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Abstract— The multivariate complex normal distribution is
often employed as a tractable and convenient model for MIMO
wireless systems. Several models may result depending on how the
covariance matrix is specified, i.e. power or complex envelope cor-
relation and full or separable (Kronecker) correlation. This paper
investigates the differences of the various models by applying a
joint transmit/receive beamformer to recent wideband MIMO
radio channel measurements at 5.2 GHz. It is found that the
Kronecker model, especially for power correlation, significantly
alters the joint beamformer spectrum. A multipath clustering
model is applied whose parameters are estimated directly from
the measured data. The clustering model is able to match capacity
pdfs, and resulting simulated joint beamformer spectra look
more realistic than those generated with conventional separable
correlation functions.

I. I NTRODUCTION

Early studies of multiple-input multiple-output (MIMO)
wireless channels focused on the independent and identically
distributed (i.i.d.) complex normal model due to simplicity
and the lack of real MIMO channel information [1]. Later
studies have considered the effect of spatial correlation [2], [3].
The Kronecker correlation model [4] assumes that the channel
covariance matrix is a separable product of transmit and re-
ceive covariances, given by either complex or power envelope
correlation. Such descriptions are attractive, since previous
results from diversity studies may be applied. These models
have been validated by comparing the statistics of aggregate
metrics, such as channel capacity or channel eigenvalues [5].

Three main deficiencies are evident in previous work in
this area. First, although multivariate complex normal models
are widely applied, the differences in the various models have
received little attention. Second, these statistical models are
often presented without any physical interpretation of the
channel’s multipath behavior. Third, very little mention is
made of how to generate realistic covariance matrices, aside
from computing them directly from measured data or using
possibly over-simplistic correlation functions.

We alleviate these difficulties by applying a simultane-
ous transmit/receive beamformer to explore the differences
between multivariate complex normal MIMO models with
either power or complex envelope correlation and either
full or separable (Kronecker) covariance. The beamforming
approach provides a compelling physical interpretation that
demonstrates how the various models influence the multipath
structure of the modeled channel. Application of the method
to recent wideband indoor MIMO measurements demonstrates
how the models may distort the true channel behavior. Finally,
we apply a diffuse spectrum estimation technique to obtain
parameters for a path-based clustering model. The model gen-
erates full covariance matrices, whose simulated channels look
more realistic than those generated with simple conventional
correlation functions.

II. COMPLEX NORMAL MODELS

Since the purpose of this work is to analyze the various
multivariate complex normal MIMO models, a brief treatment
of the fundamental distribution and simplifying assumptions
is convenient.

A. Complex Normal Distribution

A multivariate complex-normal distributed random vectorx
has the probability density function (pdf)

f(x) =
1

πN |R| exp[−(x− µ)HR−1(x− µ)], (1)

where{·}H is conjugate transpose,R is the covariance matrix,
N is the dimensionality ofR, and µ is the mean ofx.
Consider a MIMO system withNT transmit antennas and
NR receive antennas, whoseNR×NT channel matrixH is
composed of zero-mean complex-normal distributed elements.
The covariance of theijth andk`th elements ofH is

Rij;k` = E {HijH
∗
k`}, (2)



whereE {·} is expectation. To writeR as a standard covari-
ance matrix, we normally leth = Vec{H}, whereVec{·} is
the vector (or column stacking) operation, and computeR =
E

{
hhH

}
. This stacking operation is equivalent to defining

the row (i′) and column (k′) indices to bei′ = i + (j− 1)NR

andk′ = k + (`− 1)NR.
Since the full covariance is an(NRNT )×(NRNT ) matrix,

the number of parameters may be prohibitive from a modeling
perspective. Two important simplifying assumptions reduce
the number of independent parameters.Separabilityassumes
that the full covariance matrix may be written as a product
of transmit covariance (RT ) and receive covariance (RR) or
Rij,k` = RR,ikRT,j`. For such channels, the transmit and
receive covariances can be computed from the full covariances
as

RT,ij =
1
α

NR∑

k=1

Rki,kj , RR,ij =
1
β

NT∑

k=1

Rik,jk, (3)

whereα andβ are chosen such that

αβ =
NR∑

k1=1

NT∑

k2=1

Rk1k2,k1k2 . (4)

This assumption is equivalent to the Kronecker model,
where R = RR ⊗ RT , RR = α−1E

{
HHH

}
, RT

T =

β−1E
{
HHH

}
, α = β =

(
E

{∥∥H
∥∥2

F

})1/2

, where{·}T is
matrix transpose.

