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Modeling the Indoor MIMO Wireless Channel
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Abstract—This paper demonstrates the ability of a physically TABLE |
based statistical multipath propagation model to match capacity PARAMETERS DESCRIBING THE MEASURED
statistics and pairwise magnitude and phase distributions of DATA SETS COLLECTED FORTHIS WORK
measured 4x 4 and 10x 10 narrow-band multiple-input mul-
tiple-output data (MIMO) at 2.4 GHz. The model is compared Parameter Set 1 Set; 2 Set 3
to simpler statistical models based on the multivariate complex Antennas 4x4 10x10 2x2
normal distribution with either complex envelope or power Carrier Freq.  2.45 GHz 2.42 GHz 2.45 GHz
correlation. The comparison is facilitated by computing channel Modulation BPSK BPSK BPSK
element covariance matrices for fixed sets of multipath statistics. Symbol Rate 12.5kb/s 12.5kb/s 12.5kb/s
Multipolarization data is used to demonstrate a simple method Antenna Sep A2 A4 A/2
for modeling dual-polarization arrays. Antenna TyI;e Patch Monopole  Patch
Index Terms—Channel models, indoor channels, measured i
channel data, multiple-input multiple-output (MIMO) channels, Polarization v v V/H
polarization.

many different array geometries and propagation environments
I. INTRODUCTION and require modest computational resources. o

] _In this paper, we employ a physical model that statistically

RECENT STUDIES have demonstrated the impressi¥fascribes the time of arrival (TOA), angle of arrival (AOA), and

th.eoretlcal 'capacny of wireless .systems. operating hgle of departure (AOD) of each multipath component [12],

a multipath environment and employing multiple antennags). we show that this model can match capacity, joint magni-
on both transmit and receive [1]-{4]. These multiple-inpy,ge, and phase probability density functions (pdfs) of measured
multiple-output (MIMO) systems must cleverly exploit theyata for realistic model parameters. We also assess the applica-

structure of the channel transfer matrix (denotedEBsto  pjjity of simpler multivariate complex normal models based on

maximize data throughput. Accurate models that capture thgwer correlation and complex envelope correlation. Finally, we

complex spatial behavior of the propagation channel facilitaiesent a simple polarization model based on indoor dual-polar-
the development of these MIMO systems. ized measurements.

Many avenues exist for modeling the MIMO channel. For ex-
ample, simple analytical models have initially been employed
to understand possible gains from the MIMO channel [1]-[3].
Although advantageous for closed-form derivation of various FOr this study, MIMO channel data was collected on the
channel parameters, these simple models often fail to capt{ffiirth floor of the engineering building on the Brigham Young
the behavior of real channels. Alternately, direct measureméfitiversity campus [5], [6]. This measurement platform is able
provides an exact characterization Hiffor the specific mea- t0 measure the MIMO channel transfer matrix for up to 16
surement scenario [5]—[9], and empirical statistical models mEnsmit and 16 receive antenna channels. The center frequency
be developed based on an ensemble of measurements. Howd9krmeasurements is tunable within the lower microwave
applicability of such models may be limited to the specific arrg@nds, although all measurements presented here have been
configuration or propagation environment under test. Determi€rformed near 2.45 GHz. The system modulates (binary phase
istic physical models such as ray tracing [10], [11] simulate sp&lift keyed or BPSK) the signals for each transmit antenna
cific propagation scenarios and may be combined with Mon&@ing a un_ique binary code sequence and th_e chan_nel_matrix
Carlo analysis to provide statistical channel information. Suéh then estimated at the receiver using a maximum-likelihood
methods promise an accurate characterization of the char@gPrithm. Table | lists the measurement parameters for the
at the expense of computational resources. Finally, physicafljta sets under consideration. _
based statistical models [12]—[14] derive channel behavior fromSet 1 contains 4 4 data from five different scenarios. In each
basic principles of radio propagation. The necessary channel p&€nario, the transmitter was fixed in one room, while the re-
rameters are then obtained by fitting the models to measu&&iver was moved to several different locations in another room.

data. Such models are attractive since they are applicable>{gce the rooms shared a wall only in one scenario, the data set
exhibited fairly rich multipath interference.

