. 4 shows the diversity order as a function of spacing
for our different termination conditions. As can be seen, for
small antenna spacings, improved matching leads to improved
diversity performance. Most striking is the fact that the optimal
matching circuits lead to better performance than what is
obtainable with independent, equal power branches for small
antenna spacings (characterized as a diversity order >2). This
surprising result stems from the fact that optimally matched
coupled antennas can actually capture more power than can
be collected by two independent dipoles. One reasonable
explanation for this increased effective aperture is that a
portion of the power scattered by each receiving antenna can
be recaptured by the adjacent antenna. This metric also reveals
the expected result that although the matching network can
diagonalize the covariance matrix, this diagonalization comes
at the expense of unequal branch SNR and therefore does not
facilitate additional diversity gain. For this reason, the two
Hermitian match results lie on top of each other in the plot. For
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Fig. 5. Plot of effective diversity order as a function of antenna spacing

for two coupled dipole antennas terminated with various loads. Correlations
are computed from Monte Carlo simulations using a statistical path-based
propagation model.

larger spacings, clearly the match becomes less important, as
the curves for the different terminations tend to the same value.

Finally, Fig. 5 shows the diversity order as a function of
spacing for when the channel is obtained using a statistical
path-based channel model [19]. This model, which provides the
angles and times of arrival for each individual multipath, struc-
tures these arrivals as clusters in space and time [17], [18]. In
the simulations, 5000 channel realizations are used to estimate
the covariance matrix Rg for each antenna separation. While
there certainly are some slight differences between the results
in Figs. 4 and 5, the main conclusions obtained from this more
practical example are the same as those drawn from the more
simplistic, previous computation. Note that one explanation for
this similarity is that when 5000 channels are considered, the
statistical distribution of the arrival angles tends to be uniform
despite the clustered nature of a single realization.

VI. CONCLUSION

This paper has presented a new analysis of multiport
matching networks, applicable to the mitigation of mutual cou-
pling in compact antenna arrays. The SVD of the S-parameter
matrices describing the coupled antenna/termination network
leads to a powerful tool that facilitates specification and
analysis of the network response. Additionally, this framework
allows formulation of a new, simplified proof of the optimal
(Hermitian) match condition for coupled networks and leads to
relatively straightforward expressions for the covariance matrix
of signals received at the antenna terminations. These results
were used in conjunction with electromagnetic analysis of
coupled dipole antennas to demonstrate the potential diversity
benefit offered by two-element arrays for different possible
termination conditions. The results revealed that for close
antenna spacing as might be encountered on portable devices,

proper matching plays a noticeable role in determining the
system performance. Perhaps more importantly, this framework
provides a comprehensive analysis tool for characterizing and
analyzing the performance of arbitrary coupled antenna sys-
tems, including all three relevant aspects of radiation pattern,
mutual impedance, and antenna termination.
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