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Abstract

If a picture is worth a thousand words, then surely clutters are
among the least intutively compelling objects studied in combina-
torics. What picture is conveyed by a family of subsets of a finite
set, none of which contains any other? A large Venn diagram per-
haps, in which certain unions of regions cannot be empty? In this
expository note we discuss a simple technique for visualizing arbi-
trary clutters using graphs.

1. The clutter of a K-terminal network

A K-terminal network is a graph G some of whose vertices have been desig-
nated as terminals; it is traditional to use K to denote the set of terminals.
We think of a K-terminal network as representing a real structure like a
telephone or computer network: the terminal vertices represent the people
who use the network, and the edges and non-terminal vertices represent the
internal structure (cables, switching locations, etc.) of the network. Be-
cause they are useful as models of such real-world structures, K-terminal
networks have been thoroughly studied, especially in connection with their
reliability; see [1] for a discussion.
With these thoughts in mind, if we are given a K-terminal network

(G,K) we define C(G,K) to be the collection of minimal sets of non-
terminal vertices which are sufficient (along with their incident edges) to
provide paths connecting all the terminal vertices. That is, an element of
C(G,K) is a minimal subsetW ⊆ V (G)−K such that the induced subgraph
of G with vertex-set K ∪W is connected. For instance, if (G,K) is any
of the K-terminals networks pictured in Figure 1 then C(G,K) = {{a, c},
{a, d}, {a, e}, {b}, {c, d}, {c, e}}. (In the figure terminals are represented
by large nodes and non-terminal vertices by small, lettered nodes.)
It is important to emphasize that C(G,K) is defined using sets of ver-

tices of G, not sets of edges. Using edges instead of vertices would result in a
strictly smaller class of structures, associated with matroids; see [3, 4, 7]. If



desired, an edge may be represented in C(G,K) by inserting a non-terminal
vertex of degree two.
In reliability theory the elements of C(G,K) are referred to as minimal

pathsets of the K-terminal connectedness problem on (G,K); we will call
them the minpaths of (G,K) for short. Otherwise we use standard graph-
theoretic terminology and notation; in particular we use N(v) to denote
the set of neighbors of a vertex v.
The fact that each element of C(G,K) is a minimal set of non-terminal

vertices sufficient to connect all the terminal vertices certainly guarantees
that C(G,K) must be a clutter. The purpose of this note is to discuss the
result of [8] that every clutter is C(G,K) for some K-terminal networks
(G,K). An important tool for proving this result, and possibly the most
important topic in the elementary theory of clutters, is the dual or blocker
C∗ of a clutter C: if ∅ 6= C 6= {∅} then C∗ is the collection of minimal
sets which intersect all the elements of C. The definition is completed by
defining ∅∗ = {∅} and {∅}∗ = ∅. If (G,K) is a K-terminal network then an
element of C(G,K)∗ is a minimal set of non-terminal vertices whose removal
(along with all incident edges) will leave a subgraph of G with terminals
in different connected components; that is, an element of C(G,K)∗ is a
minimal vertex cut of G which consists of non-terminal vertices and whose
removal will separate at least one pair of terminal vertices.

Theorem 1 [2]. If C is a clutter then C∗∗ = C.

Proof. C = ∅ and C = {∅} satisfy the proposition by definition.
Suppose C is a clutter of subsets of the finite set S and ∅ 6= C 6= {∅}.

The definition of C∗ implies that every element of C must intersect every
element of C∗, so every element of C must contain an element of C∗∗.
Conversely, if W ∈ C∗∗ then W intersects every B ∈ C∗ and hence

S −W does not contain any B ∈ C∗. By the definition of C∗, this implies
that there is at least one V ∈ C which does not intersect S −W . That is,
every element of C∗∗ contains an element of C.

Theorem 1 is the only result of the elementary theory of clutters that we
will need here; we refer the reader to [2, 5, 6] for more thorough discussions.

Theorem 2 [8]. If C is a clutter then there is a K-terminal network
(G,K) with C = C(G,K).

Proof. C = {∅} and C = ∅ correspond to edgeless networks with one
or two terminals.

