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Modeling the Indoor MIMO Wireless Channel
Jon W. Wallace, Student Member, IEEE,and Michael A. Jensen, Senior Member, IEEE

Abstract—This paper demonstrates the ability of a physically
based statistical multipath propagation model to match capacity
statistics and pairwise magnitude and phase distributions of
measured 4 4 and 10 10 narrow-band multiple-input mul-
tiple-output data (MIMO) at 2.4 GHz. The model is compared
to simpler statistical models based on the multivariate complex
normal distribution with either complex envelope or power
correlation. The comparison is facilitated by computing channel
element covariance matrices for fixed sets of multipath statistics.
Multipolarization data is used to demonstrate a simple method
for modeling dual-polarization arrays.

Index Terms—Channel models, indoor channels, measured
channel data, multiple-input multiple-output (MIMO) channels,
polarization.

I. INTRODUCTION

RECENT STUDIES have demonstrated the impressive
theoretical capacity of wireless systems operating in

a multipath environment and employing multiple antennas
on both transmit and receive [1]–[4]. These multiple-input
multiple-output (MIMO) systems must cleverly exploit the
structure of the channel transfer matrix (denoted as) to
maximize data throughput. Accurate models that capture the
complex spatial behavior of the propagation channel facilitate
the development of these MIMO systems.

Many avenues exist for modeling the MIMO channel. For ex-
ample, simple analytical models have initially been employed
to understand possible gains from the MIMO channel [1]–[3].
Although advantageous for closed-form derivation of various
channel parameters, these simple models often fail to capture
the behavior of real channels. Alternately, direct measurement
provides an exact characterization of for the specific mea-
surement scenario [5]–[9], and empirical statistical models may
be developed based on an ensemble of measurements. However,
applicability of such models may be limited to the specific array
configuration or propagation environment under test. Determin-
istic physical models such as ray tracing [10], [11] simulate spe-
cific propagation scenarios and may be combined with Monte
Carlo analysis to provide statistical channel information. Such
methods promise an accurate characterization of the channel
at the expense of computational resources. Finally, physically
based statistical models [12]–[14] derive channel behavior from
basic principles of radio propagation. The necessary channel pa-
rameters are then obtained by fitting the models to measured
data. Such models are attractive since they are applicable to
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TABLE I
PARAMETERS DESCRIBING THE MEASURED

DATA SETS COLLECTED FORTHIS WORK

many different array geometries and propagation environments
and require modest computational resources.

In this paper, we employ a physical model that statistically
describes the time of arrival (TOA), angle of arrival (AOA), and
angle of departure (AOD) of each multipath component [12],
[13]. We show that this model can match capacity, joint magni-
tude, and phase probability density functions (pdfs) of measured
data for realistic model parameters. We also assess the applica-
bility of simpler multivariate complex normal models based on
power correlation and complex envelope correlation. Finally, we
present a simple polarization model based on indoor dual-polar-
ized measurements.

II. M EASUREDCHANNEL DATA

For this study, MIMO channel data was collected on the
fourth floor of the engineering building on the Brigham Young
University campus [5], [6]. This measurement platform is able
to measure the MIMO channel transfer matrix for up to 16
transmit and 16 receive antenna channels. The center frequency
for measurements is tunable within the lower microwave
bands, although all measurements presented here have been
performed near 2.45 GHz. The system modulates (binary phase
shift keyed or BPSK) the signals for each transmit antenna
using a unique binary code sequence and the channel matrix
is then estimated at the receiver using a maximum-likelihood
algorithm. Table I lists the measurement parameters for the
data sets under consideration.

Set 1 contains 4 4 data from five different scenarios. In each
scenario, the transmitter was fixed in one room, while the re-
ceiver was moved to several different locations in another room.
Since the rooms shared a wall only in one scenario, the data set
exhibited fairly rich multipath interference.

In Set 2, the receive array assumed six possible positions
in one room, and the transmit array assumed four possible
positions in another nonadjacent room. Every combination
of transmit and receive position was measured. Due to wide
separation of transmit and receive, this set also exhibited rich
multipath interference.