In Set 2, the receive array assumed six possible positions
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In Set 3, the effect of polarization was explored using arragsllected, one could compare measured and modeled channels
with two dual-polarization patches separated\dg. The trans- by appropriately sampling this multidimensional pdf. However,
mitter was placed in a hallway at six different locations. Thas the number of antennas on transmit and receive increases,
receiver was placed in a room off of this hallway in six other Iathe dimensionality of the pdf becomes prohibitive and marginal
cations. Each possible combination of locations for transmit apdfs or statistical moments must be used instead.
receive was probed. The transmit and receive patch arrays faceds a first step toward comparison of measured and modeled
each other in each case, and therefore a strong line-of-sightinnels, we use pairwise joint pdfs on magnitude and phase.

(LOS) path was present. We concentrate specifically on the statistics of adjacent ele-
ments at transmit and receive, since these will be the most corre-
IIl. CHANNEL MODEL PRELIMINARIES lated. The measured bivariate pdf for adjacent transmit/receive

There are several important issues relevant to modeling t(ﬁlgment magnitude is

MIMO wireless channel. For this discussion, tNg receive by
Np transmit narrowband-channel matiikrelates the transmit mp (|71, |z2]) = HIST2(; ; 1y emp (1 Hijls [Hre))  (2)
(x) and receivéy) complex baseband vectors as

vy =Hx+7 1) whereP € {T, R} for transmit or receive
wheren is the indepe_ndent a_nd identically distributed (i.i.d.) my={i,j, k, € : =j+1, k=i}, mp={i, j, k, € : 0=j, k=i+1}
complex white Gaussian receiver noise vector.

A. Channel Normalization and HIST2 is a two-dimensional (2-D) normalized histogram
Obtaining a good statistical sample of the indoor channel [aperation. The measured univariate pdf for adjacent transmit/re-

quires collecting data in a variety of scenarios. Large movemétit V€ element phase difference is given as
in transmit and receive location leads to substantial change in
the bulk path loss of propagating signals. Effects of path loss [pr(A¢) = HIST(, ; rovem, [arg(Hie/Hij ) 3)
can easily overshadow interesting channel behavior such as spa-
tial correlation of transmit and receive signals. One way to '&here HIST is a one-dimensional (1-D) normalized histogram
move this effect from collected data is to normalize the Chanr[%eration.
matrices.

Unless otherwise specified, channel matrices were NS~ Multivariate Complex Normal Distribution
malized to force unit average single-input single-output o S
(SISO) gain. The individual receiver noise is then given as The multivariate co_mplex normal distribution is fundamental
02 = Pp/SNR, where Py is the total transmit power and to the study of the various modgls.Aspects relevant to this study
SNR represents the desired signal-to-noise ratio at the receif® Presented here for convenience. o
This normalization is equivalent to specifying the average 1) Joint pdf: The joint multivariate complex normal distri-

receiver SNR when transmit streams are uncorrelated. ion [16] is given as
normalization constant may be computed for each individal
matrix or over allH matrices at a single location. In this paper. 1 Hp—1
L X ; ! = ———exp|—(x — R (x— 4
the normalization was computed on ed&hmatrix for capacity 1) N |R| p[ 2 ( 2l “)

and over allH matrices at a location for other quantities.
Removal of channel path loss is justified for modeling th@hereR is the covariance matrixy is the dimensionality of
subtle effects of multipath propagation. Realistic models shoultl and is the mean vector. The pairwise joint otz 1)

include path loss as a bulk signal attenuation which varies withgiven as (4) wittR replaced by the covariance submatRx
separation of transmit and receive. When comparing variogs

transmission schemes (e.g., dual polarization, directional an-
tennas), care also must be taken that normalization does not R = [Rn 7212} — {Rmm Rmn} (5)

force unwarranted conclusions. Ra1 Ra Ry, Rmm
B. Capacity whereR,,.., = R,. has been assumed.
2) Pairwise pdfs:Whenu = 0, the pairwise joint magni-

