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Abstract 

We observe that several properties of reliability domination can 
be deduced fTom elementary propertie. of expected values. 

Suppose E is a. finite set , provided with a fu nction v : 2£ -+ [0,00). We 
think of the elements of E as being independently subject to failure, with 
e E E having probability of suc.cessfu\ operation p( e), and for S ~ E we 
think of v(S ) as t.he value of t he successful operation of the elements of S 
(and the failure of t he elements of E - S ). The expected value of such a 
value system is given by t he following formula. 

We presume that t he value systems we deal with have the following 
property: if S S;; E and el E E t hen eit.her v( S U {ed) = v(S) or v(S U 
{ed) = v(S) +v({ed ); note that if v(E) =F v(0) then v(0) must be O. U 
v(S U {ed ) = v(S) we say e l is redundant with respect to Sj we denote 
by Red(E,ed t.he family of subsets of E - {ed with respect to which el is 
redundant. We denote by red(E, el) the probability that el is redundant 
with respect to a randomly chosen subset of E - {ed , i.e., 

red(E, el ) = L: (II p(e)) ( II (1 - p(e))) . 
S ERcd( E,c ,) eE S eEE- {e t}-S 

Observation 1. If el E E tl~en the expected increase in 1)alue due to 
the presence of el in E is 
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Proof. Clearly Ev(E) - Ev(E - { I} ) is the product. of t hree factors: the 
probability that e1 is operational, the probability that eJ is not redundant 
with respect to a randomly chosen ubset of E - {ell, and the increase in 
value eJ creates when it is not redundant. 0 

Observation 1 implies that the expected value of E is intimately tied 
t o the redundancy probabilities of he elements of E . ot only can we 
determine red(E,e1) if we know Ev(E ) and Ev(E - {ed), but conversely 
Ev(E) is determined by redundancy probabilities: if E = {e}, ... , em} then 

m 

Ev(E) = I: p(ej )v( {ej} )( l - red(E - {e l , ... , e, - l }, ej ). 
j=l 

Suppose the element.·;; of E all have the same probabili ty p = pee) of 
successful operation, and we regard p as an indeterminate. Then Ev(E') is 
a polynomial in p of degree at most lEI, and red(E, eJ) is a olynomial in 
p of degree at most lEI - 1; we denote the coefficient of plEI in Ev(E) by 
b(E, v). 

Observation 2. 
EV(E) = I: b(S, v)plsi 

SC; E 

Proof. If 8 C;;; E then 

b(S,v) = I: (- l) IS-Tlv (T), 
T~S 

so 

I: b(8,v)pISI = I: pITlv(T ) (I: (_p) IS- TI) . 
S~E T~E S2T 

The binomial theorem then implies I;he asserted equality. 0 

Some interesting results of reliability theory can be deduced fTom these 
two observations. To discuss these results we need to introduce some ter­
minology. 

A coherent family of subsets of a set X is a family R C;;; zX such that 
whenever S1 E Rand 8 1 C;;; 8 2 C;;; X , 8 2 E R too; coherent families oc­
cur naturally as the families of operational states of many different kinds 
of reliability problems. If Red(E,el ) is a coherent family of subsets of 
E - {et} then red(E, e1) is the reliability polynomial of Red(E,eJ), and 
the coefficient of plEI- l in red(E,e l ) is the (signed) reliability domination 
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d(Red(E,e d). Domination was introduced into network reliability theory 
by SaLyanarayana and his coauthors 16, 7, 81, and has since been generali7.ed 
to arbitrary coherent reliability problems by Huseby [3 4J and Barlow and 
lyer [11­

Observation 1 and 2 directly imply the following. 

Corollary 1. If v ({ed) =I- 0 and Red(E, e] ) is coherent lhen 

red(E,e l ) = L d(Red(S,el ))p ISI- l. 

ctES~E 

Proof. If e1 E S <; E and lSI ~ 2 then Observation I , applied to the 
value system (S,v), implies that. b(S,v) = - v ({ed )d(Red(S,el ))' On the 
oLher hand, b( {el }, v) = v( {e]}) and d(Red( {e] } el )) = O. Consequently 

l- red(.tJ,el) - (pv ( {e l })) - l (Ev(E) -Ev(E - {e]})) 

(pv({ed ))-l L b(S,v)plsl 

1 - L d(Red(S, e1 »pISI-l. 0 
ej ES5:E 

A matroid M on E can be determined by assigning to each subset S <; E 
a rank reS). A general introduct ion \'0 the theory of matroids may be found 
in [91or [10, 11J. A matroid rank function is a value func ion such that for 
every e] E E, r ( {e1}) E {O, I} and Red(E, €l ) is coherent. If r is a matroid 
rank function then the Crapo ,B-invariant of M [2J is 

,B (M ) - ( - lr(E) L (_ 1)ls lr (S)j 
S<;;'E 

clearly (-1) EI- r(E ,B(M) = b(E,r ). Also for el E E the minimal elements 
of Red(E, el ) constitute an important aspect of the matroid's structure, 
the port of M with respect t.o el . 

Focusing our attention on lerms of highest pos..,ible degree, and taking 
into account the fact that a matroid M with any element el such that 
r({el }) = °will have ,B(M) = 0, Observation 1 has these immediate con­
sequences. 

Corollary 2. If M is a matroid on E and el E E then ,B(M) 
(- I ) l +IEI- r (E)d(Red(E, el))' 
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C orollary 3. If M is a matroid on E then d(Red(E, el)) is the same 
for all el E E . 

Corollary 2 is Theorem 5.5 of [4J. Also, Corollary 3 is a weak version 
of Theorem 6.3 of [4], which is essentially the theorem that for every e] E 
E, Id(Red(E,€l) )1 is the minimum of the .a-invariants of the one-element 
extensions of /vI; it is a wea version because the word "minimum" is absent. 
(Huseby 's theorem in turn is a generalization of Johnson 's theorem l<] that 
Lhe minimum domination of a graph G is Id( Red( E el )) I for every edge eJ of 
G.) This weak version ar ises in OUT context because a one-element extension 
of a general value system may give rise to smaller values of Id(Red(E,e l))1 
than the original system; it is easy to show that his cannot occur for 
matroidal value . ystems, however. 

If G is a graph then its polygon matroid M (G) is a matroid on E ( G ) 
whose rank function is given by r (S ) = W(G )I - w(G : S) for S ~ £ (G); 
here e ; S is the subgraph of e wit.h E(G : S) = Sand V (G : S) = V (G) , 
and w(G : S) is the number of connected components of this subgraph . 
Huseby [3, 4] has hown that if K is a set of two or more vertices of a single 
component of G then Lhere is a matroid M e,K) on E(G,K) = E(G) U 
{eJ} , where el is an "artificial" element that is not an edge of G, such that 
M (G,K) extends M(G) and Red(E(G, K ) , eJ ) consists of t hose subsets 
S ~ E ( G) such that K lies in a single component of G : S. Consequently, 
red(E ( G, K) ,e1) is the K -terminal reliability polynomial -rel ( G, K ) and 
d(Red(E(G, K ) el )) is th K -terminal domination dK (G). Specializing 
Corollary 1 to this iLuation, we deduce t he result of Satyanarayana and 
Khalil l7J that 

rel(G, K ) = L dK (G: S)pI SI . 
S~E(G) 
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