0018-926X/02$17.00 © 2002 IEEE
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In Set 3, the effect of polarization was explored using arrays
with two dual-polarization patches separated by. The trans-
mitter was placed in a hallway at six different locations. The
receiver was placed in a room off of this hallway in six other lo-
cations. Each possible combination of locations for transmit and
receive was probed. The transmit and receive patch arrays faced
each other in each case, and therefore a strong line-of-sight
(LOS) path was present.

III. CHANNEL MODEL PRELIMINARIES

There are several important issues relevant to modeling the
MIMO wireless channel. For this discussion, the receive by

transmit narrowband-channel matrixrelates the transmit
and receive complex baseband vectors as

(1)

where is the independent and identically distributed (i.i.d.)
complex white Gaussian receiver noise vector.

A. Channel Normalization

Obtaining a good statistical sample of the indoor channel re-
quires collecting data in a variety of scenarios. Large movement
in transmit and receive location leads to substantial change in
the bulk path loss of propagating signals. Effects of path loss
can easily overshadow interesting channel behavior such as spa-
tial correlation of transmit and receive signals. One way to re-
move this effect from collected data is to normalize the channel
matrices.

Unless otherwise specified, channel matrices were nor-
malized to force unit average single-input single-output
(SISO) gain. The individual receiver noise is then given as

, where is the total transmit power and
SNR represents the desired signal-to-noise ratio at the receiver.
This normalization is equivalent to specifying the average
receiver SNR when transmit streams are uncorrelated. The
normalization constant may be computed for each individual
matrix or over all matrices at a single location. In this paper,
the normalization was computed on eachmatrix for capacity
and over all matrices at a location for other quantities.

Removal of channel path loss is justified for modeling the
subtle effects of multipath propagation. Realistic models should
include path loss as a bulk signal attenuation which varies with
separation of transmit and receive. When comparing various
transmission schemes (e.g., dual polarization, directional an-
tennas), care also must be taken that normalization does not
force unwarranted conclusions.

B. Capacity

In this paper, capacity is computed by normalizing channel
matrices to obtain an average SISO SNR of 20 dB. Capacity is
computed using the water-filling solution on the channel orthog-
onalized with the singular value decomposition (see [2], [15]).

C. Joint pdfs

The complete joint probability density function (pdf) for all
elements of the matrix provides a complete statistical descrip-
tion of the narrowband MIMO channel. If sufficient data were

collected, one could compare measured and modeled channels
by appropriately sampling this multidimensional pdf. However,
as the number of antennas on transmit and receive increases,
the dimensionality of the pdf becomes prohibitive and marginal
pdfs or statistical moments must be used instead.

As a first step toward comparison of measured and modeled
channels, we use pairwise joint pdfs on magnitude and phase.
We concentrate specifically on the statistics of adjacent ele-
ments at transmit and receive, since these will be the most corre-
lated. The measured bivariate pdf for adjacent transmit/receive
element magnitude is

(2)

where for transmit or receive

and HIST2 is a two-dimensional (2-D) normalized histogram
operation. The measured univariate pdf for adjacent transmit/re-
ceive element phase difference is given as

(3)

where HIST is a one-dimensional (1-D) normalized histogram
operation.

D. Multivariate Complex Normal Distribution

The multivariate complex normal distribution is fundamental
to the study of the various models. Aspects relevant to this study
are presented here for convenience.

1) Joint pdf: The joint multivariate complex normal distri-
bution [16] is given as

(4)

where is the covariance matrix, is the dimensionality of
, and is the mean vector. The pairwise joint pdf

is given as (4) with replaced by the covariance submatrix,
or

(5)

where has been assumed.
2) Pairwise pdfs: When , the pairwise joint magni-

tude pdf is

(6)



WALLACE AND JENSEN: MODELING THE INDOOR MIMO WIRELESS CHANNEL 593

where , and
. The pdf for pairwise phase difference is

(7)

where

and in this case we express as .
Averaging the pdfs associated with all element pairs for a given
transmit and receive spacing results in an average pairwise pdf,
which is analogous to those given in Section III-C.