In this paper, capacity is computed by normalizing chann&]de df is
matrices to obtain an average SISO SNR of 20 dB. Capacity Is P
computed using the water-filling solution on the channel orthog-

onalized with the singular value decomposition (see [2], [15]). flri,re) = / (@, ) dd1 dpo
27w J 27
C. Joint pdfs drire {—Rn(T% + 7’%)}
= X
The complete joint probability density function (pdf) for all A P A

(6)

elements of th& matrix provides a complete statistical descrip- J 9 |Riz|ri72
tion of the narrowband MIMO channel. If sufficient data were X Jo — A
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wherez,,, = 1 exp(jo1), T, = r2exp(jpo), andA = RI, — Receive Transmit
|R12|?. The pdf for pairwise phase difference is

f(Ap) I/O /0 , J(@m, xn)derdridry

xY2 +2b [tan_l (#)3—2‘0an_1 (i‘ﬁ'}'zb)} @)
(mA/2)x%/

where ) . . . .

Fig. 1. Transmitand receive parameters for a single cluster in the SVA model.
x=4a% =, a=—Ri1 /A, b=(2|R12|/A)cos(Aptarg{R12}) o . e

The combination of separability and shift-invariance allows full
and in this case we express asz, = 72 explj(¢1 + Ad). covariance matrices to be generated from existing correlation

Averaging the pdfs associated with all element pairs for a givgrlpctions, which relate correlation to receive element Qisplace—
transmit and receive spacing results in an average pairwise pRENt: For example, we may use Jakes’ model to obtain
which is analogous to those given in Section IlI-C.

3) Covariance Matrices and Simplifying Assumptiorihe Rijne = Jo [2m |x —x7|] Jo [2m |xT —x{]] (14)
zero mean multivariate complex normal distribution is com-
pletely characterized by the covariance maRixFor the pur-
pose of modelind1, the( Ny Ng) x (N1 Ng) covariance matrix
is defined as

wherex;{T’R} is the vectorial location of théth transmit or re-

ceive antenna in wavelengths, and is the vector norm.

4) Computer GenerationComputer generation of zero

Rijne = E{Hy;H},} (8) mean co_mplex normal vectors _for a specifie_c_i covariance
matrix R is performed by generating vectors of i.i.d. complex

wherei andj combine to form a row index dR andk and/ normal elements with unit varianc@). The transformation
combine to form a column index @&. A number of assump- y = $Al/2a (whereX and A are the matrix of eigenvectors
tions are convenient when working with the covariance matrisnd the diagonal matrix of eigenvalues Bf, respectively)
Separabilityassumes that the full covariance matrix may bgields a complex normal vectdy ) with the proper correlation
written as a product of transmit covarian@®r) and receive structure.
covariance Rg ) or

IV. SALEH—VALENZUELA MODEL WITH AOA/AOD

This section demonstrates that an extension of the
. . : Saleh—Valenzuela model [12] that includes AOA statistics
For such channels, the transmit and receive covariance matri . ; .
. . fletfj is able to match capacity pdfs and pairwise element pdfs
can be computed from the full covariance matrix as -
of the measured channel. Here, AOD statistics are assumed
to follow the same distribution as AOA, which is reasonable

Bijre = R iR jo. 9

N
Ry = 1 iRMM (10) for the_indoor cha_mnel with the same basic configuration on
St transmit and receive. We refer to the Saleh—Valenzuela model
| br with AOA/AOD as theSVA modefor brevity.
Rpij =~ ZRik,jk (11) The SVA model characterizes the channel by representing
p =1 each multipath component in terms of its amplitude, arrival

time, and AOA/AOD. Based upon experimental observations,
where« and$ are chosen such that these arrivals or rays arrive in clusters in both space and time.
Fig. 1 shows the model parameters for a single cluster in the

]\‘rR ]\rT - . - . .
SVA model. The directional channel impulse response arising
aff = kz kz Rk ko (12) " from L clusters andc rays per cluster is
c1=1 k2=1
In the case wherR is a correlation coefficient matrix, we may .~ ] Lzii-l . r 7
chooser = N ands = Ny. Separability makes implications™(6"+¢") = VLK Pred (01 — O — wiy)
=0 k=0

about the statistical independence of multipath fading due to
transmit location and receive location. x6 (0% -0 —wfy) (15)
Shift-invariance assumes that the covariance matrix is only a

function of antenna spacing and not absolute antenna locatiaere % and §2 are transmit and receive angles, is the

