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We present a method for full-wave characterization of optical waveguide structures. The method computes
mode-propagation constants and cross-sectional field profiles from a straightforward discretization of Max-
well’s equations. These modes are directly excited in a three-dimensional finite-difference time-domain simu-
lation to obtain optical field transmission and reflection coefficients for arbitrary waveguide discontinuities.
The implementation uses the perfectly-matched-layer technique to absorb both guided modes and radiated
fields. A scattered-field formulation is also utilized to allow accurate determination of weak scattered-field
strengths. Individual three-dimensional waveguide sections are cascaded by S-parameter analysis. A com-
plete 104-section Bragg resonator is successfully simulated with the method. © 2002 Optical Society of
America
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1. INTRODUCTION
The ability to design complex optical devices is greatly en-
hanced by simulation tools that characterize wave propa-
gation in arbitrary guiding structures. Complete electro-
magnetic characterization of such geometries requires
two basic tools: (1) a two-dimensional simulation tech-
nique capable of finding propagation constants and mode
profiles for arbitrary guiding structures, and (2), a three-
dimensional (3D) electromagnetic analysis method to
simulate mode propagation in the presence of waveguide
transitions and discontinuities. For electrically large
structures, limited computer memory and processing
power often preclude a complete full-wave 3D analysis.
In many cases, however, simulation efficiency can be
greatly enhanced through appropriate application of net-
work analysis.

Prior work in this area has focused on two-dimensional
planar waveguide approximations,1,2 the approximate
beam-propagation method,3,4 and finite-difference (FD)
solutions for propagation constants and mode profiles.5,6

In this paper we employ a simple FD method based on a
straightforward discretization of Maxwell’s equations to
determine mode characteristics for waveguides of arbi-
trary cross-sectional geometry. The equations may be
solved using sparse eigenvalue/eigenvector methods or it-
eratively by using a sparse linear-equation solver. These
modes are used in a full-wave analysis of 3D structures
with the finite-difference time-domain (FDTD) method7,8

with Berenger’s perfectly-matched-layer (PML) absorbing
boundary condition.9 To characterize optically large
waveguide devices, S-parameter analysis is employed to
combine the response of individual 3D sections.

We demonstrate the three-step method by analyzing an
electrically large buried heterostructure Bragg resonator
employing a surface relief grating. The ability of the
0740-3232/2002/030610-10$15.00 ©
method to provide realistic results for this numerically
sensitive problem provides evidence that the method may
be applied to a wide variety of structures.

2. FINITE-DIFFERENCE MODE SOLUTION
Finite-difference methods based on discretizations of the
time-harmonic Helmholtz equation have been success-
fully applied for vectorial-mode extraction.5 However,
such methods often require special treatment of material
boundaries, and the mode solutions obtained often devi-
ate slightly from modes supported by other discretiza-
tions (FDTD, for example). Full vectorial-mode solutions
have also been demonstrated by applying a Fourier trans-
form to the FD-vector beam propagation method.6

Here we employ a straightforward discretization of the
time-harmonic form of Maxwell’s equations, using Yee’s
discretization scheme. An obvious advantage is natural
compatibility with subsequent 3D FDTD simulations.
The method is free of spurious modes since the FDTD
gridding scheme automatically satisfies Maxwell’s diver-
gence relations. Also, if material parameters are speci-
fied for each FDTD cell, the gridding arrangement en-
sures satisfaction of appropriate field continuity
conditions across material boundaries.

A. Discretization of Maxwell’s Equations
Assuming exp( jvt) time variation and exp(2jbzz) longitu-
dinal spatial variation for a propagating mode, we may
write Maxwell’s equations for a nonmagnetic medium as
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where E denotes electric-field intensity, H represents
magnetic-field intensity multiplied by the free-space in-
trinsic impedance h0 , and the subscripts $x,y,z% denote
field polarization. Also, k0 5 vAm0e0 is the free-space
wave number and er is the material relative permittivity.
To discretize these equations, we use the standard Yee
grid assignment8 collapsed onto a two-dimensional sur-
face as shown in Fig. 1. After applying first-order central
differences we obtain
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Fig. 1. Waveguide geometry used to assess error in the propa-
gation constant and field profile found with the FD method.
Also shown is the assignment of FD grid indices.
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where er now represents the relative permittivity aver-
aged over one cell centered about the component on the
left-hand side in each equation.