3) Covariance Matrices and Simplifying Assumptions:The
zero mean multivariate complex normal distribution is com-
pletely characterized by the covariance matrix. For the pur-
pose of modeling , the covariance matrix
is defined as

(8)

where and combine to form a row index of and and
combine to form a column index of . A number of assump-
tions are convenient when working with the covariance matrix.
Separabilityassumes that the full covariance matrix may be
written as a product of transmit covariance and receive
covariance or

(9)

For such channels, the transmit and receive covariance matrices
can be computed from the full covariance matrix as

(10)

(11)

where and are chosen such that

(12)

In the case where is a correlation coefficient matrix, we may
choose and . Separability makes implications
about the statistical independence of multipath fading due to
transmit location and receive location.

Shift-invariance assumes that the covariance matrix is only a
function of antenna spacing and not absolute antenna location.
The relationship between the full covariance and shift-invariant
covariance is

(13)

Fig. 1. Transmit and receive parameters for a single cluster in the SVA model.

The combination of separability and shift-invariance allows full
covariance matrices to be generated from existing correlation
functions, which relate correlation to receive element displace-
ment. For example, we may use Jakes’ model to obtain

(14)

where is the vectorial location of theth transmit or re-
ceive antenna in wavelengths, and is the vector norm.

4) Computer Generation:Computer generation of zero
mean complex normal vectors for a specified covariance
matrix is performed by generating vectors of i.i.d. complex
normal elements with unit variance . The transformation

(where and are the matrix of eigenvectors
and the diagonal matrix of eigenvalues of, respectively)
yields a complex normal vector with the proper correlation
structure.

IV. SALEH–VALENZUELA MODEL WITH AOA/AOD

This section demonstrates that an extension of the
Saleh–Valenzuela model [12] that includes AOA statistics
[13] is able to match capacity pdfs and pairwise element pdfs
of the measured channel. Here, AOD statistics are assumed
to follow the same distribution as AOA, which is reasonable
for the indoor channel with the same basic configuration on
transmit and receive. We refer to the Saleh–Valenzuela model
with AOA/AOD as theSVA modelfor brevity.

The SVA model characterizes the channel by representing
each multipath component in terms of its amplitude, arrival
time, and AOA/AOD. Based upon experimental observations,
these arrivals or rays arrive in clusters in both space and time.
Fig. 1 shows the model parameters for a single cluster in the
SVA model. The directional channel impulse response arising
from clusters and rays per cluster is

(15)

where and are transmit and receive angles, is the
complex ray gain, and are the mean transmit and receive
angles within the th cluster, and and are the transmit
and receive angles of theth ray in the th cluster, relative to the
respective mean angles in each cluster.
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To simplify the model, average-ray power in each cluster is
constant so that , where de-
notes the complex normal distribution with meanand vari-
ance . The cluster amplitude is Rayleigh distributed with the
expected cluster power (or variance) satisfying

, where is the arrival time of theth cluster, and
is the cluster decay time constant. The arrival time distribution

is a conditional exponential with a normalized unit arrival rate.
Details concerning the model implementation can be found in
[12], [13], [17]. The notation is used in this paper to
denote the SVA model with constant average ray power and unit
cluster arrival rate, where is the cluster decay constant and
is the standard deviation of ray AOA/AOD.

The narrow-band channel matrix is computed from the direc-
tional impulse response as

(16)

where is the antenna gain
pattern, , and

. Based upon measured data taken in [13], a two-
sided Laplacian distribution is assumed for the ray AOA/AOD
distribution whose pdf is

(17)

where is the standard deviation of angle in radians.

A. Complex Normal Approximation

matrices may be generated directly by computing (16)
for each realization of the SVA model. An alternate method
computes channel matrices according to a complex normal dis-
tribution for each fixed set of cluster statistics. This method
reduces computational time and links the model to simpler com-
plex normal models.