Shift-invarianceassumes that the covariance matrix is only
a function of antenna displacement (not absolute antenna
location) and holds for special array structures such as uni-
form linear arrays in the presence of far-field scattering. The
relationship between the full covariance and shift-invariant
covariance (RS) is

Rij,k` = RS,i−k,j−`. (5)

The combination of separability and shift-invariance allows
full covariance matrices to be generated from existing corre-
lation functions such as Jakes’ model.

B. Power and Complex Envelope Correlation

A zero-mean multivariate complex-normal distributed vec-
tor x is completely characterized by the covariance matrix
R = E

{
xxH

}
. We refer to the covariance computation

E
{
xxH

}
as thecomplex envelope correlationmethod. Much

of the research in antenna diversity has involved the mea-
surement of power without phase, leading to thepower enve-
lope correlationRP = E

{
(|x|2 − µP )(|x|2 − µP )T

}
, where

µP = E
{|x|2}, and | · | is an element-wise absolute value.

Interestingly, for a zero-mean complex-normal distribution
with covarianceR, the power correlation matrix is simply
RP = |R|2, where | · | is element-wise absolute value. This
can be seen by considering a bivariate complex normal vector
[a1 a2]T with covariance matrix

R =
[

R11 RR,12 − jRI,12

RR,12 + jRI,12 R22

]
, (6)

where all R{·} are real scalars, and subscriptsR and I
correspond to real and imaginary parts, respectively. Letting

uk = Re {ak} and vk = Im {ak}, the complex normal
distribution may also be represented by the 4-variate real
Gaussian vector[u1 u2 v1 v2]T with covariance matrix

R′ =
1
2




R11 RR,12 0 RI,12

RR,12 R22 −RI,12 0
0 −RI,12 R11 RR,12

RI,12 0 RR,12 R22


 . (7)

The power correlation of thekth and `th elements of the
complex normal vector is

RP,k` = E
{|ak|2|a`|2

}− E
{|ak|2

}
E

{|a`|2
}

= E
{
(u2

k + v2
k)(u2

` + v2
` )

}− 4E
{
u2

k

}
E

{
u2

`

}

= 4E2 {uku`}+ 4E2 {ukv`}, (8)

where the identityE
{
A2B2

}
= E

{
A2

}
E

{
B2

}
+2E2 {AB}

(true for arbitrary real Gaussian random variablesA and B)
and the structure of (7) were used. The magnitude squared of
the complex envelope correlation is

|Rk`|2 = |E {uku`}+ E {vkv`}
+ j(−E {ukv`}+ E {vku`})|2

= 4E2 {uku`}+ 4E2 {ukv`}, (9)

and therefore,RP = |R|2. Thus, for a given power correlation
RP , we have a family of compatible complex envelope
correlations. For simplicity, we letR =

√
RP , where

√·
is element-wise square root, to obtain the complex-normal
covariance matrix for a specified power correlation.

III. C HANNEL MEASUREMENTS

Figure 1 depicts the measurement scenario for the data
described in this paper. Channel matrices were measured in the
Electrical Engineering Building on the Vienna University of
Technology Campus at 5.2 GHz [6]. The transmitter consisted
of a positionable monopole antenna on a 20x10xy grid
with λ/2 inter-element spacing. The receiver employed a
directional 8-element uniform linear array (ULA) provided by
T-Systems Nova GmbH, having0.4λ inter-element spacing
and a 3 dB beamwidth of120◦. The channel was probed at
NF =193 equi-spaced frequency bins spanning 120 MHz of
bandwidth. The transmitter assumed a single fixed location in
a hallway. The receive array assumed many different locations
in several offices connected to this hallway, as well as three
possible orientations: (D1)0◦ (due south), (D2)−120◦, and
(D3) −240◦. The data set for locationX and orientationY is
referred to herein asXY . For each data set,NS=130 channel
matrices withNT =8 transmitters andNR=8 receivers were
formed by moving a virtual 8-element ULA over the 20x10
grid. The channel matrices for each data set were stacked into
a singleNRNT ×NSNF matrix H.