B. Boundary Truncation Conditions
The FD method requires a truncation condition for the
field components at the outer domain boundary. Simple
Neumann or Dirichlet conditions are often employed.
However, such nonphysical boundaries may induce unac-
ceptable error when placed near the guiding structure.
To develop an approach that more closely matches the
true field behavior, we note that for a cylindrical wave-
guide the field profile for the HE11 mode decays outside of
the core as H1

(1)( jar), where a 5 (bz
2 2 v2m1e1)1/2. For

ar . 2, the function is approximately (1/Ar)exp(2ar),
which provides an approximate functional relationship
between fields that lie on the boundary and those just in-
side the boundary. As shown in Subsection 2.E, use of
this boundary condition significantly reduces the required
size of the computational grid for a given level of accuracy.
Similar localized boundary conditions have been em-
ployed in the finite-element method for open-boundary
waveguides.10

C. Iterative Linear Method
One approach to solving Eq. (2) is to construct a vector of
field components to obtain the matrix equation Af 5 f0 ,
where f 5 @$Hx,ij%$Hy,ij%$ jHz,ij%$Ex,ij%$Ey,ij%$ jEz,ij%#T

and $•% represents a stacking operation. Solving this
equation using matrix inversion requires that the forcing
vector f0 be nonzero and bz be fixed. We can make the
forcing vector nonzero by fixing one of the field compo-
nents at a specific node. We then find the value of bz
that minimizes the vector norm iA8(bz)f i , where A8 is
the coefficient matrix obtained when no forcing is in ef-
fect. The minimization is performed by optimization af-
ter specifying an initial guess for bz from an approximate
analytical solution or using the eigenvalue/eigenvector
method outlined in Subsection 2.D.

The simulations were performed on a 700-MHz
Pentium-based PC with 512 megabytes of memory. The
SuperLU package was used to compute sparse linear ma-
trix equation solutions. For a 60 3 120 FD grid, each it-
eration required 15 s. Approximately 100 iterations
were required to obtain 1029 accuracy in the propagation
constant.

D. Eigenvalue/Eigenvector Method
Substituting the expressions for jHz and jEz in Eq. (2)
into the remaining four equations and rearranging those
equations produces the relations
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Fig. 2. Error in the mode Ex field profile for the zero-field boundary condition. The dashed line gives the dimensions of the smallest
domain for comparison.

Fig. 3. Error in the mode Ex field profile for the decay boundary condition. The dashed line gives the dimensions of the smallest
domain for comparison.

Table 1. Propagation Constant Value and Fractional Error for Various Sizes of the Simulation Domain

Cells Size (nm) Zero Bound Decay Bound

Nx Ny x y bzl0 Fractional Error bzl0 Fractional Error

36 48 2700 2880 19.96636646 2.37 3 1024 19.96168858 2.51 3 1026

48 64 3600 3840 19.96267660 5.20 3 1025 19.96164637 3.96 3 1027

60 80 4500 4800 19.96186515 1.13 3 1025 19.96163969 6.08 3 1028

72 96 5400 5760 19.96168746 2.43 3 1026 19.96163867 9.63 3 1029

84 112 6300 6720 19.96164903 5.04 3 1027 19.96163851 1.55 3 1029

96 128 7200 7680 19.96164075 8.94 3 1028 19.96163848 2.26 3 10210

108 144 8100 8640 19.96163896 0.00 3 100 19.96163847 0.00 3 100
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where er,ij
$x,y,z% represents the relative permittivity aver-

aged about the Ex,ij , Ey,ij , or Ez,ij component, respec-
tively. For small cell sizes, the terms containing (Dx)2

and (Dy)2 lead to coefficient matrices that have poor nu-
merical conditioning and consequently sparse eigenvalue
solvers such as ARPACK have difficulty converging. For
fine detail, the eigenvalue method may be used on a
coarse grid to obtain an initial guess for bz that subse-
quently may be refined with the linear method. This ap-
proach is presented in Ref. 11 for a cylindrical waveguide.
In this paper, initial guesses for propagation constants
were computed on a 30 3 60 FD grid using ARPACK, re-
quiring approximately one minute of computation.