For a fixed set of cluster statistics and ray
arrival angles is a weighted sum of zero mean
complex normal random variables, resulting in a correlated
complex normal distribution. If the angular spread onis small,
the will look closely complex normal even if the are
allowed to vary. In this case, we find the average covariance
matrix as

(18)

Fig. 2. Radiated power (dB) for vertical/horizontal polarized patch antenna
relative to a uniform radiator, as a function of azimuth angle.

where statistical independence of complex ray gain, AOA, and
AOD has been assumed. If the gains of distinct rays are indepen-
dent and ray AOA/AOD are i.i.d., the expression simplifies to

(19)

where

(20)

is the ray angle of arrival/departure pdf

and

For certain special cases, closed-form expressions for (20)
exist. For arbitrary antenna gain and angular ray distributions,
however, (20) is computed numerically. The result is a relatively
simple expression for the mean channel covariance matrix
for a fixed set of cluster statistics. We note that although
the covariance matrix given by (19) is not strictly separable
(Section III-D3) for a single cluster realization, it approaches
separability when averaged over many random cluster real-
izations where transmit and receive statistics are independent.
Also, assuming a uniform linear array with one gain pattern for
all transmit elements and another for all receive elements results
in a shift-invariant covariance matrix.

B. Comparison of Model and Data

In [13], high-resolution AOA measurements were performed
on the same floor of the BYU engineering building as in this
study. Although the measurements were at a much higher fre-
quency ( 7 GHz), the extracted parameters serve as a log-
ical starting point. The key parameters are (see [13])

. For simulation, transmit and receive cluster
arrival angles are assumed to be uniform on .
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Fig. 3. Comparison of capacity pdfs and joint magnitude and phase pdfs for
4� 4 measured data and SVA model simulations.

1) 4 4 Data: First, capacity pdfs and pairwise pdfs from
the model are compared with measured 44 data from Set 1.
Fig. 2 shows the approximate gain pattern for the vertically po-
larized patch antenna obtained using a piecewise linear fit to the
output of moment method simulations. This gain pattern is re-
quired to compute (20).

Fig. 3 compares pdfs of measured data and Monte Carlo sim-
ulations of the SVA model. In these and later simulations,
channels were realized (100 cluster configurations with 1000
channels each). PDFs were computed by averaging (6) and (7)
for magnitude and phase over the 100 cluster configurations.

Apparent in the figure is the good fit of both the capacity pdfs
and pairwise amplitude pdfs. The discrepancy in phase is due
to two basic factors: 1) imperfect phase response of hardware
for the transmit and receive channels and 2) the uniform cluster
AOA/AOD assumption is not strictly valid over the limited data
set.

2) 10 10 Data: Next, capacity pdfs and pairwise pdfs
from the model are compared with measured 1010 data
from Set 2. This data set employed quarter-wave monopole
antennas, and an ideal uniform radiation pattern in azimuth
was assumed. Fig. 4 compares the pdfs for the measured and
simulated 10 10 channel. Since the parameters from [13]
were taken at a higher frequency and represent an average over

many scenarios, the slight disagreement in the capacity curves
is not surprising. The discrepancy suggests that the multipath
in the measured environment is less than that specified in the
simulation.

The amount of multipath in the simplified SVA model is con-
trolled by the parameters (the cluster decay time constant)
and (the mean angular deviation of the rays in the clusters).
Decreasing leads to fewer clusters and, therefore, less multi-
path. Similarly, decreasinggenerates less isotropic multipath,
limiting the ability of the arrays to exploit multiple rays within
a cluster. As shown in the figure, lowering either of these pa-
rameters improves the agreement. However, ultimate validation
of the model requires detailed AOA/AOD measurements at the
2.4-GHz carrier.

Both amplitude and phase pdfs are fairly insensitive to the pa-
rameter adjustments, suggesting that the multipath is at a level of
saturation when considering just two closely spaced elements.
The agreement of measured and simulated amplitude pdfs is
fairly good. The disagreement in the phase pdfs, however, is
likely due to the same problems mentioned in the 44 case.

