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Abstract

A connected plane graph G with two distinguished vertices can
be reduced to a single edge between these two vertices using cer-
tain local transformations, including series/parallel reductions and
wye-delta and delta-wye transformations. Moreover a reduction con-
sisting of these transformations can be found algorithmically in poly-
nomial time. It follows that if an invariant of plane graphs is known
to be #P -hard to compute then the invariant must be fundamen-
tally incompatible with these local transformations in some way. We
discuss two examples: polynomial invariants of knots and links and
the reliability of plane networks.

1. Introduction

Let G be a connected plane graph with two distinguished vertices, the ter-
minals of G. Akers [1] and Lehman [13] conjectured that G may be reduced
to a single edge between its terminals by a finite sequence of local trans-
formations of the following six types: removal of loops and non-terminal
vertices of degree 1, series and parallel reductions, and wye-delta and delta-
wye transformations. (A wye-delta transformation replaces a non-terminal
vertex of degree 3 with a circuit involving the three neighbors, and a delta-
wye transformation is the inverse; see Figure 1.) Such a sequence of local
transformations is a delta-wye-delta reduction of G. This conjecture was
subsequently verified by Epifanov [5] and Grunbaum [9]. Since then Truem-
per [21] and Feo and Provan [6] have shown that a delta-wye-delta reduction

may be found algorithmically in time O(|V (G)|2).
Colbourn, Provan and Vertigan [4] discussed the use of delta-wye-delta

reductions to analyze enumeration problems on planar graphs which are
traditionally solved in polynomial time using determinants, e.g., counting
spanning trees. In contrast, a #P -hard computation cannot be performed



using delta-wye-delta reductions, which require only polynomial time; a
discussion of the failure of delta-wye-delta reductions to perform the com-
putation may lend some insight into its intractability. In this note we dis-
cuss two types of invariants of plane graphs whose computation is known
to be #P -hard, namely, polynomial invariants of knots and links [10] and
the reliability of plane networks [16, 17]. We refer the interested reader to
[3, 12, 22] for detailed introductions to these invariants.

2. Polynomial invariants of knots and links

A knot is a smooth, simple closed curve in 3-space, and a link is the union
of a finite number of pairwise disjoint knots. A knot or link may be placed
in standard position, so that projection on the plane yields only a finite
number of singularities, all of which are double points or crossings ; a pro-
jection is made into a diagram by indicating which of the two arcs incident
on each crossing is the overpassing arc. Goeritz [8, 18] associated a plane
graph G to a knot or link diagram by 2-coloring the diagram’s complemen-
tary regions: the unbounded region is colored light, and each other region is
colored light or dark in such a way that every arc of the diagram separates
differently-colored regions. G is to have a vertex inside each dark-colored
region and an edge for each crossing of the diagram, connecting the vertex
or vertices inside the dark-colored region(s) incident on that crossing. An
edge is assigned a weight +1 or −1 according to whether the overpassing
arc of the corresponding crossing is on the right or left side of the dark
region(s) incident on that crossing, as seen by a person standing on the
crossing. Some examples of link diagrams and their associated Goeritz
graphs are given in Figure 2.
Consider the knot-theoretic significance of a delta-wye-delta reduction

of the Goeritz graph G of a knot or link diagram. It may happen that a
local transformation of G corresponds to a trivial change in the diagram,
i.e., a change that does not affect the knot or link type represented. For
instance, removing the loop in Figure 2 (c) corresponds to the elimination
of an unnecessary crossing in a diagram of a Hopf link. However, it may
also happen that a local transformation is not trivial; for example, replacing
the two parallel edges of Figure 2 (b) by a single edge as in Figure 2 (a) has
the effect of changing a figure-eight knot to a trefoil knot. Such operations
are part of the calculus of polynomial invariants of knots and links. For
instance, the Kauffman polynomials [11] of the four links pictured in Figure
2 satisfy the equation L(b) = z · (L(a) + L(c))− L(d). As the knot pictured
in part (d) can easily be simplified (it is unknotted) and those in parts
(a) and (c) have only three crossings, this equation is part of the process
of calculating L(b) recursively, using the Kauffman polynomials of simpler
knots and links. On the other hand, the reduction of Figure 2 (b) to Figure
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2 (a) is incompatible with the homfly polynomial [7], as it is inconsistent
with the string orientations of the knots.
We see two reasons that knot-theoretic calculations are #P -hard. Some

knot-theoretic calculations are simply incompatible with some of the local
transformations that appear in delta-wye-delta reductions. Other knot-
theoretic calculations are compatible with all of the local transformations,
but require that certain local transformations be modified to produce sev-
eral terms rather than just one; the number of terms that ultimately result
is exponential in the number of these modified local transformations.