A multivariate complex normal distribution at each location
is plausible, since small movement only affects the phases
of the multipath components (not the overall multipath struc-
ture), leading to small-scale Rayleigh fading. Three complex
normal models were considered by specifying three different
covariance matrices: (1) full covariance [FC] and separable
Kronecker covariance with either (2) complex envelope corre-
lation [KCE] or (3) power envelope correlation [KPE]. The full



x

y

50
280

TX

RX1

RX2

RX3

RX4

RX5

RX6

RX7

RX9

RX10 RX12

RX13

RX14

RX15

RX16

RX24

RX26

RX25

RX23

RX21

RX22

RX20

RX19 RX18

RX17

Wooden Door

Door or Window

Metal Door

Key

2nd Floor

4th Floor

Transmit Position

Receiver Positions

100 cm

Receiver
Orientations

D1

D3D2

Hallway

WE

N

S

Fig. 1. Measurement Scenario

covariance matrix for a fixed receive location was computed
by considering each of theNF frequency bins andNS channel
realizations as samples of a single distribution and computing
R = (NSNF )−1E

{
HHH

}
. The Kronecker covariance for

complex envelope correlation (RK) was computed from the
full covariance according to (3). Finally, the Kronecker covari-
ance for power envelope correlation (RKP ) was computed as
RKP = |RK |.

IV. CAPACITY COMPARISONS

Capacity was computed for each data set with the water-
filling solution assuming an average single-input single-output
(SISO) SNR of 20 dB. All three of the considered complex
normal models produced capacity pdfs that were very close to
the capacity pdfs of the actual data. To illustrate accuracy of
capacity on a set-by-set basis, average absolute deviation was
computed asη = (1/NS)

∑NS

s=1 |cM,s − cA,s|/|cA,s|, where
NS is the number of data sets andcM,s and cA,s are the
modeled and actual mean capacity for data sets, respectively.
The percent deviation for the three models was only (1) 0.4%,
(2) 2.7%, and (3) 0.6%, indicating that all the complex normal
models predict mean capacity reasonably well.

V. JOINT TRANSMIT/RECEIVE BEAMFORMER

Since the complex normal models are able to predict capac-
ity statistics quite well, are all of these channel models good
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Fig. 2. Histogram of percent mean absolute error of the spectrum of the
KCE model compared to the FC model.

candidates for MIMO channel modeling? We feel that capacity
alone is not sufficient to judge the accuracy of a MIMO
channel model. Matching capacity only requires matching the
behavior of the eigenvalues of the channel, which ignores
the structure contained in the eigenvectors. The eigenvectors
contain key information about the directional propagation
of multipath components, which we refer to asmultipath
structure. If a proposed model does not capture this multipath
structure, it may be wholly inadequate for modeling physical
antenna systems in realistic propagation scenarios.

To provide a graphical view of the multipath structure
described by the various complex normal models, we propose
the use of a joint transmit/receive beamformer. We define the
joint transmit/receive steering vectora(φR, φT ) as

a(φR, φT ) = aR(φR)⊗ aT (φT ), (10)

where the standard separate transmit/receive steering vectors
are

aQ(φQ) = exp[jk(xQ cos φQ + yQ sin φQ)], (11)

where theith transmit or receive antenna is located at coordi-
nate (xQ,i, yQ,i), k is the free-space wavenumber, andφR and
φT are receive and transmit azimuth angle, respectively. Many
possible beamforming spectra could be considered based on
the joint steering vector, but for simplicity, we chose the
Fourier spectrum, defined as

M(φR, φT ) = a(φR, φT )HR a(φR, φT ), (12)

which is normalized to obtain a maximum value of unity.
Figure 2 depicts a histogram of the percent absolute mean

error of the KCE spectrum compared to the FC (true) spec-
trum, indicating error ranging from about 10% to 60%. Next
we consider three interesting cases, exhibiting the lowest error
(11%), typical error (28%), and the largest error (59%).

Figure 3 depicts data set 16D1, exhibiting the smallest
deviation of the KCE spectrum. The good match results
because only a single transmit direction is important, causing
the covariance to be nearly separable. We see also that the KPE
model tends to focus the spectrum into a single path, due to
the discarding of phase information. Figure 4 shows data set
5D2, a case with more typical error. We see that although the
KCE spectrum bears strong similarity to the true FC spectrum,
sharp peaks tend to be smoothed out and small artifact peaks
are created. Finally, Figure 5 shows data set 13D2, exhibiting
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Fig. 3. Spectra for the various models for data set 16D1, exhibiting the
lowest error.

the poorest match. The true spectrum shows that we have three
important propagation paths, and that each transmit direction
maps to one and only one receive direction. The KCE spectrum
illustrates the main problem with the Kronecker model. By
forcing the spectrum to be separable, each transmit direction
is coupled with each receive direction, substantially altering
the joint spectrum.