V. JOINT COMPLEX NORMAL MODELS

The multivariate complex normal distribution can be used
to model the channel matrix directly by simply specifying the
channel element covariance matrix. The wealth of correlation
information provided by antenna diversity studies makes this
approach particularly attractive. This section assesses the ability
of complex envelope and power correlation models to match the
capacity pdfs and pairwise magnitude and phase pdfs of the SVA
model. The reason for using the SVA model as opposed to mea-
sured data is that the underlying covariance behavior is known
and that unlimited channels may be generated.

A. Complex-Envelope Method

This method assumes that the underlying distribution on
is multivariate complex normal and specifies a covariance ma-
trix which is the average covariance of the true distribu-
tion or , where is a stacked channel matrix.
Once the channel covariance matrix is known, the method in
Section III-D4 is used to generate matrices.

B. Power-Covariance Method

In this method, the channel matrices are computed as in
Section V-A except that the covariance matrix is derived from
the power-covariance matrix given as

(21)

as suggested in [18]. The same power covariance behavior can
be generated using a zero mean multivariate complex normal
distribution with covariance matrix , where is
elementwise square root. However, care is required since the
root of the power covariance matrix is not necessarily posi-
tive definite. Under such circumstances, the method outlined in
Section III-D4 cannot be used directly. In this study, however,
root power covariance matrices generated by the SVA model
were always positive definite.
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Fig. 4. Comparison of capacity pdfs and joint magnitude and phase pdfs for
10� 10 measured data and SVA model simulations.

C. Simulation Results

Fig. 5 plots capacity pdfs and the average pairwise magnitude
and phase pdfs for simulated 44 channel matrices. Since the
pairwise pdfs for transmit and receive look nearly identical, they
have been averaged to obtain one plot for magnitude and another
for phase. Linear arrays were assumed with interelement
spacing. Parameters for the SVA model were ,
and uniform cluster AOA/AOD. The complex envelope method
exhibits a good match for the pairwise pdfs but overestimates
capacity. The power correlation model matches capacity pdfs
and magnitude pdfs better at the cost of ignoring phase.

Fig. 6 plots capacity pdfs and the average pairwise magni-
tude and phase pdfs for simulated 88 channel matrices with

interelement spacing. The addition of antennas has appar-
ently amplified the deficiencies present in the 44 case. Fig. 7
shows the performance of the two methods for 88 arrays with
an interelement spacing of . The complex envelope method
performs about as well as the case. The power correlation
method has great difficulty matching capacity, probably due to
the significant correlation in phase, which is ignored.

The simple models fail to match the SVA model because the
covariance matrix is constant only for a fixed set of cluster statis-
tics. Fig. 8 demonstrates the random behavior of the covariance
matrix by plotting the variance of the amplitude and phase of

Fig. 5. Capacity pdfs and pairwise magnitude and phase pdfs for the 4� 4
channel with�=2 interelement spacing.

Fig. 6. Capacity pdf and pairwise magnitude and phase pdfs for 8� 8 channel
with �=2 interelement spacing.

the elements of the correlation coefficient matrix generated with
SVA model for the two 8 8 cases. Shift invariance of the model
has been assumed so that the correlation coefficients are only a
function of antenna separation at transmit and receive. For
separation, the element magnitudes (powers) and phases exhibit
small and large variations, respectively. Low power variance and
highly random phase seem to be a good candidate for a power
correlation model. For the case, the power variation is more
pronounced and the phases exhibit less variation. The poorer fit
in capacity suggests that power models have difficulty in this
case.
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Fig. 7. Capacity pdf and pairwise magnitude and phase pdfs for the 8� 8
channel with�=4 interelement spacing.

Fig. 8. Variance of the elements of the correlation coefficient matrix for the
8� 8 channel data generated with the SVA model.

