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INTRODUCTION 

Trends in large snow and ice masses on the earth are an in- 
dicator of global environmental change. Thus, characterization 
of emission and scatter behavior of snow and ice continues to 
be an area of active research for the remote sensing community. 
Snow and ice tend to be complex media which are difficult to 
model analytically. Also, purely numerical techniques quickly 
exhaust available computational resources. We propose a hy- 
brid FDTDhadiative transfer technique to overcome the limita- 
tions of purely numerical or analytical techniques. 

FDTDMDIATIVE TRANSFER METHOD 

One efficient solution for obtaining scattering and emission 
behavior from large geophysical objects comes from radiative 
transfer theory [l], [2], [3]. Recent work [4] has employed ad- 
vanced electromagnetic modeling with the Monte Carlo tech- 
nique to obtain radiative transfer quantities (phase matrices and 
extinction coefficients) for densely packed spheres. This work 
has used T-matrix methods, which are difficult to apply to gen- 
eral media (non-spherical particles, for example). Our approach 
is to use FDTD [ 5 ] ,  [6] to obtain the radiative transfer quanti- 
ties, allowing characterization of arbitrary media. 

In radiative transfer, phase matrices and extinction coeffi- 
cients characterize scattering behavior of a random medium and 
are ensemble averages. The phase matrix is given by 

1 
P =  lim -E [z(AV)] 
- - 

A V + m  AV 
- 

where AV is the test volume size, E is the Stokes matrix for 
a given volume size, and E [.] represents an expectation. The 
scattering and absorption coefficients are given by 

(3) 

where P, is total power scattered, Pa is total power absorbed, 
and Si is incident power density. 

In the Monte Carlo technique, these ensemble averages are 
approximated by averaging over many random realizations gen- 
erated according to the proper statistiical distribution. To calcu- 
late these quantities numerically, a finite test volume (AV) is 
required which exhibits two characteristics not present in the in- 
finite volume. First, surface scattering results as waves cross the 
domain boundary. This effect can be removed by decomposing 
scattered fields into a coherent part i(due to artificial boundary 
scattering) and an incoherent part (due to the random volume). 
This decomposition is given by 

where E, is scattered electric field. Thus, when approximat- 
ing (1)-(3), incoherent fields (E , )  are used instead of total scat- 
tered fields. Second, a finite domain will introduce artificial 
correlation of scatterers at the domain boundary. This effect is 
removed by making the test volume llarge. 

Our work suggests the use of a simple convergence study as a 
method for determining the test volume size and the number of 
random realizations required to mitigate finite volume effects. 

CONVERGENCE: STUDY 

In order to apply the FDTDhadiative transfer method, a 
knowledge of the minimum test volume size and random re- 
alizations is required. Otherwise, simulation results will be dif- 
ficult to interpret and apply. We cornpared the phase matrices 
for Mie spheres for (1) the exact analytical solution for an infi- 
nite volume of independently scattering spheres, and (2) the ap- 
proximate Monte Carlo solution for :a finite volume of spheres. 
Figs. 1 and 2 show average fractional error and average absolute 
fractional error between the two cases as a function of volume 
size and number of random realizations. These two metrics are 
given by 
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where Pn,th is the exact theoretical phase matrix quantity and 
P, is the simulated quantity at angle number n. 

A cubical test volume size of 5X per side with 32 realizations 
was deemed a good tradeoff between simulation accuracy and 
required computational time. 

FDTD PHASE MATRICES 

Fig. 3 shows the cubical test volume used in the FDTD simu- 
lations. First, to test validity of the method, a sparse distribution 
of particles (2% fractional volume) was modeled and compared 
to the analytical solution for independent Mie scattering. The 
phase matrix quantities Pll and P22 are plotted in Fig. 4. 

The Monte Carlo solution applied in the convergence study 
for 256 realizations is very close to the analytical solution. The 
FDTD solution for 32 realizations oscillates about the correct 
solution, which is consistent with our convergence study and 
shows the hybrid technique is valid. 

Next, we turn to a more dense medium (20% fractional vol- 
ume), which would be more representative of real snow in 
Fig. 5. In this case, we compare the results to QCA-CP [2], 
an accepted theory for densely packed spheres. As expected, 
the independent Mie solution predicts scatter which is too high. 
The Monte Carlo Mie solution assumes only single scattering of 
fields, and predicts scatter which is too low. The FDTD solution 
compares favorably with the QCA-CP scaled solution. How- 
ever, apparent in P22 is an upward trend in FDTD as opposed 
to a downward trend in the QCA-CP scaled solution. This re- 
sult suggests that the density of a medium affects not only the 
level of scattering, but also (to a lesser degree) the shape of the 
phase matrix curves. 

Finally, to show the power of FDTD for modeling arbitrary 
media, we applied the method to penetrating spheres. Spheres 
are placed according to a uniform distribution as before except 
that they are allowed to overlap. Enough cells are filled to meet 
the volume fill fraction requirement, with a given cell being 
counted only once even if it is contained in two or more spheres. 

Fig. 6 compares the plot of P11 resulting from this simulation 
with curves from all of the methods considered in this paper 
applied to non-penetrating spheres. These results indicate a 5 
fold increase in PI1 when a penetrating model is used, with the 
value for the penetrating particles being even larger than that 
from the independent scattering solution. Research in [4] has 
modeled similar dense media using “sticky particles,” which 
also exhibited a dramatic increase in scattering levels. 
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Figure 1 : Plot of average and absolute error for P11 and P22 as a 
function of the test volume cube length. Simulation parameters 
were scatterer radii a = O . l X ,  fractional volume f = lo%, 
realizations N = 256, and scatterer dielectric constant E ,  = 
3 . 2 ~ 0 .  
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Figure 2: Plot of average and absolute error for P11 and P 2 2  

as a function of the number of realizations ( N ) .  Simulation 
parameters were scatterer radii a = O . l X ,  fractional volume 
f = lo%, test volume cube length l X ,  and scatterer dielectric 
constant E ,  = 3.260. 
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Figure 3: Simulation test volume cube for FDTD simulations 
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Figure 5 :  Phase matrix components given by FDTD simula- 
tions for a dense distribution of non-penetrating spheres. Pa- 
rameters were a = O.O75X, cube length 5 X ,  N = 32, f = 20%, 
and€, = 3.260. 
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Figure 4: Phase matrix components given by FDTD simula- 
tions for a sparse distribution of non-penetrating spheres. Pa- 
rameters were a = O . l X ,  cube length 5 X ,  N = 32, f = 2%, 
and 6 ,  = 3.260. 
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Figure 6: Phase matrix component given by FDTD simulations 
for a dense distribution of penetrating spheres. Parameters were 
a = O.O75X, cube length 5 X ,  N = 32, f = 20%, and E ,  = 
3.260. 
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