E. Accuracy of the Mode Solution
In this section the linear solution method is applied to a
rectangular dielectric waveguide whose cross section
matches the core of the Bragg resonator that will be ana-
lyzed in Subsection 2.F. Here, we assess the accuracy of
the propagation constant and field shape for the propa-
gating mode with respect to boundary-truncation type,
domain size, and cell size. The basic geometry to be
simulated is depicted in Fig. 1. Note that error in this
section is quantified as the fractional deviation from the
most accurate numerical solution obtained (largest-size
domain/finest resolution).

1. Domain Size Dependence
Table 1 compares the fractional error in the propagation
constant for various grid sizes with the zero-field bound-
ary and decay boundary. The cell size is held constant
for all computations. Figures 2 and 3 plot the error in
the Ex-field component for the zero and the decay bound-
ary conditions, respectively. This comparison shows that
the error produced by the decay condition is an order of
magnitude lower than that produced by the zero-
truncation condition. The results also indicate that a
modest domain size (4500 nm 3 4800 nm) gives reason-
ably small error in the propagation constant (1027) and
field profile (1023). For all further computations, the
decay-truncation approach will be used.

2. Cell Size Dependence
Table 2 lists the fractional error in the propagation con-
stant for various cell sizes when the domain size is held
constant. These values show that the propagation con-
stant is more sensitive to the discretization than to the
domain size. Figure 4 shows the error in the Ex compo-
nent of the computed field profile for three of the cases
considered.

F. Bragg-Resonator Guided-Mode Solution
Figure 5 shows the Bragg-resonator geometry under con-
sideration. This geometry is based on the buried hetero-
structure distributed feedback device cross section given
in Ref. 12 with parameters specified at a physical tem-
perature of T 5 25 °C and a wavelength of l 5 1.55 mm.
The index of refraction13,14 for the cladding (InP) at this
temperature is n2 5 3.15. The core (Ga12xInxAsyP12y)
is assumed to be matched to the InP lattice with x 5 0.2
and y 5 0.43, giving n1 5 3.35 (Ref. 15).

The refractive index in the grating (n3) is a function of
longitudinal position. For the true physical geometry,
the grating would have n3 5 n1 5 3.35 and the height
would be modulated (surface relief ). However, modeling
such fine detail significantly increases the memory re-
quired for simulation. Instead, we use alternate values
for n3 of 3.35 and 3.33 for our grating modulation, which
corresponds to a 10% modulation in the grating height
when viewed in terms of an effective permittivity of the
grating. Mode solutions are required only in the un-
modulated region (n3 5 3.35).

The propagation constants and modal field profiles
were computed at six different wavelengths by using the
iterative linear method to refine the solution from the
eigenvalue/eigenvector method. The wavelengths and
propagation constants are given in Table 3. FDTD simu-
lations required approximately 2 h to simulate 10 periods
of modal oscillation.

3. THREE-DIMENSIONAL SIMULATIONS
OF BRAGG-RESONATOR SECTION
The Bragg resonator can be divided into sections, each
having the geometry depicted in Fig. 6. The section

Table 2. Propagation Constant Value and Error
for Various Simulation Cell Sizes

Nx Ny x y bzl0 Fractional Error

30 40 4500 4800 19.95706883 22.94 3 1024

60 80 4500 4800 19.96163969 26.47 3 1025

90 120 4500 4800 19.96245221 22.40 3 1025

120 160 4500 4800 19.96273238 29.92 3 1026

150 200 4500 4800 19.96286096 23.48 3 1026

180 240 4500 4800 19.96293039 0.00 3 100
Fig. 4. Error in the mode Ex field profile for the decay boundary condition for various grid resolutions.
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length of 120 nm was chosen since it is approximately l/4
for the guided mode.

FDTD7,8 was chosen for simulating the 3D Bragg reso-
nator because of its computational efficiency and ease of
implementation. FDTD is generally well suited for free-
space propagation and scattering problems. When ap-
plied to the Bragg resonator, important considerations in-
clude the following:

1. Wideband excitation may not be possible owing to
wavelength-dependent mode profiles and propagation
constants.

2. Discrete stepping in time and finite resolution in
the propagation direction will lead to a mode slightly dif-
ferent from that given by Eq. (2), where exact derivatives
have been assumed in time and propagation direction.