3. Network reliability

Suppose now that we attempt to use a delta-wye-delta reduction to calcu-
late the reliability of a two-terminal plane network G. We presume that
each edge e of G is given with a certain probability p(e) of successful opera-
tion and that the edges operate independently of each other; the reliability
Rel(G) is the probability of successful operation of at least one path con-
necting the two terminal vertices of G. It is a simple matter to verify that
the first four types of local transformations involved in delta-wye-delta re-
ductions (removal of loops, removal of non-terminal vertices of degree 1, and
series and parallel reductions) can all be accomplished so that the trans-
formed network has precisely the same reliability as the original one. For
instance, if parallel edges e1 and e2 are to be replaced with a single edge
e, then e should have the same probability of successful operation as the
event “e1 operates or e2 operates,” namely p(e1) + p(e2)− p(e1)p(e2).
However the delta-wye and wye-delta transformations are more com-

plicated. If the reliability of the entire network is to be unchanged by a
delta-wye or wye-delta transformation, the delta and wye should provide
the same probability that any two of v1, v2, v3 may communicate within
Figure 1, or that all three vertices may communicate. If we label the edges
of the delta e12, e13, e23 so that eij is incident on vi and vj , and we label
the edge of the wye incident on vi as e

∗
i , then we are led to the following

system of equations.

p(e12) + (1− p(e12))p(e13)p(e23) = p(e∗1)p(e∗2)
p(e13) + (1− p(e13))p(e12)p(e23) = p(e∗1)p(e∗3)
p(e23) + (1− p(e23))p(e12)p(e13) = p(e∗2)p(e∗3)

p(e12)p(e13) + p(e12)(1− p(e13))p(e23) + (1− p(e12))p(e13)p(e23)
= p(e∗1)p(e

∗
2)p(e

∗
3)

Note that given a delta or a wye, finding the edge-probabilities of an
equivalent wye or delta requires the solution of a system of four equations
in three unknowns; it will come as no surprise that this is impossible for
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almost all combinations of parameter values [13, 20]. (Solving some of the
equations can be useful in transforming a network containing a given wye
or delta into networks whose reliabilities bound that of the original network
[13]; in many examples these bounds result in very good approximations
[2].)
It has been suggested that the definition of plane network be modified

so that the vertices [19] and faces [20] of the network have probabilities
of successful operation, just as the edges do. (The failure of a vertex or
face makes the incident edges useless.) When considering a delta-wye or
wye-delta transformation of such a network it is important to realize that
the operational probabilities of vertices and faces that appear in both the
delta and the wye are not variables: they are given when a delta or wye
is specified, and must stay the same in an equivalent wye or delta. These
modified plane networks have one extra variable on each “side” of a delta-
wye or wye-delta transformation, corresponding to the extra vertex in the
wye and the extra face in the delta; these extra variables will generally allow
for the solution of the corresponding system of equations. As discussed in
[20], this new system of equations will have the following form.

p · (s12 + s3(1− s12)s13s23) = rs∗1s
∗
2 (3.1)

p · (s13 + s2(1− s13)s12s23) = rs∗1s
∗
3

p · (s23 + s1(1− s23)s12s13) = rs∗2s
∗
3

p · (s12s13 + s12(1− s13)s23 + (1− s12)s13s23) = rs∗1s
∗
2s
∗
3

If we label the faces of G incident on the wye as f12, f13, f23 in the obvious
way then the significance of the variables in (3.1) depends on whether or
not any of f12, f13, f23 happen to coincide. For instance, if f12 6= f13 6=
f23 6= f12 then r = p(v0)p(f12)p(f13)p(f23), p = p(f0) is the operational
probability of the central face f0 of the delta, each s

∗
i is p(e

∗
i ), each si is

p(vi), and each sij is p(eij)p(fij). On the other hand, if f12 = f13 = f23 then
r = p(v0) and each sij is p(eij). We refer to [20] for a detailed discussion.
Given a delta, it is not difficult to see how these equations may be

solved to give the probabilities of successful operation of the components
of an equivalent wye. To find s∗1, for instance, we divide the left-hand side
of the fourth equation of (3.1) by the left-hand side of the third. This will
often result in “probabilities” which are >1 or <0, but these can usually be
dealt with formally without difficulty. In some examples, though, the left-
hand side of one of the equations may be 0, and this may make it impossible
to solve (3.1).
If we are given a wye then the process of solving (3.1) to find an equiv-

alent delta is more complicated. Almost all combinations of parameter
values do not allow solutions with 1/s1 = s12 or 1/s2 = s12; for this rea-
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son we called such solutions sporadic in [20]. To find the solutions with
1/s1 6= s12 6= 1/s2 we multiply the last equation of (3.1) by −s2s3, the first
by s2, and the second by s3; adding these three yields the formula

s13 =
rs∗1(s2s∗2 + s3s∗3 − s2s∗2s3s∗3)− ps2s12

ps3(1− s2s12) .