These observations lead to two important conclusions re-
garding the complex normal models. First, for systems with
good angular discrimination (many antenna elements), the
KCE model may significantly alter the multipath structure
present. Second, by discarding phase information, the KPE
model fails to retain any of the multipath structure. These
conclusions indicate the need for improved complex normal
models that represent the detailed multipath structure correctly
without the complexity of the FC model.

VI. COVARIANCE GENERATION WITH THE SVA MODEL

In the absence of measurement data, how does one construct
realistic covariance matrices? The joint spectra of the indoor
data in this paper exhibit between one and five main propaga-
tion paths (or clusters of paths), favoring path-based models
such as the one presented in [7]. In this section, clusters for
each data set are identified with a diffuse estimation technique
and combined to estimate the SVA model parameters. The
resulting model matches the capacity pdf for the data and
generates more realistic joint spectra than standard correlation
functions such as Jakes’ model.

A. Cluster Estimation

The double-directional channel is a powerful concept for
system-independent channel modeling. Usually a discrete re-
sponse is assumed, meaning that the double-directional chan-
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Fig. 4. Spectra for the various models for data set 5D2, exhibiting typical
error.

nel response may be written as a sum of propagating plane
waves. For the indoor channel, however, these models may be
crippled by diffuse scattering mechanisms. Even worse, there
may be so many arrivals that the limited temporal and spatial
resolution of realistic probing systems prohibits identification
of all of the propagation paths, leading to a channel that is
effectively diffuse.

The opposite philosophy of assuming discrete arrivals is to
assume that the underlying arrivals are diffuse. That is, the
directional channel response is characterized by a continu-
ous power spectrum, and under small-scale fading conditions
(small movement or frequency sweep), no permanent phase
relationship exists between power propagating in distinct di-
rections.

We applied a new diffuse estimation technique (to be treated
in a later publication) to obtain cluster parameters for each data
set. The key parameters to be obtained from the estimated
clusters are the distribution on cluster departure and arrival
angle, cluster decay constant (Γ), and cluster angular spread at
transmit (σT ) and receive (σR). Cluster departure angle at the
transmitter was found to favor propagation down the hallway,
and was approximated with a pdf proportional to| cos(θ)|,
with 0◦ as due south. Cluster arrival angle appeared to have
little directional preference, and was approximated with a
uniform distribution. A simple average was taken of the cluster
angular spread at transmit and receive to obtainσT = 11◦
and σR = 17◦. The cluster decay constant was obtained by
considering the three strongest clusters for each location and
applying maximum likelihood assuming the Poisson arrival
process and exponential cluster decay. This process resulted
in Γ = 1.5.

Figure 6 depicts the capacity pdf of all the measured data
compared with the SVA model with the specified extracted
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SVA model.

parameters. To improve the capacity fit, the decay constantΓ
was increased to 2.0. One of the problems with estimatingΓ
is that the SVA model generates overlapping clusters, which
often look like a single cluster. However, if two clusters were
to overlap in the data, the diffuse estimation technique would
likely only find a single cluster. Therefore, this estimation
method tends to underestimateΓ, and the needed increase is
not surprising.

Finally, to demonstrate that the SVA model produces more
realistic channel realizations than convenient covariance ma-
trices (Jakes’ model, exponential, etc.), Figure 7 plots the joint
spectrum of the SVA model and compares with the spectrum
for Jakes’ model. Jakes’ model tends to over-estimate the
multipath richness, as indicated in the plot, where significant
power is communicated from all transmit directions to all
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Fig. 7. Joint spectra for Jakes’ model and two random realizations of the
SVA model.

receive directions. The two random realizations of the SVA
model, on the other hand, look more like spectra obtained
from measured channels. Only a few paths, or arrival/departure
clusters, support power transfer through the channel.

VII. C ONCLUSION

This paper has presented indoor measurements taken at
the Vienna University of Technology Campus at 5.2 GHz
and applied a joint transmit/receive beamformer to show
limitations of the Kronecker model with either complex or
power envelope correlation. A diffuse spectrum estimation
scheme was used to obtain parameters for the SVA model,
which was able to match capacity pdfs of the data and produce
realistic joint spectra.
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