3. The fields scattered by the 3D geometry will be very
weak compared to the incident wave, giving rise to large
dynamic range requirements.

4. The error induced by the absorbing boundary con-
dition must be acceptably low. This is particularly im-
portant, as the Bragg-resonator frequency response can
be highly sensitive to errors in the computed fields.

A. Wideband and Sinusoidal Excitation
By employing an appropriate time-domain waveform,
FDTD can obtain the wideband response of many impor-
tant structures with a single simulation. Since mode
profiles and propagation constants will change as a func-
tion of excitation wavelength, wideband excitation is not
well suited for applications that are very sensitive to er-
ror. Thus in this paper separate simulations were run at
discrete wavelengths to obtain the transmission and re-
flection of the Bragg section, and interpolation was ap-
plied to obtain results at intermediate wavelengths.
Subsection 3.C explains how the guided mode at a single
wavelength is sourced in an FDTD simulation.

B. Finite-Difference Approximation
FDTD approximates continuous derivatives in time and
space with finite differences. In Eqs. (2) and (3), continu-

Fig. 5. Waveguide cross section for the Bragg resonator. n3
takes on discrete values in the longitudinal direction.
ous derivatives are assumed in z and time. To ensure
complete compatibility of the mode shape, we must solve
Eq. (1) with finite differences in time and space.

Assuming time-harmonic fields, the finite difference
(Dt) of any field quantity (F) with respect to time
is Dt@F(x, y, z)exp( jvnDt)# 5 jv sinc(vDt/2) F(x, y, z)
3 exp( jvnDt), where sinc(x) 5 sin(x)/x. Thus k0 in Eq.
(2) must be replaced with k0 sinc(vDt/2). Similarly, ap-
plication of finite differences in the propagation direction
requires replacement of bz with bz sinc(bzDz/2). These
replacements will be used in Subsection 4.B to assess the
accuracy of the complete Bragg solution.

C. Dynamic Range: Scattered-Field Formulation for
Waveguides
For many waveguide geometries, such as a small section
of a Bragg resonator, the field scattered by the obstacle
may be significantly weaker than the incident field. In
these situations, finite precision arithmetic may produce
unacceptable error levels.

To minimize the dynamic range requirements as well
as remove the need to absorb the strong incident field at
the domain boundaries, we utilize the scattered-field for-
mulation in the FDTD implementation.8 This approach,
which has been used extensively to model electromagnetic
scattering in free space, can also be applied to waveguide
analysis. In this case, however, the incident field and
corresponding geometry are the incident mode and the
unperturbed waveguide structure, respectively, where the
waveguide material parameters are represented by e i ,
m i , and s i . If the actual (perturbed) waveguide geom-
etry is characterized by material parameters e, m, and s,
we may write Maxwell’s equations for the scattered fields
(Ēs and H̄s) as

¹ 3 Ēs 5 2m
]H̄s

]t
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]H̄ inc

]t
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where Ē inc and H̄ inc represent the incident modal fields.
These equations are identical to Maxwell’s equations for
total field with the addition of source terms. For a non-
conductive, nonmagnetic medium, we must include a
source term only where e Þ e i . To illustrate the excita-
tion of the source in the FDTD code, the standard FDTD
update equation for Ex is given as
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Table 3. Propagation Constants and Transmission and Reflection Coefficients for the Bragg Section at
Various Wavelengths

l0 (nm) bzl0 uR0u /R0 (deg) uT0,0 2 1u /(T0,0 2 1) (deg)

1549.0 20.009476 2.7232 3 1024 1.27 4.2981 3 1024 90.0379
1549.5 20.009300 2.7222 3 1024 1.30 4.2952 3 1024 90.0375
1550.0 20.009125 2.7212 3 1024 1.33 4.2922 3 1024 90.0372
1550.5 20.008949 2.7202 3 1024 1.36 4.2893 3 1024 90.0368
1551.0 20.008774 2.7192 3 1024 1.39 4.2864 3 1024 90.0364
1551.5 20.008599 2.7182 3 1024 1.42 4.2834 3 1024 90.0360
The incident/scattered field formulation introduces an ad-
ditional term such that

Ex,ijk
n11/2 5 G 1

~e i 2 e!

e
Dt

]Ex,ijk
inc

]t
U

t5nDt

(8)

5 G 1
~e i 2 e!

e
~Ex,ijk

inc, n11/2 2 Ex,ijk
inc, n21/2!, (9)

where E inc is specified by the known mode shape. The
second equality employs a finite difference on the incident
source to ensure compatibility of the mode in the dis-
cretized domain. After the FDTD simulation, scattered
fields may be converted to physical total fields by adding
the known incident mode shape at each simulation node.