The relationship between the full covariance and shift-invariapbmplex ray gain®? and®£ are the mean transmit and receive

covariance/RS) is angles within thefth cluster, andv?, andwf are the transmit
and receive angles of thig¢h ray in the/th cluster, relative to the

R = Rf_kyj_é. (13) respective mean angles in each cluster.
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To simplify the model, average-ray power in each cluster is 9
constant so thay, ~ CN(0,|3¢|?), whereCA (11, 02) de- 2 ®
notes the complex normal distribution with mearand vari-
ances?. The cluster amplitude is Rayleigh distributed with the 150
expected cluster power (or variance) satisfyifig|3:|?} = 0
exp(—T;/I"), whereTy is the arrival time of théth cluster, and I e 3
I" is the cluster decay time constant. The arrival time distribution 180 == HPol 0
is a conditional exponential with a normalized unit arrival rate. A
Details concerning the model implementation can be found in
[12], [13], [17]. The notatiorSVA(T", o) is used in this paper to 210 == 30
denote the SVA model with constant average ray power and unit
cluster arrival rate, wherE is the cluster decay constant asnd
is the standard deviation of ray AOA/AOD.

The narrow-band channel matrix is computed from the direc-

tional impulse response as Fig. 2. Radiated power (dB) for vertical/horizontal polarized patch antenna
relative to a uniform radiator, as a function of azimuth angle.

30

240 300
270

where statistical independence of complex ray gain, AOA, and
AOD has been assumed. If the gains of distinct rays are indepen-
dent and ray AOA/AOD are i.i.d., the expression simplifies to

[ / / WE(BR) L8R, 6T)WT (67)d67 6" (16)
27 J 27

whereW.” (0) = g () exp[jv !’ (0)], gL (#) is the antennagain 5 1 21 R R\ ;T T
pattern,zz:(e) _ 2(17r[3;5 COS(9)4+ y: Sl(;l(e)L Pe {T, R}, and lenl,mznz 7 zé: |/3é| Lmlmz (@Z ) Ln1n2 (@Z ) (19)
g € {m,n}. Based upon measured data taken in [13], a two-

sided Laplacian distribution is assumed for the ray AOA/AOkyhere

distribution whose pdf is

L1, (0F) = [ 17l (OF +) ol (OF +4)

(—1vV2w/opl) (17) xexpjiy, g, (OF +w)] dw  (20)

fPw) = ﬁlap exp

fF(w) is the ray angle of arrival/departure pdf

r P r P P P\2, P P\271/2
r(/)(hqz (6)_27”(11(12(308( (11(12)’7(11(12_[(‘I(11_w(12) —I—(y(h_yqz) ] /

A. Complex Normal Approximation and

whereop is the standard deviation of angle in radians.

H matrices may be generated directly by computing (16) v =tan [yl —ul ) /(al = 2D

for each realization of the SVA model. An alternate meth?ﬁ i il losed-f . for (20
computes channel matrices according to a complex normal i$F certain special cases, closed-iorm expressions tor (20)

tribution for each fixed set of cluster statistics. This metho(ax'St' For arbitrary antenna gain and angular ray distributions,

reduces computational time and links the model to simpler co@?xvei\éeg)gz?gs'ziz%mg;t?genL::::;;f?'ﬁ’a:g:l r?:zt\j/grl;iéila%\gr?x
plex normal models. P P

For a fixed set of cluster statisticﬁ@;-”,@f, 3¢2) and ray for a fixed set of cluster statistics. We note that although

arrival anglegwZ,, wf), by is a weighted sum of zero meanthe covariance matrix given by (19) is not strictly separable

complex normal random variables, resulting in a correlatésée(:r'ggiI:{"?/\?%J?;/;ggf dcgjvsérern:zihz?;r?gé:] iﬁ)&?;c?g;
complex normal distribution. If the angular spread.ois small, iza?ions wr}:ere transmit gnd receive sta)t/istics are independent
the h,,,, Will look closely complex normal even if the/, are P )

allowed to vary. In this case, we find the average covarianc S0, assuming a uniform linear array with one gain pattern for
I~ all transmit elements and another for all receive elements results
matrix R as ) o . . )
in a shift-invariant covariance matrix.

