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Abstract 

An invariant of K-terminal networks that is analogous to Crapo's 
,a-invariant and the reliability domination of Satyanarayana et aI. is 
introduced. The extent to which it reflects the principal properties of 
these important, invariants is discussed. 

Introduction 

A K-terminal network is a (multi- )graph G given with a distinguished sub
set K of its vertex-set. Such networks are used to model various kinds of 
real-world networks (e.g., those involved in communications and power dis
tribution) in which the arrangements of internal connections are important 
only insofar as they do or do not tend to help provide effective service to the 
networks' customers. They are not often mentioned in introductory texts on 
graph theory such as [10] (whose basic terminology we follow here), but be
cause of their applicability K-terminal networks have a prominent place in 

" the literature of network reliability; see [2] for a general account. Interesting 
combinatorial issues are often raised when one tries to generalize familiar 
properties of ordinary graphs (regarded as l( -terminal networks in which all 
the vertices belong to K) to arbitrary K-terminal networks. 

In this paper we discuss generalizing the ,B-invariant introduced by H. 
H. Crapo [3] to K-terminal networks. This integer invariant was originally 
defined for matroids: 

,B(M) = (_1y(E). L(-1)IS lr (S), 
Sr;E 
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where r is the rank function of a matroid M on a set E. Among the impor
tant properties of the ;:3-invariant are the following, all but the last of which 
are due to Crapo [3]. (Also see [9] for information on matroids in general 
and the ;:3-invariant in particular.) 

(;:3(1) : ;:3(M) satisfies the deletion/contraction formula ;:3(M) ;:3(M 
e) + ;:3(M / e) whenever e is not an isthmus or a loop 

(;:3{2) : ;:3(M) is unchanged if M is altered by a series or parallel extension 
(;:3(3) : ;:3(M) ~ 0 for every matroid M 
(;:3(4) : if ;:3(M) 1 and lEI ~ 2 then for every e E E, either ;:3(M -e) = 0 

or ;:3(M/e) = 0 
(;:3(5) :;:3(M) 0 iff either M is disconnected (in the matroid sense) or 

some element of M is a loop 
(;:3(6) : if lEI ~ 2 then ;:3(M) = 1 iff M is the circuit matroid of a 

series-parallel network [1] 

The property (;:3(6) has been extended by Oxley [6], who characterized 
the matroids with ;:3 :::; 4. 

A close relative of Crapo's ;:3-invariant is the reliability domination dK(G) 
of a /(-terminal network; it was introduced by Satyanarayana and Prabhakar 
[8] for directed /(-terminal networks, and extended to undirected ones by 
Satyanarayana and Chang [7]. The undirected invariant satisfies the follow
ing properties [7]. 

(d~) : dK(G) satisfies the deletion/contraction formuladK(G) = dK/e(G/t:)
dJ«G - e) for any edge e 

(d~) : dJ« G) is unchanged if G is simplified by any parallel reduction, 
or by a series reduction with respect to /( 

(d~~): (-l)IV(G)I-i+IE(G)I+l.dK(G) ~ 0 ifG has i isolated vertices ~/( 
(d~) : if dK(G) = ±1 and IE(G)I ~ 2 then for every e E E(G), either 

dK/e(G/e) = 0 or dK(G - e) 0 

(d~) : dK (G) = 0 iff G has more than one connected component meet
ing /(, or more than one connected component with at least one edge, or at 
least one edge that appears in no simple path between elements of /( 

(d~) : dK(G) = ±1 iff G can be reduced to a /(-tree by parallel reduc
tions and series reductions with respect to /( 
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Here K / e contains all the elements of K not incident on e, and also 
contains the vertex arising from the end-vertices of e if either of them is in 
K. Also, a series reduction with respect to K is one in which a vertex v ¢ K 
of degree 2 is removed. 

The resemblance between these properties of dK and the aforementioned 
properties of Crapo's ,8-invariant has been explained and strengthened by 
A. B. Huseby [4, 5], who proved that dK is given by a formula reminiscent 
of the definition of ,8: 

the sum indexed by the collection of subsets S ~ E(G) which suffice to 
connect the elements of K. More importantly, Huseby showed that there is 
a way of associating a matroid M to a K-terminal network so that ,8(M) 
is the same as dK(G), up to sign. Huseby's description of the situation is 
rather general and less explicit than it might be. In fact, such an M is easy 
to describe explicitly; M is the matroid on E = E(G) U {K} whose rank 
function is the following: if S ~ E( G) then r(S) is the same as the rank of 
S in the circuit matroid of G, reS U {K}) = reS) if c(G : S, K) = 1, and 
reS U {K}) = reS) + 1 if c(G : S, K) > 1. (Here for S ~ E(G), G : S is 
the graph with V(G : S) V(G) and E(G : S) = S, and c(G : S, K) is 
the number of connected components of G : Sthat meet K; in particular, 
if K = V(G) then c(G : S, K) is simply the total number of connected 
components of G : S.) Equivalently, the circuits of M are the usual circuits 
of G together with the sets E(T)U{K} obtained by adjoining K to the edge