D. Absorbing Boundary Condition: Berenger’s
Perfectly Matched Layer for Waveguides
Several absorbing boundary conditions have been applied
for waveguide termination: methods based on the one-
way wave equation,16,17 PML techniques,9,18,19 modal
eigenfunction expansion approaches,20 absorption based
on discrete time-domain Green’s functions for the
waveguide,21,22 and filter-bank methods.23 Our problem
requires absorption of both guided modes and radiated
fields, suggesting the use of robust PML-based methods.
Berenger’s PML9 is well suited for free-space scattering

Fig. 6. Section of the Bragg resonator to be modeled with 3D
full-wave analysis. The dashed lines denote the extents of the
unit section, lt and ls are physical lengths of the tooth and Bragg
section, and u is the angular length of the section in radians at
l0 5 1550 nm.
problems. To apply the method to waveguide simulation,
two different issues must be considered.

1. Propagation into the Perfectly Matched Layer
Past work has demonstrated that the PML technique may
be applied to a dielectric waveguide by simply extending
the waveguide into the PML and ensuring that
s1,z(z)/s2,z(z) 5 e1 /e2 , where s1,z(z) and s2,z(z) are the
z-directed conductivities in the PML for the core and clad-
ding and e1 and e2 are the permittivities in core and clad-
ding, respectively.24 This condition ensures that the de-
cay rate of the propagating mode in the core and cladding
remains equal. Many other researchers have studied
Maxwell’s equations in the PML.18,19,25

Here, we provide a proof suited for our application that
if the waveguide naturally extends into the PML, the
modes are identical in the PML and normal regions, lead-
ing to a (theoretically) reflectionless interface. Note that
matching of modes does not guarantee absorption. In the
case of metallic waveguides, for example, we have the dif-
ficulty of evanescent modes, and other methods must be
employed.

Starting with Berenger’s equations for the PML in con-
tinuous space, assuming steady-state fields, and substi-
tuting equations for electric field into equations for mag-
netic field leads to the Helmholtz equation
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where ap 5 1/( jvm 1 sp* ), bp 5 1/( jve 1 sp), and
p P $x, y, z%. A similar relation results for E when the
substitution is performed in reverse. The right-hand
side of Eq. (10) is identically 0 when the FDTD gridding
scheme is used. In this case, for a PML only in the
propagation direction, we obtain

1

v2me
S ]c2

]x2 1
]c2

]y2 1
1

mzrezr

]c2

]z2 D 1 c 5 0, (11)

where mzr 5 @1 2 jsz* /(vm)#, ezr 5 @1 2 jsz /(ve)#, and
c is any field quantity. Assuming the same condition
as Berenger for a reflectionless interface, we let qz
5 mzr 5 ezr . Modal propagation will be of the form
c 5 c (x, y)exp(2jbz8z) where bz8 5 bzAmzrezr 5 bzqz .
Substitution into Eq. (11) gives the Helmholtz equation
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Thus the governing equation for propagation constants
does not change across the normal/PML or PML/PML in-
terfaces.

To show that the mode shape is also continuous across
the boundary, we write Faraday’s law in the PML medium
as

where ¹T 3 represents the transverse part of the curl op-
erator (¹T 5 @]/]x# x̂ 1 @]/]y# ŷ), and 3 is the cross-
product operator. Canceling the qz terms leads to the
same equation as in the non-PML medium. Repeating
this analysis for Ampere’s law shows that the equations
for the cross-sectional mode shape are identical in the
PML and normal regions.