_ B. Comparison of Model and Data
anlnl,rnznz

In [13], high-resolution AOA measurements were performed

= Bl e} on the same floor of the BYU engineering building as in this
L-1 L-1 K-1K-1 .

1 Bl 3" study. Although the measurements were at a much higher fre-

T KL Z Z Z Z B Proe. } quency & 7 GHz), the extracted parameters serve as a log-

G=06=0ki=0k2=0 ical starting point. The key parameters are (see [&3]) r} =

R R R R+ R R
X E{Wo, (07 +wile) Wit (04 +wige,) | 26°,I" = 2, A = 1. For simulation, transmit and receive cluster
x E{W! (0] +wi ) Wi (OF +wie,)} (18) arrival angles are assumed to be uniformi@rer].
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Capacity PDF many scenarios, the slight disagreement in the capacity curves

. 035 ' ' ' ' ' ' ' is not surprising. The discrepancy suggests that the multipath
g 03r Measured i in the measured environment is less than that specified in the
g 025 - SVA(2, 26°) - i . .
a) simulation.
g o2r 1 The amount of multipath in the simplified SVA model is con-
3 0.15 1 i trolled by the parameterE (the cluster decay time constant)
o% 01r T ando (the mean angular deviation of the rays in the clusters).

0.05 . , ! T Decreasing’ leads to fewer clusters and, therefore, less multi-

012 14 16 1'8 25 29 4 2 28 path. Similarly, decreasing generates less isotropic multipath,
Capacity (bits/use) limiting the ability of the arrays to exploit multiple rays within

Transmit Magnitude PDF Receive Magnitude PDF a cluster. As shown in the figure, lowering either of these pa-
8:2 . L rameters improves the agreement. However, ultimate validation
0.7k of the model requires detailed AOA/AOD measurements at the

2.4-GHz carrier.

Both amplitude and phase pdfs are fairly insensitive to the pa-
rameter adjustments, suggesting that the multipath is at a level of
saturation when considering just two closely spaced elements.
- o] [ R The agreement of measured and simulated amplitude pdfs is
o 05 1 15 20 05 1 15 2 fairly good. The disagreement in the phase pdfs, however, is

T T
|za] = 0.64

Probability Density
OO
=
T T

<
[\
T

o
=
Y

|1 |1l likely due to the same problems mentioned in the 4 case.
Transmit Phase PDF Receive Phase PDF
04 T T
2 035 - o IR V. JOINT COMPLEX NORMAL MODELS
g 0.3 The multivariate complex normal distribution can be used
= 0622 to model the channel matrix directly by simply specifying the
% 015 channel element covariance matrix. The wealth of correlation
% 01 information provided by antenna diversity studies makes this
& 0.05 approach particularly attractive. This section assesses the ability
0 1 S of complex envelope and power correlation models to match the
3 -2 a1 0 1 2 33 -2 -1 06 1 2 3 . - X
arg(z2/a1) arg(z2/71) capacity pdfs and pairwise magnitude and phase pdfs of the SVA
model. The reason for using the SVA model as opposed to mea-
Fig. 3. Comparison of capacity pdfs and joint magnitude and phase pdfs %fjred data ',S that the underlying covariance behavior is known
4 x 4 measured data and SVA model simulations. and that unlimited channels may be generated.

_ ) o A. Complex-Envelope Method
1) 4x 4 Data: First, capacity pdfs and pairwise pdfs from

the model are compared with measured 4 data from Set 1. . ltivariat | | and i .
Fig. 2 shows the approximate gain pattern for the vertically pbg-_ muftivariate compiex normaj and Specilies a covariance ma-

larized patch antenna obtained using a piecewise linear fit to ltttl'é (R) which is the average cpvariance of the true distr_ibu-
P gap %on orR = E{hh"}, whereh is a stacked channel matrix.