2



Suppose |C∗| = 1 and ∅ /∈ C∗; then every W ∈ C has |W | = 1. If G
is a K-terminal network with |K| = 2 which has a non-terminal vertex for
each element of an element of C, such that every non-terminal vertex is
adjacent to all the other vertices of G and the two terminal vertices are not
adjacent, then C = C(G,K).
If C is a clutter on a set S and |C∗| ≥ 2 then we construct a K-terminal

network (G,K) with K = C∗ and V (G) − K = S as follows: all of the
non-terminal vertices of G are adjacent to each other, none of the terminal
vertices are adjacent to each other, and a terminal vertex B ∈ C∗ has
neighbor-set N(B) = B, i.e., the non-terminal vertices adjacent to B are
the elements of B.
The elements of C(G,K) are the minimal subsets T ⊆ S such that T∪K

induces a connected subgraph of G. Certainly such a T must include at
least one neighbor of each terminal vertex; by the definition of C(G,K),
this implies that T ∩B 6= ∅ for every B ∈ C∗. Conversely, if T ⊆ S has the
property that T ∩B 6= ∅ for every B ∈ C∗ then T ∪K induces a connected
subgraph of G, for the vertices in T are all adjacent to each other and each
terminal vertex is adjacent to at least one of them. It follows that C(G,K)
consists of the minimal subsets T ⊆ S such that T intersects every B ∈ C∗,
i.e., C(G,K) = C∗∗. By Theorem 1, this implies that C(G,K) = C.

The proof of Theorem 2 shows that every clutter C is C(G,K) for a
K-terminal network in which all non-terminal vertices are adjacent; we say
such a network has a non-terminal clique.

2. K-terminal networks with the same clutter

As indicated in Figure 1, it is not unusual for nonisomorphic K-terminal
networks to have the same associated clutter C(G,K). Here are four simple
ways to modify any K-terminal network without changing C(G,K).

(1) If G has two terminal vertices with precisely the same neighbors
then one of these terminals may be removed from the network without
affecting C(G,K); conversely a new terminal may be introduced with the
same neighbors as an existing terminal.

(2) If two terminal vertices in G are adjacent, the edge connecting them
may be contracted; that is, the two terminals may be combined into a single
terminal which is adjacent to all the other vertices adjacent to either of the
original two. Conversely, a terminal vertex may be split into two adjacent
terminal vertices whose other neighbors are precisely the neighbors of the
original terminal vertex.
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(3) If v and w are terminal vertices such that neither is adjacent to
any terminal, N(v) ⊆ N(w), and every neighbor of w not adjacent to v is
adjacent to every neighbor of v, then removing w from the network will not
affect C(G,K); conversely one may choose any terminal v not adjacent to
any other terminal and introduce such a w.

(4) If v is a non-terminal vertex which does not appear in any minpath
of (G,K) then any edge incident on v may be removed from G; conversely
an edge incident on v may be added, so long as it does not create a minpath
involving v.

The reader may inspect Figure 1 to see some instances of these mod-
ifications, and also to see that they are not sufficient to generate all the
different K-terminal networks with a given C(G,K).

Given a clutter C, it is natural to seek the simplest K-terminal net-
work with C = C(G,K). A reasonable definition of “simplest” involves
having the smallest possible number of terminal vertices. The proof of
Theorem 2 shows that if |C∗| ≥ 2 then C may be realized by a net-
work with |C∗| terminals, but it is often true that smaller networks will
suffice. For instance C = {{a, b, d}, {a, b, e, f}, {a, c, d}, {a, c, e, f}} has
C∗ = {{a}, {b, c}, {d, e}, {d, f}} but only two terminals are required in a
network realizing C. We leave it as an exercise for the reader to construct
such a network. (Hint: Start with two terminals separated by a cutpoint
a, and then separate one terminal from a with a vertex cut {b, c}; separate
a from the other terminal with a vertex cut {d, e}, and then find a place to
insert f so that {d, f} is also a vertex cut.)
Sometimes, though, |C∗| terminal vertices are required. For instance,

let S = {1, ..., n} and let C = C2,n contain all the 2-element subsets of S;
then C∗ = Cn−1,n consists of the (n − 1)-element subsets of S. We claim
that any K-terminal network G with C(G,K) = C has at least |C∗| = n
terminals. Suppose instead that such a G has fewer than n terminals;
using modification (2) above we may presume that no two terminals are
adjacent in G. There must be at least one element of C∗ which is not the
neighbor-set of a terminal; as mentioned above, this element of C∗ must be
a minimal vertex cut of G which separates at least two terminals. Suppose
{1, ..., n− 1} is such a vertex cut.
Consider the subgraph H of G obtained by removing the non-terminal

vertices 1, ..., n− 1 and all edges incident on them. The remaining vertices
include all the terminals of G and in addition the non-terminal vertex n. If
any of the terminal vertices is isolated in H then all the neighbors of that
terminal in G are included among 1, ..., n− 1. This is impossible, because
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{1, ..., n− 1} is not the neighbor-set of any terminal and if a proper subset
N ⊂ {1, ..., n−1} is the neighbor-set of a terminal then some subset of N is
a minimal vertex cut separating that terminal from another terminal; this
subset of N is then an element of C∗, contradicting the fact that all the
elements of C∗ have cardinality n−1. Hence none of the terminal vertices is
isolated in H, so all the terminal vertices are adjacent to the non-terminal
vertex n. It follows that H is connected, contradicting the assumption that
{1, ..., n− 1} is a vertex cut of G.