When applying the PML, a stepped n-order conduc-
tivity gradient is convenient, or s(z) 5 smax(z/Dz)n,
where smax is the maximum conductivity and Dz is
the length of the PML. The decay rate at any point
in the PML is k(z) 5 Im$bz@1 2 js(z)/(ve)#%, and the
accompanying reflection for the complete PML is
R 5 exp$(22smaxbzDz)/@ve(n 1 1)#%. To determine the
conductivity in our FDTD simulation we compute

smax

er
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~n 1 1 !ln Re0v

2bzDz
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where R is the specified modal reflection. For each re-
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2jvmH̄~x, y ! 5 @¹T 3 Ē~x, y !# 2
bzqz

qz
@ ẑ 3 Ē~
gion of different er in the waveguide cross section, we will
have a different smax according to Eq. (14). This condi-
tion is equivalent to that given in Ref. 24.

2. Transverse Perfectly Matched Layer
In order to absorb fields radiated from waveguide discon-
tinuities, we place the PML on the transverse sides (x̂ and
ŷ) of the simulation volume. The Helmholtz equation
will not be the same in the normal and PML regions, lead-

ing to aberrations in the mode shape. However, if the
field is weak in the PML region, we expect the effect to be
small. To show this, consider the FDTD simulation vol-
ume depicted in Fig. 7. The Bragg-resonator waveguide
geometry is the same as that shown in Fig. 5. The source
for the simulations is an electric wall at the left side of the
volume that is forced to the known mode. A ramp func-
tion of Gaussian shape and 99% rise time of 3T (3 peri-
ods) is applied to avoid initial transients. The steady-
state fields are extracted by taking the fast Fourier
transform (FFT) of a complete period after 10T and using
the sample corresponding to the fundamental frequency.
The results of these simulations have been compared with
the solution given by an ideal one-dimensional (1D) FD
simulation, where discretization applies only in the ẑ di-
rection. The decay boundary condition is used in the FD
solver on the transverse walls in order to ensure compat-
ibility of the guided mode.

The results of the computations using the 1D and
FDTD solutions were compared in terms of complex-field
envelopes at the center of the simulation (on the line
x 5 0, y 5 0) and on complex-mode envelopes using Eq.
(15). The fractional difference between the ideal 1D so-
lution and the FDTD solution was below 5 3 1026 and
1.5 3 1025 for the simulations with no transverse PML
and simulations with transverse PML, respectively.
These results indicate that the PML at the domain edges
influences negligible error on the mode behavior.

E. Mode Extraction
Because of mode orthogonality, the complex envelope of
the mode with shape Mij can be extracted from the fun-
damental frequency component of the FDTD simulation
Eij,z by using the expression

Az 5
S ijEij,zMij*

S ijuMiju2 . (15)

4. BRAGG-RESONATOR RESPONSE
FDTD simulations were run for the wavelengths given in
Table 3 by using simulation volume dimensions nearly

]

z
ẑ D 3 @Ē~x, y !exp~2jbz8z !#

!#, (13)
1

z ]

x, y
Fig. 7. FDTD simulation volume used to assess performance of
propagation and transverse PML.
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Fig. 8. Reflection and transmission of the Bragg resonator, ignoring any sources of error.
identical to those of Fig. 7, the only differences being
placement of PML in both the 1ẑ and 2ẑ directions, more
cells in the ẑ direction to accommodate the geometry
shown in Fig. 6, and removal of the electric wall source.

A. Reflected and Transmitted Fields
To obtain the modal reflection and transmission coeffi-
cients for the Bragg section at each simulated wave-
length, consider Fig. 6 with u 5 p rad at l0 5 1550 nm.
To compute modal reflection, scattered fields are stored in
the xy plane at z 5 0. A FFT is applied to obtain the fun-
damental frequency component, and the complex enve-
lope (A0) of the mode is computed with Eq. (15). Since
the incident mode has unit amplitude and zero phase at
the origin, R0 5 A0 is the modal reflection coefficient at
z 5 0. The reflection at plane A in Fig. 6 is then given as
RA 5 A0 exp@ jbz(lt 2 ls)#. To obtain the transmission co-
efficient, scattered fields are stored at z 5 120 nm, yield-
ing the complex modal envelope A120 . Addition of the
incident mode at z 5 120 nm gives the transmission
coefficient from 0 to 120 nm, or T0,120 5 A120
1 exp(2jbzlt). The transmission coefficient from
plane A to plane B is then given as TA,B
5 T0,120 exp@ jbz(lt 2 ls)#. Since computational investiga-
tions have indicated that R0 , T0,120 , and the propagation
constant follow a linear trend versus excitation wave-
length, linear interpolation is employed to obtain results
at wavelengths between the simulated data points.

