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I. Introduction 
As the complexity of optical devices increases, the need for accurate characterization of mode prop- 
agation in these structures is of paramount importance. Complete characterization of electromag- 
netic wave propagation in arbitrary optical guiding structures generally requires two simulation 
components: 1 )  a cross-sectional solver capable of generating modal propagation constants and 
field profiles for arbitrarily shaped feeding waveguides, and 2) a 3D electromagnetic solver which 
uses these modes as excitation and simulates the field propagation through the optical device. Prior 
work has focused on two-dimensional planar waveguide approximations [ I ] ,  [2] which are inade- 
quate for many geometries or higher-order modes. While the beam propagation method (BPM) [3], 
[4] has been successfully used for many structures, it is an approximate technique and difficult to 
implement. Other studies have produced simpler finite-difference (FD) methods for obtaining mode 
profiles and propagation constants only [5], [6]. In this work, we propose a simple FD method in 
which Maxwell's time-hannonic equations are discretized directly on a standard Finite-Difference 
Time-Domain (FDTD) grid to obtain an eigenvalue equation. Direct or iterative solutions can then 
be used to obtain the modal characteristics. The resulting modal field distributions are subsequently 
incorporated into FDTD simulations [7], [SI to allow evaluation of reflection and transmission char- 
acteristics for arbitrary optical structures. 

11. FD Method 
Modal propagation constants and field distributions for a longitudinally homogeneous (in z)  dielec- 
tric waveguide are determined from time-harmonic (eJwt temporal variation) forms of Maxwell's 
equations with eJoz2 longitudinal variation, where pz represents the modal propagation constant. 
For a non-magnetic medium with relative permittivity e,, two-dimensional Yee [7] discretization of 
these equations in the xy plane leads to the forms 

where k, is the free space propagation constant and xf3 = E t,,3 . . k  :, with the superscript denoting that 
the value of the permittivity is evaluated at the location of the /-polarized electric field component. 
Additionally, the magnetic field components in Eq. (1) have been normalized by the the free space 
intrinsic impedance for convenience. If pz is real, the system of equations can be manipulated using 
purely real arithmetic by making jE ,  and j H ,  unknowns rather than E, and H,. In the remainder 
of the discussion, the FD grid is spatially truncated by assuming the boundary fields decay as l/& 
a method which works well for lower order modes. 

1I.A Linear Equarion Method A simple strategy for finding modes results from writing (1) as a 
system of linear equations. Consider a guiding structure possessing a plane of symmetry. If we 
provide an initial guess for pz and fix one field component at a point in space, we can construct 
a non-homogeneous linear system of equations. Since the mode structure for this waveguide must 
possess even or odd symmetry, we can search for the exact mode by perturbing p, and iterating 
until the field solution from the linear system shows this symmetry. For successful implementation 
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of this method, the forced field component must be off-center so that symmetry is not artificially 
introduced, Also, if nearly degenerate modes exist, the forced field components must be chosen 
with care. 

This strategy is particularly well suited for cases where the simulation region contains a large num- 
ber of cells, since sparse linear equation solvers exist which remain stable for very large systems. In 
this paper, we used the SuperLU package, which can easily solve for systems of 100 x 100 cells on 
a PC. The main drawbacks of this method are the need for an optimization loop and a good initial 
guess for p,. The next section explains an eigenvalue method which works for any structure, but is 
less numerically stable. 

II.B Eigenvalue Equation Method A more direct strategy for finding the modes results from rear- 
ranging ( 1 )  into an eigenvalue equation. This is accomplished by substituting the equations for H, 
and Ez into the remaining 4 equations and subsequently solving for the terms containing pz. For 
example, the equation for Hy,ij becomes 

Deriving similar equations for the other 3 field components and combining the unknowns Ez, Ey, 
Hx,  and Hy into the vector w results in a standard eigenvalue equation (AV = pzv) that can be 
solved by a sparse eigenvalue/eigenvector algorithm. Note, however, that for a large number of 
unknowns this solution may have difficulty converging to the value of p,. A good compromise is 
to use a coarse grid with relatively few unknowns and solve the eigenvalue equation to obtain pz. 
This solution can then be refined using the iterative procedure outlined in Section 1I.A with a more 
detailed grid. 