_ sets of K -trees of G. This construction clarifies the relationship between 
,8(M) and dK(G) by facilitating the translation between properties (,8(i» 

and (d~). For instance, in comparing (,8(5) and (d~» it is useful to observe 
that if G has more than one connected component meeting K then K is an 
isthmus of M, and if G has a connected component which has at least one 
edge and does not meet K then the edge-set of this connected component 
constitutes a component (in the matroid sense) of M; in either case M is a 
disconnected matroid. 
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A ,B-invariant for K-terminal networks 

We consider the generalization of Crapo's ,8-invariant to K-terminal net
works given by the formula 

/J(G,K) = L:: (_1)18 1. (IKI- c(G: S,K)). 
8~E(G) 

Note that if K = V(G) then /J(G, K) differs from the ,8-invariant of the 
polygon matroid of G only by sign. Also, observe that /J(G, K) is unchanged 
by the insertion or removal of isolated vertices, whether or not they lie in 
1(, Finally, note that when E(G):f 0 

/J(G, K) = L:: (_1),81+1. c(G : S, K), 
8~E(G) 

because the appearances of ( 1)181. IKI in the original definition of /J add 
up to O. We will refer to this equation as the second definition of /J. 

In the balance of the paper we discuss the extent to which the /J-invariant 
satisfies properties (/J(i») similar to (,B(i») and (d}2). 

Theorem 1. Let G be a K-terminal network with more than one edge, 
and let e be an edge of G. Then /J(G,K)=/J(G-e,K)-/J(G/e,K/e). 

Proof. Partition the sum of the second definition of /J(G, K) into two 
sums, one consisting of the summands corresponding to sets S with e E S,. 
and the other consisting of the summands corresponding to sets S with e ¢ 
S. The first sum equals -/J(Gje,Kje), and the second equals /J(G - e,K). 
Q. E. D. 

Observe that unlike (,8(1»), (/J(I») is true for all edges, including loops and 
isthmuses. (Even the restriction that e not be the only edge of G could be 
done away with, if one were willing to use the second definition to define /J for 
edgeless graphs.) This is not a very surprising observation, though, because 
the original,8 -invariant satisfies the equation ,8(M) = ,8(M - e) - ,8(Mje) 
when e is a loop or isthmus and lEI> 1, for a trivial reason: ,8(M) = 0 and 
M - e ~ Mje. 
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The following lemma will come in handy in discussing U3(2»). 

Lemma 1. If G has a K-loop, i.e., an edge which appears in no simple 
path between elements of K, then ~(G, K) = O. If G has a K-isthmus, i.e., 
an isthmus whose end-vertices both lie in K, then ~(G, K) = 0 unless this 
K-isthmus is the only edge of G, in which case ~(G, K) = -1. 

Proof. If e appears in no simple path between elements of K then clearly 
c(G : S, K) is never affected if e is adjoined to, or removed from, S. Either 
definition of ~ makes it clear that this implies that ~(G, K) = O. 

If e is a K-isthmus then whenever e ¢ S ~ E(G), c(G: S,K) = c(G: 
(SU {e}),K)+ 1; the second definition of ~ implies that consequently 

~(G,K) :L: (-1 )18 1+1. 
e¢S~E(G) 

If e isn't the only edge of G then this sum is 0; if e is the only edge of G 
then this sum is -1. Q. E. D. 

Theorem 2. (a) If G has a family of parallel edges, and G' is obtained 
from G by replacing this family with a single edge, then ~(G, K) = ~(G', K). 

(b) If G has a vertex v ¢ ~K of degree 2, and e is either edge incident on 
v, then ~(G, K) = -~(G/e, K). 

(c) Suppose G has a vertex v E K of degree 2, and one of the vertices 
adjacent to v is w E K. Let e be the other edge incident on v. Then 
~(G,K) = -~(G/e,K/e) unless IE(G)I = 2, in which case ~(G,K) is 
-1-~(G/e,K/e). 

Proof. In each case one of G/e, G - e has a K-Ioop or a K-isthmus, 
and the assertion follows from Theorem 1 and Lemma 1. Q. E. D. 

It does not seem that ~ satisfies any property (p(3») or (~(4»). This 
observation is justified by considering the first K -terminal network G drawn 
in Figure 1, which has P(G,K) = -1, ~(G - e,K) = 2, and ~(G/e,K/e) = 
3. The second network drawn in Figure 1 provides an example in which 
~(G,K) = -1, P(G - e,K) = -2, ~(G/e,K/e) = -1, and G cannot be 
subjected to any of the series or parallel reductions of Theorem 2. (In the 
figures we follow the convention that elements of K are represented by filled
in circles, while other vertices are represented by open circles.) 