For a fixed wavelength, the Bragg response is com-
puted with 1D transmission-line analysis.26 The values
of R0 and T0,120 at the six excitation wavelengths are in-
terpolated, RA and TA,B are computed, and an
S-parameter matrix is formed for the symmetric Bragg
section. Next, the ABCD matrix for the section is com-
puted (AS) and the ABCD matrix for the complete reso-
nator is AT 5 AS
N , where N is the number of sections.

After converting AT back to an S-parameter matrix, S11
and S21 give the complex modal reflection and transmis-
sion coefficients for the complete Bragg resonator. The
response for N 5 104 sections is given in Fig. 8.

B. Error Quantification
Small amounts of error in the single section response may
cause more appreciable error in the complete Bragg re-
sponse. Table 4 lists the primary sources of error and
their estimated values. The numbers in boldface in the
table represent error values that are most significant:
increased mode amplitude due to finite FD grid resolution
and an increase in bz due to finite FDTD resolution in the
propagation direction. The effect of these sources of er-
ror is discussed below.

1. Error Source: Increased Mode Amplitude
The finite resolution of the FD method leads to a mode
amplitude that is too high in the region of the waveguide
discontinuity. Since we are applying the scattered-field

Table 4. Sources of Error in the Bragg-Resonator
Simulation and Approximate Values

Error Source

Fractional Error in

bz Mode Shape R and T

FD grid truncation 6.1 3 1028 1.0 3 1026 —
FD grid resolution 26.5 3 1025 2.0 3 1023 —
PML reflection

(guided mode)
— — 1.0 3 1025

PML reflection
(radiated fields)

— — 1.0 3 1025

Finite time step 21.7 3 1024 — —
Finite resolution in ẑ 6.9 3 1.024 — —
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Fig. 9. Transmission and reflection amplitude and phase of the Bragg resonator resulting from random phase shifts on A0 and A120 over
32 realizations. The thick gray curves are the mean and the thin black curves are deviation of the individual realizations from the
mean.
formulation and the error is nearly constant over the
waveguide discontinuity, the scattered fields will increase
linearly with the amount of error. To assess the impact
of this effect, we reduced the magnitude of the complex-
mode envelopes extracted from the FDTD simulations by
0.2% (as suggested in Table 4) and again plotted the re-
sponse. The magnitude of fractional change in the reflec-
tion and transmission response was less than 2% and 1%,
respectively.

2. Error Source: Increase in bz
The FD-mode solver estimates values for bz that are too
high (;0.07%). At the value of bz for l0 5 1550 nm, the
amount of phase error over the discontinuity length of
120 nm is 0.06°. The resulting error in the phase of A0
and A120 is uncertain owing to the multiple reflections in
the discontinuity. However, we may explore the effect of
phase error by assuming independent distributions on the
phase error for A0 and A120 and produce a number of
Monte Carlo realizations. Plotting the response for sev-
eral random values will provide an indication of the dis-
tribution of the error.

For simplicity we assume the phase shift for A0 and
A120 to be uniform on [0°, 20.06°]. Figure 9 plots the
mean value of transmission and phase of the Bragg reso-
nator along with the response for each of 32 Monte Carlo
realizations. The plots show that the most sensitive
quantity is the phase of the reflection coefficient near
resonances, where reflection is nearly zero. This is rea-
sonable, since we expect numerical difficulty in the com-
puting phase for a small value.
5. CONCLUSION
In this paper we have outlined a method for simulating
complex optical devices by applying three basic modeling
tools: (1) a 2D FD mode solution technique for finding
modes in arbitrary guiding structures, (2) 3D full-wave
FDTD analysis of waveguide discontinuities, and (3) net-
work analysis employing a 1D transmission line model.
By using the method, we simulated a large (104 sections)
Bragg resonator. Detailed error analysis indicated that
very low error can be obtained for such a problem using
this simulation approach. Natural extensions include
the simulation of distributed feedback lasers by incorpo-
rating gain into the 3D full-wave FDTD simulator.

The authors may be reached at the address on the title
page or by e-mail, jensen@ee.byu.edu, and wallacej
@ee.byu.edu.
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