This method assumes that the underlying distributiorfbn

output of moment method simulations. This gain pattern is rg- the ch | : trix is k th thod i
quired to compute (20). nce the channel covariance matrix is known, the method in

Fig. 3 compares pdfs of measured data and Monte Carlo sirsn(?Ctlon llI-D4 is used to generaké matrices.

ulations of the SVA model. In these and later simulatiaris, B.

channels were realized (100 cluster configurations with 1000 ) ) ]

channels each). PDFs were computed by averaging (6) and (7" this method, the channel matrices are computed as in

for magnitude and phase over the 100 cluster configurations>€Ction V-A except that the covariance matrix is derived from
Apparent in the figure is the good fit of both the capacity pdf§'® Power-covariance matrix given as

and pairwise amplitude pdfs. The discrepancy in phase is due

to two basic factors: 1) imperfect phase response of hardwareR;, xc = E{|Hi;||Hxe|*} — E{|Hi;PYE{|Hre [}, (21)

for the transmit and receive channels and 2) the uniform cluster

AOA/AOD assumption is not strictly valid over the limited dateas suggested in [18]. The same power covariance behavior can

set. be generated using a zero mean multivariate complex normal
2) 10x 10 Data: Next, capacity pdfs and pairwise pdfsdistribution with covariance matri® = VR, where /- is

from the model are compared with measuredx1ID data elementwise square root. However, care is required since the

from Set 2. This data set employed quarter-wave monopatet of the power covariance matrix is not necessarily posi-

antennas, and an ideal uniform radiation pattern in azimuile definite. Under such circumstances, the method outlined in

was assumed. Fig. 4 compares the pdfs for the measured 8edtion Il1-D4 cannot be used directly. In this study, however,

simulated 1< 10 channel. Since the parameters from [13pot power covariance matrices generated by the SVA model

were taken at a higher frequency and represent an average owete always positive definite.

Power-Covariance Method
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Capacity PDF Capacity PDF
0.25 T T T T 0.35 T T T T T T T
= Measured —— % 03 SVA(2, 26°) N 1
g 0.2 svA(2 26°) e 3 7 Z 595 | Complex Corr. = Bt i
2 | SVA(2,15°) =~ - e i a2 Power Corr. = — -
3,015 SVA(1.2, 26°) == > 02 i
Z 01 . 7 0151 7
2 £ 0LF .
& 005 i & 0.05 .
0 ! 0 L T ) 1 SO
30 35 40 45 12 14 16 18 20 22 24 26
Capacity (bits/use) Capacity (bits/use)
Transmit Magnitude PDF Receive Magnitude PDF Magnitude PDF Phase PDF
T T T T T 064‘ 0.8 T N |I | 0164 0.4 T T 1 T T T T
g fea] = 0.64 ’ bea| = 1 5 07F NPT 50357 R .
08¢ : ZO6F f 1 E 03p AN .
a AO05F f 1 Ro025p
5060 I l g O4F flElg0ny 4 = 02
E 04 /, . F03rff X ] Fo .
S ool | 202 00 S & T & 0lp. <
A <\ S & 01H -~ g £ 005F -
0 jwa] = 0.07" =3 ~ 0 I ) ou : | I Lo L
0 05 1 15 20 05 1 15 2 0 05 1 15 2 3210123
1] || |21 arg(za/x1)
Transmit Phase PDF
0.5 T Y T T T Fig. 5. Capacity pdfs and pairwise magnitude and phase pdfs for thé 4
=y channel with\ /2 interelement spacing.
g 0.4
a
- 0.3 Capacity PDF
5 0.3 T T T - T
< 0.2 = i
2 F 025 SVA(2 26°) i .
& 01 S 02k Complex Corr. - ,"/A\ : i
- Power Corr. — - - AR
0 1 t 1 ! 1 1 1 1 1 1 E 015 F ! ; \ | B
3 2 1 0 1t 2 33 -2 1 0 1 2 3 7 i :_
arg(za/z1) arg(za/z1) 2 0.1 -
& 0.05 .
Fig. 4. Comparison of capacity pdfs and joint magnitude and phase pdfs fo 0 e T
10x 10 measured data and SVA model simulations. 25 30 35 40 45 50
Capacity (bits/use)
C. Simulation Results 08 N{agmt‘fde PI?F . Phase PDF
Fig. 5 plots capacity pdfs and the average pairwise magnitud 07/ \|=I=08 {1  =0.
. . . 177} b g - w
and phase pdfs for simulatedx#4 channel matrices. Since the § g'g g
pairwise pdfs for transmit and receive look nearly identical, they i 04 b [ lel=021% 1l =
have been averaged to obtain one plot for magnitude and anoth = ;4 | f £~ N, 1 E
P . : 2 S
for phase. Linear arrays were assumed wifl2 interelement 202t o K { 2 R
spacing. Parameters for the SVA model wEre- 2,0 = 26°, 801y g & B
and uniform cluster AOA/AOD. The complex envelope method - i 15 2 3 10 1 2 3
exh|b|§s a good match for th(_e pairwise pdfs but overestimate: |z1] arg(z2/2:)
capacity. The power correlation model matches capacity pdfs
and magnitude pdfs better at the cost of ignoring phase. Fig. 6. Capacity pdf and pairwise magnitude and phase pdfs:o8 8hannel