3. Structural features of clutters

A useful visualization technique should make it easy to see structural fea-
tures of the object being represented. It is a drawback of the technique
we are discussing that a single clutter may be represented by many non-
isomorphic K-terminal networks, because this guarantees that some of the
information conveyed by each of the networks is irrelevant and potentially
confusing. For example, in Figure 1 none of the edges between non-terminal
vertices is of any significance.
An important structural feature of some clutters is the presence of par-

allel elements: if C is a clutter on a set S then s, s0 ∈ S are parallel with
respect to C if every B ∈ C∗ which contains one of s, s0 also contains the
other. In an ordinary graph, parallel non-loop edges are not difficult to
recognize: they have the same end-vertices. However, parallel non-terminal
vertices in a K-terminal network may not be immediately noticeable. For
instance, it may not be evident in Figure 1 (iii) - (vi) that d and e are
parallel, though the similarity of their placement in Figure 1 (i) and (ii)
does catch the eye. On the other hand, parallels are readily identified in
networks of the type constructed in the proof of Theorem 2, for which
C(G,K)∗ is visible as the collection of neighbor-sets of terminal vertices.

Proposition 3.1. Suppose that a 1-1 correspondence between K and
C(G,K)∗ is defined by associating each k ∈ K with N(k). Then two non-
terminal vertices of (G,K) are parallel with respect to C(G,K) if and only
if they have precisely the same terminal neighbors.

Two elements s, s0 ∈ S are in series with respect to a clutter C if every
W ∈ C which contains one of them also contains the other. Equivalently,
every B ∈ C∗ with s ∈ B has (B−{s})∪{s0} ∈ C∗ and every B0 ∈ C∗ with
s0 ∈ B0 has (B0−{s0})∪{s} ∈ C∗. Once again, this condition is fairly easy
to recognize in K-terminal networks of the type constructed in the proof of
Theorem 2.
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Proposition 3.2. Suppose that a 1-1 correspondence between K and
C(G,K)∗ is defined by associating each k ∈ K with N(k). Then two non-
terminal vertices s and s0 of (G,K) are in series with respect to C(G,K)
if and only if whenever s (resp. s0) is adjacent to a terminal vertex k, there
is another terminal vertex k0 with neighbor-set N(k0) = (N(k)−{s})∪{s0}
(resp. N(k0) = (N(k)− {s0}) ∪ {s}).

Two operations that are important in network reliability [1] and in the
combinatorial theory of clutters [5, 6] are deletion and contraction. Both of
these operations are easily performed on K-terminal networks representing
a clutter C. Deleting a non-terminal vertex v is accomplished by removing
the vertex and all its incident edges, just as one would expect. To motivate
the contraction of a vertex, consider first what it means to contract an
edge in an ordinary graph: the edge’s function is to provide communication
between its end-vertices, and after it is contracted this communication is
guaranteed. In a K-terminal network the function of a non-terminal vertex
v is to provide communication among its neighbors; we contract v by remov-
ing v from the network and then guaranteeing communication among its
neighbors by inserting an edge connecting each pair of elements of N(v). If
v has a terminal neighbor then the effect is the same if we leave the network
unchanged except for declaring that v has become a terminal.

4. Generalizations

If the definition of C(G,K) is generalized to allow non-unique labeling of
the non-terminal vertices of G then any clutter C may be realized by a
2-terminal network. If C∗ = {B1, ..., Bn} we may construct such a network
from the disjoint union of n cliques, the ith of which has vertices labeled by
the elements of Bi, by making all the vertices in the ith clique adjacent to
all the vertices in the (i+1)st clique for each i < n, and also making all the
vertices in the first (resp. nth) clique adjacent to the first (resp. second)
terminal.
Two other generalizations which may be useful are: first, to allow

directed edges; and second, to consider, for j ∈ {1, ..., |K|}, the clutter
Cj(G,K) of minimal subsets W ⊆ V (G) −K such that the induced sub-
graph ofG with vertex-setK∪W has no more than j connected components
which intersect K.
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