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Abstract

We observe that several properties of reliability domination can
be deduced from elementary properties of expected values.

Suppose FE is a finite set, provided with a function v : 2% — [0, 00). We
think of the elements of E as being independently subject to failure, with
e € I having probability of successful operation p(e), and for § C E we
think of v(S) as the value of the successful operation of the elements of §
(and the failure of the elements of Il — S). The ezpected value of such a
value system is given by the following formula.

Eo(E) =" (H p(e)) ( 11 (l—p(e))) v(S)

SCE \eeS ec E—8

We presume that the value systems we deal with have the following
property: if S C E and e; € E then either v(SU {e;}) = v(S5) or v(S U
{e1}) = v(S) +v({e1}); note that if v(E) # v(@) then v(@) must be 0. If
v(S U {e1}) = v(S) we say e; is redundant with respect to S; we denote
by Red(FE,e;) the family of subsets of Ef — {e; } with respect to which e is
redundant. We denote by red(F,e;) the probability that e; is redundant
with respect to a randomly chosen subset of £ — {e;}, i.e.,

red(E,e;) = Z (H P(G)) H (1 —p(e))

S€Red(E,e;) \ecS ecE—{e1}—8

Observation 1. If e; € F then the expected increase in value due to
the presence of ey in E is

Ev(E) — Ev(E — {e1}) = pler)v({es (1 — red(E, e1)).
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Proof. Clearly Ev(E)—Ev(E—{e;}) is the product of three factors: the
probability that e; is operational, the probability that e; is not redundant
with respect to a randomly chosen subset of £ — {e;}, and the increase in
value e; creates when it is not redundant. O

Observation 1 implies that the expected value of £ is intimately tied
to the redundancy probabilities of the elements of E. Not only can we
determine red(E,e;) if we know Ev(E) and Ev(E — {e;}), but conversely
Ev(E) is determined by redundancy probabilities: if E = {ej,...,em } then

Ev(E) =) plej)o({e;H(1 — red(E — {e1, ., e5-1},€5)).
=1

Suppose the elements of I all have the same probability p = p(e) of
successful operation, and we regard p as an indeterminate. Then Ev(E) is
a polynomial in p of degree at most |E|, and red(F,e;) is a polynomial in
p of degree at most |E| — 1; we denote the coefficient of p/®! in Ev(E) by
b(E,v).

Observation 2.

Ev(E) =Y b(S,v)p'"
SCE

Proof. If S C F then

b($,v) = Y (—~1)1FTlu(T),

TCS

Z b(S,v)p'"! = Z P Tly(T) Z(_p)w-'r]

SCE TCE SoT

The binomial theorem then implies the asserted equality. O

Some interesting results of reliability theory can be deduced from these
two observations. To discuss these results we need to introduce some ter-
minology.

A coherent family of subsets of a set X is a family R C 2% such that
whenever S; € R and S; C S; € X, S; € R too; coherent families oc-
cur naturally as the families of operational states of many different kinds
of reliability problems. If Red(FE, e;) is a coherent family of subsets of
E — {e;} then red(E,e;) is the reliability polynomial of Red(E,e;), and
the coefficient of p/®!~1 in red(E,e,) is the (signed) reliability domination
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d(Red(E,e;)). Domination was introduced into network reliability theory
by Satyanarayana and his coauthors [6, 7, 8], and has since been generalized
to arbitrary coherent reliability problems by Huseby [3, 4] and Barlow and
Iyer [1].

Observations 1 and 2 directly imply the following.

Corollary 1. If v({e1}) # 0 and Red(E,e,) is coherent then

red(E,e;) = Y d(Red(S,e1))p* .
e1€SCE

Proof. Ife; € S C E and |S| 2 2 then Observation 1, applied to the
value system (5,v), implies that b(S,v) = —v({e; })d(Red(S,e;)). On the
other hand, b({e1},v) = v({e1}) and d(Red({e1},€1)) = 0. Consequently

L—red(E,e) = (po({er}))” (Bo(E) — Bo(E — {e1})
e Y b8,

e €SCE

= 1- Y d(Red(S,e))p'*"". O
e eSCE

A matroid M on E can be determined by assigning to each subset S C E
a rank r(S). A general introduction to the theory of matroids may be found
in [9] or [10, 11]. A matroid rank function is a value function such that for
every e; € E, r({e1}) € {0,1} and Red(FE, ¢1) is coherent. If r is a matroid
rank function then the Crapo S-invariant of M [2] is

BM) = (-1 3" (D) r(8);

SCE

clearly (—1)/ZI=m(E)8(M) = b(E,r). Also, for e; € E the minimal elements
of Red(F,e;) constitute an important aspect of the matroid’s structure,
the port of M with respect to e;.

Focusing our attention on terms of highest possible degree, and taking
into account the fact that a matroid M with any element e; such that
r({e1}) = 0 will have (M) = 0, Observation 1 has these immediate con-
sequences.

Corollary 2. If M is a matroid on E and e; € E then 3(M) =
(=)HEI-r(E)d(Red(E, €;)).
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Corollary 3. If M is a matroid on E then d(Red(E,e;)) is the same
forall e; € E.

Corollary 2 is Theorem 5.5 of [4]. Also, Corollary 3 is a weak version
of Theorem 6.3 of [4], which is essentially the theorem that for every e; €
E, |d(Red(F,e;))| is the minimum of the S-invariants of the one-element
extensions of M; it is a weak version because the word “minimum” is absent.
(Huseby’s theorem in turn is a generalization of Johnson’s theorem (5] that
the minimum domination of a graph G is |d(Red(E, e1))| for every edge e; of -
G.) This weak version arises in our context because a one-element extension
of a general value system may give rise to smaller values of |d(Red(E,e1))]|
than the original system; it is easy to show that this cannot occur for
matroidal value systems, however.

If G is a graph then its polygon matroid M(G) is a matroid on E(G)
whose rank function is given by r(5) = |V(G)| — w(G : §) for S C E(G);
here G : S is the subgraph of G with E(G : S) = S and V(G : S) = V(Q),
and w(G : S) is the number of connected components of this subgraph.
Huseby [3, 4] has shown that if K is a set, of two or more vertices of a single
component of G then there is a matroid M(G, K) on E(G,K) = E(G)U
{e1}, where e; is an “artificial” element that is not an edge of G, such that
M(G,K) extends M(G) and Red(E(G,K),e;) consists of those subsets
S C E(G) such that K lies in a single component of GG : §. Consequently,
red(E(G,K),e;) is the K-terminal reliability polynomial rel(G, K) and
d(Red(E(G,K),e;1)) is the K-terminal domination dg(G). Specializing
Corollary 1 to this situation, we deduce the result of Satyanarayana and
Khalil [7] that

rel(G,K) = Y dg(G:8)pl.

SCE(G)
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