1174 L. TRALDI 

By the way, we know of no example that shows that ~ does not satisfy 
the weaker property: if ~(G, K) = ±1 and IE(G)I ~ 2 then there is at least 
one edge e with ~(GIe, K Ie) = 0 or ~(G - e, K) = O. 

It seems that ~ satisfies only the following rather weak property (~(5)). 

Theorem 3. If G has a K-loop, i.e., an edge contained in no simple path 
between elements of K, then ~(G, K) = O. If G has more than one connected 
component with at least one edge then ~(G, K) = O. Also, if there is a v E K 
such that G-v has more connected components than G then ~(G, K) = O. 

Proof. The first assertion appeared in Lemma 1. 
Suppose G has more than one connected component that isn't edgeless, 

and let C be any such component. If C has only one edge, e, then either 
this edge is a K -loop or else it is a K -isthmus. Since e isn't the only 
edge of G (for G has at least one other connected component that isn't 
edgeless) Lemma 1 guarantees that ~(G, K) = O. If C has more than one 
edge, pick anyone edge e of C, and observe that induction implies that 
~(Gle,Kle) = 0 = ~(G - e,K). 

Suppose now that v E K and G - v has more connected components 
than G; note that necessarily the degree of v is greater than 1. If one of 
the "new" connected components contains no element of K, then an edge 
between this component and v cannot appear in any simple path between 
elements of K; consequently ~(G, K) = 0 by Lemma 1. 

Suppose now that every "new" component contains at least one vertex 
from K. Consider such a component, C. If C consists entirely of a single 
vertex from K, then either there is a single edge connecting v to this single 
vertex or else there is a family of parallel edges; by Theorem 2 we might as 
well assume that there is only a single edge. This edge is a K-isthmus, so 
Lemma 1 implies that ~(G, K) = O. If C consists of more than merely a sin
gle vertex, consider the process of calculating ~(G, K) by applying Theorem 
1 to the internal edges of C. If Theorem 1 is used to eliminate all of these 
edges, then ~(G, K) will be expressed as a sum of ~-invariants of graphs 
each of which has some vertex which is adjacent only to v. Consequently, 
~(G, K) will be expressed as a sum of terms each of which is O. Q. E. D. 

l 
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Corollary 1. If G is a tree then P(G, K) = 0 unless K is precisely the 
set of vertices of degree 1 in G, in which case P(G, K) is (_l)IKI+IE(GH. 

Proof. If any vertex of degree 1 is not in K, then the edge incident on 
that vertex is a K·loop. If any vertex v E K is of degree> 1, then G v 
has more connected components than G does. In either case P(G, K) = 0 
by Theorem 2. 

Suppose now that K is precisely the set of vertices of degree 1 in G, 
and consider any v E K; let e {v, w} be the one edge of G incident on 
v. If e is the only edge of G then P(G, K) = -1 = (_1)2+1. If w is of 
degree 2, then G - e has a vertex of degree 1 not in K, so P(G - e, K) O. 
By induction, then, P(G,K) = -p(Gje, Kje) = _(_l)IK/el+IE(G)I-l; since 
IKjel = IKI, this agrees with the statement. If w is of degree> 2, then 
Gje has a vertex of degree> 1 that's in K, so p(Gje,Kje) 0; hence 
P(G,K) = P(G - e,K). In this situation G - e is not itself a tree, but 
consists of a tree together with an isolated vertex from K; by induction, 
then, P(G - e,K) = l)IKI-l+IE(G)I-l, as required. Q. E. D. 

There are many connected K -terminal networks with P(G, K) 0 that 
have no K-Ioops or cutpoints in K. For instance, suppose G has a cutpoint 
v >/. K, at least one connected component of G - v has internal edges, 
and all the vertices in that component that are adjacent to v lie in K. 
Then contracting any edge e connecting v to that component will produce 
a network with a cutpoint in Kje, so p(Gje, Kje) = 0 and P(G, K) = 
P(G - e, K). Doing this repeatedly will disconnect that component from 
G without changing P, but the Pof the resulting K-terminal network must 
be 0 because it will have at least two connected components with edges; 
consequently P(G,K) 0 too. (Note that by Corollary 1, not every K
terminal network with a cutpoint not in K has P(G, K) = 0.) 

We do not know whether or not there is any interesting characterization 
of the K-terminal networks with P(G,K) = O. In Figure 2 the reader will 
find all the connected K-terminal networks on six or fewer vertices that 
have no cutpoints at all, cannot be subjected to any of the series or parallel 
reductions of Theorem 2, and have P= o. 

It also seems difficult to characterize the K -terminal networks with P 
±l. The proofs of (,8(6») and (d~») use (,8(5») and (d~») together with (,8(4») 
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and (d~»), so such arguments are doubly doubtful in connection with p. In 
Figures 1 and 3 the reader will find four networks with P(G, K) = ±1. 

This work was supported by grant No. AFOSR-91-0274 of the United 
States Air Force Office of Scientific Research. 
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