A similar formula may be derived for s23, and using these formulas we re-
duce the four equations of (3.1) to two equations in the unknowns p and s12.
One of these two equations is quadratic in p. We may use the quadratic
formula to solve this one symbolically for p in terms of s12; the other equa-
tion then results in two equations in which s12 is the only unknown, and
solving either of these latter two equations gives a solution of (3.1). These
two resulting equations include the 6th power of s12 and the square root
of a degree-4 polynomial in s12. The square root may be removed by col-
lecting on one side of each equation those terms that involve the square
root, and then squaring. The result is a pair of degree-12 polynomial equa-
tions in s12, and these cannot be solved exactly in general, though accurate
approximate solutions may be found.
This solution process is discontinuous where a denominator of 0 appears

in the quadratic formula or in the formula for s13 or s23. For instance if we
consider a wye with s∗1 = .05, s∗2 = .04, s∗3 = .03, s1 = .03, s2 = .04, s3 =
.05 and r = .05 then according to Mathematica there are five equivalent
deltas: three occur when + is used in the quadratic formula (with s12
approximately 0.013, 2.020, and 32.454), and two occur when − is used in
the quadratic formula (with s12 approximately 0.517 and 25.614). If we
change the wye by changing s∗3 and s1 to −0.03 then there are again five
solutions, three occurring when + is used in the quadratic formula (with s12
approximately 0.033, -1.111, and 760) and two occurring when − is used in
the quadratic formula (with s12 approximately 0.493 and 990.585). Both of
the solutions with s12 ∼ 0 yield values for s13, s23 and p that are close to 0,
but none of the other solutions for one wye is close to any of the solutions
for the other. (The two solutions with s12 ∼ 0.5 yield s13-values close to
26 and 750, respectively.) There are similar examples for which none of
the original wye’s parameters are particularly close to 0, so this kind of
behavior is not limited to the immediate neighborhood of the origin.
In sum, we see two reasons for the intractability of calculating the reli-

ability of a plane network. One reason is that it will occasionally happen
that (3.1) is simply unsolvable, e.g., if one side of one of the equations is
0. The second reason is that solving (3.1) to find a delta equivalent to a
given wye is neither an exact nor a continuous function of the parameters
of the wye, and hence small errors introduced when approximate solutions
are used in one stage of a delta-wye-delta reduction may occasionally result
in large errors in later stages of the reduction, unless computationally ex-
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pensive techniques are used to bound such accumulation of errors. The fact
that the wye-delta transformation is particularly troublesome is also evi-
dent in results like those of [14, 15], in which a polynomial-time reliability
algorithm is given for networks which may be reduced using modified delta-
wye transformations and the simpler local transformations (loop removal,
series/parallel reduction, and removal of non-terminal vertices of degree 1).
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[13] A. B. Lehman, Wye-delta transformations in probabilistic networks, J.
SIAM 11 (1962), 773-805.

[14] G. T. Lingner, T. Politof and A. Satyanarayana, A forbidden minor
characterization and reliability of a class of partial 4-trees, Networks
25 (1995), 139-146.

[15] T. Politof, A. Satyanarayana and L. Tung, An O(n·log(n)) algorithm to
compute the all-terminal reliability of (K5,K2,2) free networks, IEEE
Trans. Rel. 41 (1992), 512-517.

[16] J. S. Provan, The complexity of reliability calculations in planar and
acyclic graphs, SIAM J. Comp. 15 (1986), 694-702.

[17] J. S. Provan and M. O. Ball, On the complexity of counting cuts and
of computing the probability that a graph is connected, SIAM J. Comp.
12 (1983), 777-788.

[18] K. Reidemeister, Knotentheorie, Springer-Verlag, Berlin, 1932.

[19] A. Rosenthal and D. Frisque, Transformations for simplifying network
reliability calculations, Networks 7 (1977), 97-111.

[20] L. Traldi, On the star-delta transformation in network reliability, Net-
works 23 (1993), 151-157.

[21] K. Truemper, On the delta-wye reduction for planar graphs, J. Graph
Theory 13 (1989), 141-148.

[22] D. J. A. Welsh, Complexity: Knots, Colourings and Counting, Cam-
bridge U. Press, Cambridge, 1993.

7




	anoteondeltawyedelta
	fig