Fig. 6 plots capacity pdfs and the average pairwise magith A/2 interelement spacing.
tude and phase pdfs for simulateck channel matrices with
A/2 interelement spacing. The addition of antennas has appéue elements of the correlation coefficient matrix generated with
ently amplified the deficiencies present in the 4 case. Fig. 7 SVA model for the two 8« 8 cases. Shiftinvariance of the model
shows the performance of the two methods for 8arrays with has been assumed so that the correlation coefficients are only a
an interelement spacing af/4. The complex envelope methodfunction of antenna separation at transmit and receiveAFar
performs about as well as thg'2 case. The power correlationseparation, the element magnitudes (powers) and phases exhibit
method has great difficulty matching capacity, probably due tmall and large variations, respectively. Low power variance and
the significant correlation in phase, which is ignored. highly random phase seem to be a good candidate for a power

The simple models fail to match the SVA model because tleerrelation model. For thé/4 case, the power variation is more
covariance matrix is constant only for a fixed set of cluster statigronounced and the phases exhibit less variation. The poorer fit
tics. Fig. 8 demonstrates the random behavior of the covarianceapacity suggests that power models have difficulty in this
matrix by plotting the variance of the amplitude and phase oése.
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Capacity PDF TABLE I
0.35 T T T AVERAGE POWER CORRELATION OF SUBCHANNELS TAKEN FROM

£ 03F SVA(@, 26°) = . NORMALIZED H MATRICES FROM DATA SET 3

é 0.25 L Complex Corr. -+ F 4

a Power Corr. = =~/ . \'AY VH HV HH

z 02 I VV [1.0000 0.0053 -0.0563 -0.2153
2015 T VH | 0.0053 1.0000 0.1164 -0.0004

s 01 I HV |-0.0563 0.1164 1.0000 -0.0662

5 0.05 1 HH |-0.2153 -0.0004 -0.0662 1.0000

C ity (bit: . . .. .
apacity (bits/use) depolarization behave similarly to spatially separated elements

Magnitude PDF Phase PDF . ; R
0.9 ,agm u ° , 0.5 —1— ase — [20]. An analysis of the capacity of dual-polarization elements
08 ™\ |2l =064 1 versus single-polarization elements is provided in [17]. In this
% 8'2 i ] % 04 paper, we outline a simple method for including polarization
fi o5k £ o] = 03 ] ‘i 0.3 into existing single polarization models. The capacity statistics
N o) = V.2X . . .
Eoalf o 4 = for measured & 4 channels is matched using this method and
803174 v %1 2 the SVA model.
S 0.2 Hf Iz| =007 . 1 So1
0 . e P A A. Independent-Subchannel Method
0 05 115 2 3210123 Pairwise magnitude and phase pdfs generated from data
|1} arg(zz/71) . .
Set 3 show little dependence of both magnitude and phase
Fig. 7. Capacity pdf and painwise magnitude and phase pdfs for thg 8 for orthogonally polarized elements [17]. Table Il lists
channel with\/4 interelement spacing. the average power correlation coefficients for the various
subchannels of the channel matrix. Negative correlations
Virinnee of [ Ko, o nenen, arise due to the channel normalization which is required
A2 Spscing A4 Bpscing due to the large variation in average receive power with

} O large movement. Due to the small level of correlation for
opposite polarizations, the various subchannels may initially
be treated as statistically independent. Thus, we characterize

.0 the VV, HH, VH, and HV channels in isolation and generate
corresponding syntheticH matrices: Hyv, Him, Hvi,
and Hgy. The complete channel is then formed as

0001 H = [HVV, CYHVH;CYHHV7 HHH] The constanta is
chosen to ensure that the average depolarization ratio of the
synthetic channel matrices matches that of the measured data.

