A NOTE ON A THEOREM OF WU

Lorenzo Traldi

(Received August 7,1999)

Abstract

Wu proved that the Arf invariant of a proper link L is determined by the reduced potential function $D_L(z)$ and the Arf invariants of certain sublinks of L. We observe that $D_L(z)$ detects the existence of such sublinks.

The Arf invariant of a tame link $L=K_1\cup\cdots\cup K_\mu$ in the three-sphere was introduced by Robertello [7]. It is a mod 2 integer which is defined only if L is proper, i.e., either $\mu=1$ or else $\mu\geq 2$ and for every $i\in\{1,\ldots,\mu\}$ the linking number $\ell(K_i,L-K_i)$ is even. In the years since the Arf invariant was introduced, it has been shown that it can be defined recursively using the reduced potential function of L, $D_L(z)=z^{\mu-1}\cdot(a_0(L)+a_2(L)z^2+a_4(L)z^4+\cdots)$. If $\mu=1$ then $Arf(L)\equiv a_2(L)\pmod 2$ [3, 4, 5], and if $\mu>1$ then

$$Arf(L) \equiv a_2(L) + \sum Arf(L') \pmod{2},$$

with a summand for each doubly proper sublink L' of L [8]. (A sublink $L' \subset L$ is doubly proper if both L' and L - L' are nonempty proper links.)

In this note we observe that $a_0(L)$ detects the existence of doubly proper sublinks.

Theorem. A proper link L has doubly proper sublinks if and only if $a_0(L)$ is even.

PROOF. If $\mu = 1$ then $a_0(L) = 1$ and L has no doubly proper sublinks.

If $\mu = 2$ then $a_0(L) = \ell(K_1, K_2)$ is even and L has two doubly proper sublinks, its components.

If $\mu > 2$ and $\lambda(L)$ is the $(\mu - 1) \times (\mu - 1)$ matrix with $\lambda(L)_{ij} = -\ell(K_i, K_j)$ for $i \neq j$ and $\lambda(L)_{ii} = \ell(K_i, L - K_i)$ then $a_0(L) = \det \lambda(L)$ [1, 2], and consequently the mod-2 reduction $\lambda_2(L)$ of $\lambda(L)$ has $a_0(L) \equiv \det \lambda_2(L)$ (mod 2). Note that the diagonal entries of $\lambda_2(L)$ are all 0.

If $a_0(L)$ is even then $\lambda_2(L)$ is singular, so there must be $1 \le i_1 < \cdots < i_{\nu} \le \mu-1$ such that the sum of the $i_1^{th}, \ldots, i_{\nu}^{th}$ columns of $\lambda_2(L)$ is 0. It follows immediately

ately that if $L' = K_{i_1} \cup \cdots \cup K_{i_{\nu}}$ then $\ell(K_{i_j}, L' - K_{i_j})$ is even for $1 \leq j \leq \nu$ (i.e., L' is a proper link) and also that $\ell(K_i, L')$ is even for $i \notin \{i_1, \ldots, i_{\nu}\}$; the latter implies that $\ell(K_i, L - L' - K_i) = \ell(K_i, L - K_i) - \ell(K_i, L')$ is even for $i \notin \{i_1, \ldots, i_{\nu}\}$ (i.e., L - L' is a proper link). Consequently L' is a doubly proper sublink of L.

Conversely, if L has a doubly proper sublink L' then by considering L-L' instead of L' if necessary, we may presume that $L'=K_{i_1}\cup\cdots\cup K_{i_{\nu}}$ with $i_{\nu}<\mu$. If we add up the $i_1^{th},\ldots,i_{\nu}^{th}$ columns of $\lambda(L)$ then each entry of the sum is even, because each entry is either $\ell(K_i,L'-K_i)$ or $\ell(K_i,L')=\ell(K_i,L-K_i)-\ell(K_i,L-L'-K_i)$, according to whether $K_i\subseteq L'$ or not. Consequently $\lambda_2(L)$ is singular, and $a_0(L)$ is even.

The following corollaries generalize some results of Murakami [6] and Wu [8].

COROLLARY 1. If L is a proper link and $a_0(L)$ is odd then $Arf(L) \equiv a_2(L)$ (mod 2).

COROLLARY 2. If L is a proper link and μ is even then L has doubly proper sublinks.

PROOF. The mod-2 reduction $\lambda_2(L)$ of $\lambda(L)$ has zeroes on its diagonal and is a (skew) symmetric matrix of odd size, so it must be singular.

References

- 1] R. Hartley: The Conway potential function for links, Comment. Math. Helv. **58** (1983), 365–378.
- [2] F. Hosokawa: On ∇-polynomials of links, Osaka Math. J. 10 (1958), 273–282.
- 3 L.H. Kauffman: The Conway polynomial, Topology 20 (1981), 101–108.
- [4] L.H. Kauffman: The Arf invariant of classical knots, in Combinatorial Methods in Topology and Algebraic Geometry, eds. J.R. Harper and R. Mandelbaum, Providence, Amer. Math. Soc., (1985), 101–116.
- [5] J.P. Levine: Polynomial invariants of knots of codimension two, Ann. of Math. (2) 84 (1966), 534-554.
- [6] H. Murakami: The Arf invariant and the Conway polynomial of a link, Math. Sem. Notes Kobe Univ. 11 (1983), 335–344.
- [7] R.A. Robertello: An invariant of knot cobordism, Comm. Pure Appl. Math. 18 (1965), 543-555.
- [8] Y. Wu: On the Arf invariant of links, Math. Proc. Cambridge Phil. Soc. 100 (1986), 355–359.

Department of Mathematics Lafayette College Easton, PA 18042 U.S.A.