VI. M ODELING OF MULTIPLE POLARIZATIONS

Antenna elements employing multiple polarizations can in-
crease capacity [19] and often require less space per transmit/re-
ceive channel than spatially separated single-polarization ele-
ments. The capacity performance of multipolarization elements
is a function of the average depolarization ratio due to scattering
in the transmission environment. Environments with low depo-
larization lead to nearly orthogonal channels at the expense of
reduced average receiver SNR, whereas environments with high

TABLE II
AVERAGE POWER CORRELATION OF SUBCHANNELS TAKEN FROM

NORMALIZED H MATRICES FROM DATA SET 3

depolarization behave similarly to spatially separated elements
[20]. An analysis of the capacity of dual-polarization elements
versus single-polarization elements is provided in [17]. In this
paper, we outline a simple method for including polarization
into existing single polarization models. The capacity statistics
for measured 4 4 channels is matched using this method and
the SVA model.

A. Independent-Subchannel Method

Pairwise magnitude and phase pdfs generated from data
Set 3 show little dependence of both magnitude and phase
for orthogonally polarized elements [17]. Table II lists
the average power correlation coefficients for the various
subchannels of the channel matrix. Negative correlations
arise due to the channel normalization which is required
due to the large variation in average receive power with
large movement. Due to the small level of correlation for
opposite polarizations, the various subchannels may initially
be treated as statistically independent. Thus, we characterize
the VV, HH, VH, and HV channels in isolation and generate
corresponding synthetic matrices: ,
and . The complete channel is then formed as

. The constant is
chosen to ensure that the average depolarization ratio of the
synthetic channel matrices matches that of the measured data.

B. SVA-Model Parameters

Due to the strong LOS nature of the scenario for Set 3,
a reduction in the angular spread of arrivals within a cluster
is expected, especially for the cluster corresponding to LOS.
Also, transmit and receive patch antenna arrays were always
facing each other, leading to a fixed mean cluster arrival
angle for the LOS cluster. were used for
the copolarized subchannels (VV/HH) and
were used for the cross-polarized subchannels (VH/HV). The
required increase in angular spread of the cross-polarized
subchannels is reasonable due to stronger multiple reflec-
tions. The depolarization parameterwas chosen to match
the measured average depolarization of6.8 dB. Fig. 9
plots the capacity for the different simulated subchannels in
isolation compared with the corresponding subchannels ex-
tracted from measured data. The sharp peak at the left of
each capacity plot occurs where the water-filling solution
uses only a single orthogonal subchannel, which happens
frequently for these 2 2 channels exhibiting strong LOS.
The sharpness of the peak results from the narrow bin size
and the nearly constant gain of the strongest orthogonal sub-
channel taken from normalized . These plots reveal the
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Fig. 9. Match of capacity pdfs for subchannels generated with the SVA model
for various polarizations.

Fig. 10. Average depolarization ratio pdfs and capacity pdfs for measured and
simulated channel matrices.

good statistical agreement between measured and modeled
channels for the selected model parameters. This agreement
suggests that the proposed mechanism for including polar-
ization within the SVA model captures the channel behavior
important for determining channel capacity.

C. Simulation Results

The SVA model was used to generate 100 cluster configura-
tions with 1000 sets of 2 2 subchannel matrices each. The sub-
channel matrices were then formed into complete 44 channel
matrices. Fig. 10 shows the depolarization pdfs and capacity
pdfs for measured and simulated channel matrices. The fit in
depolarization and capacity is good considering the simplicity
of the model.

VII. CONCLUSION

This paper has explored the ability of simple statistical
models to capture key features of the narrow-band indoor
MIMO wireless channel. Ultimately, a tradeoff exists between
model complexity and accuracy. However, we have shown that
even simple models (like the SVA model), which are based
partially on channel physics, match capacity, and pairwise
pdfs of measured data quite well. Models that ignore channel
physics and attempt to force channel statistics to fit convenient
distributions seem to have difficulty for increasingly complex

channels. Thus, previous work in antenna diversity which
focuses on bulk parameters like envelope and power correlation
may have trouble finding direct application to MIMO chan-
nels. Also, we have provided a simple method for including
polarization into existing models based on observations from
measured dual-polarized data. Evaluation of space time coding
algorithms and capacity studies should benefit from the simple
modeling approaches presented in this work.
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