II.C Mode Solution Validation The validity of this method was assessed by analyzing the lowest 
order mode in a cylindrical dielectric waveguide with core diameter d = 5.0A0 (A, is the free space 
wavelength), core index 121 = 1.45, and cladding index 9x2 = 1.449. First, the eigenvalue formula- 
tion was solved on a 60 x 60 cell grid with dimensions 30A, x 30X,, yielding p, = 9.104498/A0 
as compared to the exact value of pz = 9.104405/A0. The absolute error for the field distribution 
(I-component) was small in and near the core (1%) but became large near the domain edges (20%). 
This solution was refined using iteration with the linear solver on a more detailed grid (120 x 120 
cells) having the same dimensions, resulting in flz = 9.104400/A0. Error in the electric field de- 
creased by an order of magnitude (about 2% at the domain edge). 

I1.D Mode Solution Example The proposed solution technique was applied to a rectangular dielectric 
waveguide with x and y dimensions of 2a = l A ,  and 2b = O.2A0 respectively. The refractive index 
of the core was 9x1 = 3.3, while that of the cladding was 122 = 3.1. A 40 x 40 cell grid was 
used for the square simulation region (4A, on a side) in conjunction with the eigenmode solution 
procedure of Section 1I.B. The resulting value of pz was then used as a starting point for the method 
of Section 1I.A for a grid size of 120 x 120 cells. Figure 1 shows the modal field profile for the 
lowest order mode for this waveguide. 

111. FDTD Simulations 
One advantage of using Yee's discretization scheme for the FD solution is the natural compatibility 
with FDTD: the resulting modal field distributions can now be directly used to excite the proper 
mode in the FDTD simulation. In this work, a FDTD implementation in rectangular coordinates is 
used with a 10 cell perfectly matched layer [8] with quadratically increasing conductivity parame- 
ters. The mode is launched by defining a plane normal to the z axis at z = 0 which divides scattered 
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field (z  < 0) and total field (z  2 0) regions. The relationship between the two regions is given 
by the previously found mode solution. Accurate computation of pz is essential, since inaccuracies 
lead to noticeable distortion in the field profile that requires considerable propagation distance (and 
computation time) to correct. Additionally, this distortion leads to poor characterization of the input 
field strength which impacts the accuracy of the computed reflection and transmission coefficients. 
Following completion of the FDTD computation, the reflected and transmitted field profiles are in- 
tegrated against the eigenmode obtained for the input/output waveguides. Due to the orthonormality 
of modes, the result of this computation provides the field strengths used to construct the reflection 
and transmission coefficients. 

1II.A Slab Waveguide Misalignment As a first example of coupling the FD mode solution with the 
FDTD propagation computation, consider the case of two identical rectangular waveguides with the 
parameters of the waveguide in Figure 1. The waveguides are end-coupled with various degrees of 
core misalignment. In cases 1 through 3, the waveguides have a gap (filled with cladding material) 
between them, are offset in the 2 dimension, and are offset in they dimension respectively. Figure 2 
shows two-dimensional views of the magnitude of E, for each of these three computations at fixed 
values of misalignment. The effect of mode-mismatch and diffraction are evident in these figures. 
Figure 3 shows the magnitude of the field reflection and transmission coefficients plotted over a 
range of discontinuity values, where again the mode-mismatch effect is strongly apparent. 

II1.B DFB Section As il final example of the power of the coupled FDFDTD approach, consider 
determining the reflection/transmission behavior of a single period of a distributed feedback (DFB) 
laser cavity. The results of such an analysis could be used in conjunction with one-dimensional 
solvers to determine the lasing behavior of a very long DFB cavity. Figure 4 provides a side view of 
the DFB section used in this study, where it is seen that the DFB modulation is performed using a 
surface relief grating. Adjacent to this illustration is a plot of the E, field component at one instant 
of time as the mode propagates through the structure. The resulting reflection and transmission 
coefficients for the section were 0.0144L-84.6” and 0.984L 180°, respectively. 
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Figure 1: Lowest order E, mode (& = 19.749384/Xo) in a slab waveguide with width 213 = U,,, 
height 26 = 0.2X0, core index nl = 3.3, and cladding index n z  = 3.1. Components from left to 
right are E,, Ey. and Et. Dimensions are provided in free space wavelengths. 

Figure 2: Simulations of mode propagation in the presence of a waveguide discontinuity. Left: Side 
view of E, with a gap of 0.6X0. Middle: Top view of E, with an z offset of 0.2X0. Right: Side 
view of E, with a y  offset of 0.16X0. 

Gap x offset 

. . - .~~ i 

002 0.06 0 1 0.14 0.18 
Y onset 

Figure 3: Magnitude of field reflection (R) and transmission (T) coefficients for a range of gap, 2 
offset, and y offset values 
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Figure 4: Simulation of a simple DFB grating. The plot on right shows the E, component. 
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