Spzlng

v

Transmit Sprcing Tronsmit Spacing

Varkamos of arg| Ko, —mgny—o)

B. SVA-Model Parameters
i Due to the strong LOS nature of the scenario for Set 3,
i 2 a reduction in the angular spread of arrivals within a cluster
1.5 is expected, especially for the cluster corresponding to LOS.
Also, transmit and receive patch antenna arrays were always
facing each other, leading to a fixed mean cluster arrival
angle for the LOS clusted’ = 2.0, = 10° were used for
: i the copolarized subchannels (VV/HH) ahd= 2.0,s = 20°
Transmit Snacing ' Tentiaralt Sens g were used for the cross-polarized subchannels (VH/HV). The
required increase in angular spread of the cross-polarized
Fig. 8. Variance of the elements of the correlation coefficient matrix for theubchannels is reasonable due to stronger multiple reflec-
8 8 channel data generated with the SVA model. tions. The depolarization parameterwas chosen to match
the measured average depolarization -of6.8 dB. Fig. 9
VI. MODELING OF MULTIPLE POLARIZATIONS plots the capacity for the different simulated subchannels in

Antenna elements employing multiple polarizations can ifgolation compared with the corresponding subchannels ex-
crease capacity [19] and often require less space per transmitf@cted from measured data. The sharp peak at the left of
ceive channel than spatially separated single-polarization ef&ch capacity plot occurs where the water-filling solution
ments. The capacity performance of multipolarization elemeritges only a single orthogonal subchannel, which happens
is a function of the average depolarization ratio due to scatterifigquently for these 2 2 channels exhibiting strong LOS.
in the transmission environment. Environments with low depd-he sharpness of the peak results from the narrow bin size
larization lead to nearly orthogonal channels at the expenseaoid the nearly constant gain of the strongest orthogonal sub-
reduced average receiver SNR, whereas environments with hiffannel taken from normalize#l. These plots reveal the

2 Spacing A fd Sparmg
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channels. Thus, previous work in antenna diversity which
focuses on bulk parameters like envelope and power correlation

may

nels.

have trouble finding direct application to MIMO chan-
Also, we have provided a simple method for including

polarization into existing models based on observations from
measured dual-polarized data. Evaluation of space time coding
algorithms and capacity studies should benefit from the simple
modeling approaches presented in this work.

(1]

Fig. 9. Match of capacity pdfs for subchannels generated with the SVA model 2]

for various polarizations.
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(71

Fig. 10. Average depolarization ratio pdfs and capacity pdfs for measured andg]

simulated channel matrices.

good statistical agreement between measured and modeled]
channels for the selected model parameters. This agreement
suggests that the proposed mechanism for including polar-
ization within the SVA model captures the channel behavior

important for determining channel capacity.

C. Simulation Results

[10

[11]

The SVA model was used to generate 100 cluster configura-
tions with 1000 sets of 2 2 subchannel matrices each. The sub-

channel matrices were then formed into completedchannel

matrices. Fig. 10 shows the depolarization pdfs and capacitj2]
pdfs for measured and simulated channel matrices. The fit in
depolarization and capacity is good considering the simplicity13)

of the model.

VII. CONCLUSION

(14]

This paper has explored the ability of simple statistical
models to capture key features of the narrow-band indool5]
MIMO wireless channel. Ultimately, a tradeoff exists between;;¢;
model complexity and accuracy. However, we have shown that
even simple models (like the SVA model), which are based!”]
partially on channel physics, match capacity, and pairwise
pdfs of measured data quite well. Models that ignore channél8]
physics and attempt to force channel statistics to fit convenient
distributions seem to have difficulty for increasingly complex
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