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Abstract

A dice family D(n; a; b; s) includes all lists (x1; :::; xn) of integers
with n � 1, a � x1 � ::: � xn � b and

P
xi = s. Given two dice

X and Y we compare the number of pairs (i; j) with xi < yj to
the number of pairs (i; j) with xi > yj . If the second number is
larger then X is stronger than Y , and if the two numbers are equal
then X and Y are tied. In previous work it has been observed that
the density of ties in D(n; a; b; s) is generally lower than one might
expect. In this note we provide more information about this obser-
vation by calculating the asymptotic proportion of ties in certain
kinds of dice families. Many other properties of dice families remain
to be determined.

1. Introduction

The fact that nonstandard dice can yield nontransitive results was noted
by Efron, and popularized by Gardner [1]. In the decades since then,
nontransitivity and other surprising characteristics of nonstandard dice
have attracted a good deal of attention. Technical references are given at
the end of the paper; many less technical discussions may also be found
on the internet.

De�nition 1.1. A (generalized) die is a list X = (x1; :::; xn) of integers
such that x1 � x2 � ::: � xn.

De�nition 1.2. If X and Y are dice then X is stronger than Y , denoted
X > Y , if there are strictly more ordered pairs (xi; yj) with xi > yj than
with xi < yj . If X 6> Y and Y 6> X then X and Y are tied, denoted
X � Y .



De�nition 1.3. If a � b; n � 1 and s are integers then D(n; a; b; s) de-
notes the dice family consisting of all dice (x1; :::; xn) with

P
xi = s and

a � x1 � x2 � ::: � xn � b.

When n � 3 both stronger and tied are nontransitive in general. For
example,

(1; 1; 4; 5; 5; 5) > (3; 3; 3; 3; 3; 6) > (1; 1; 1; 6; 6; 6) > (1; 1; 4; 5; 5; 5):

In addition, all three of these dice tie the standard die, (1; 2; 3; 4; 5; 6);
indeed, (1; 2; 3; 4; 5; 6) is the unique element of D(6; 1; 6; 21) that ties all
dice in this family [6].

Dice families were introduced in [6], and studied further in [3, 7, 9].
The general theme of these papers is this: As all dice in D(n; a; b; s) have
the same mean label value, one might expect that most pairs of dice in
D(n; a; b; s) are tied. Instead, ties are relatively rare.

For instance, Table 1 indicates that the proportion of tied pairs varies
considerably among the dice families D(6; 1; 6; s) with more than one ele-
ment; but it is never as much as 30%.

s wins ties s wins ties s wins ties

8 1 0 9 3 0 10 9 1
11 20 1 12 33 12 13 62 4
14 103 17 15 148 23 16 216 37
17 266 34 18 289 117 19 369 66
20 396 100 21 371 125 22 396 100
23 369 66 24 289 117 25 266 34
26 216 37 27 148 23 28 103 17
29 62 4 30 33 12 31 20 1
32 9 1 33 3 0 34 1 0

Table 1: Wins and ties in D(6; 1; 6; s), 8 � s � 34:

Taken together, these dice families include 458 dice. A particularly
striking instance of the �ties are rare� theme is the fact that only three
of these 458 dice tie all the others in their families: (1; 1; 3; 3; 5; 5) ties
all the elements of D(6; 1; 6; 18), (1; 2; 3; 4; 5; 6) ties all the elements of
D(6; 1; 6; 21) and (2; 2; 4; 4; 6; 6) ties all the elements of D(6; 1; 6; 24). We
call such dice balanced ; a simple characterization is given in [6].
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Another instance of the �ties are rare�theme is the Tied Dice Theorem
of [3]. This theorem states that if G(n; a; b; s) is the simple graph with
V (G(n; a; b; s)) = D(n; a; b; s) and E(G(n; a; b; s)) = fXY j X > Y or
Y > Xg then aside from isolated vertices, G(n; a; b; s) is connected and
has diameter � 3. In fact, the diameter is � 2 unless n = 3, b = a+8 and
s = 3a + 12; even then G(n; a; b; s) has only one pair of vertices that do
not share a neighbor.

Many open questions about the dice families D(n; a; b; s) and the asso-
ciated graphs G(n; a; b; s) are mentioned in [7, 9]. Here are some of them:

� Is it possible to give simple characterizations of dice that are not
weaker than any other dice in the same family, or not stronger?

� What can one say about the structure of the directed graph obtained
from G(n; a; b; s) by using stronger to direct edges?

� The Tied Dice Theorem suggests that the graphs G(n; a; b; s) are
highly connected. Are there results that con�rm this suggestion?

� What can be said about asymptotic properties of D(n; a; b; s)?

The purpose of this note is to present some answers to the last question.
Examples indicate that in general, ties are most common in dice families
D(n; a; b; s) with s

n �
a+b
2 . (See Table 1, for instance.) Consequently it

is natural to begin studying the asymptotic behavior of the proportion of
ties with the dice families D(n; a; b; n2 (a + b)). Observe that the function
(x1; :::; xn) 7! (x1 � a + 1; :::; xn � a + 1) de�nes a stronger -preserving
bijection betweenD(n; a; b; n2 (a+b)) andD(n; 1; b�a+1;

n
2 (b�a+2)), so we

lose no generality by restricting attention to dice familiesD(n; 1; k; (k+1)n2 );
(k + 1)n must be even of course.

Theorem 1.4. For every �xed, odd integer n � 3 the proportion of ties
in D(n; 1; k; (k+1)n2 ) approaches 0 as k !1. (Note that k must be odd.)

Theorem 1.5. For every �xed, even integer n � 2 the proportion of ties
in D(n; 1; k; (k+1)n2 ) has a positive lower limit as k !1:

Theorem 1.6. For every �xed integer k � 4, the proportion of ties in
D(n; 1; k; (k+1)n2 ) approaches 0 as n ! 1. (Note that if k is even then n
must also be even.)

Theorems 1.4, 1.5 and 1.6 certainly do not provide a complete theory.
In particular, it would be interesting to evaluate the precise value of the
positive lower limit in Theorem 1.5; some empirical results are mentioned
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below. More generally, it would be good to precisely describe the observed
drop-o¤ in the proportion of ties when s

n is far from
a+b
2 .

Before proceeding to give details we would like to express our appre-
ciation to Lafayette College and the National Science Foundation (grant
DMS-055282) for their support of this work.

2. Theorems 1.4 and 1.5

Proof of Theorem 1.4: Suppose n � 3 is odd. Then n2 (the number of
rolls of two dice) is odd, so two dice that share no labels cannot tie. As k
grows, it becomes increasingly rare for two dice to share even one label, so
typical pairs of dice do not tie. �

Proof of Theorem 1.5: All dice in D(2; 1; k; k + 1) are tied, so when n = 2
the limit mentioned in the theorem is 1.

Suppose n � 4 is even. If k is large then a typical die in D(n; 1; k,
(k+1)n

2 ) has n distinct labels, fairly evenly spaced. On average, then,

roughly (1=(n + 1))n of the rest of the dice in D(n; 1; k; (k+1)n2 ) have all
their labels lying in the interval between the typical die�s two middle la-
bels. These other dice tie the typical one, so the proportion of ties is
% (1=(n+ 1))n. �

n
4 :37 :37 :35 :34 :36 :37 :38 :39 :41 :42 :44 :45
6 :20 :22 :18 :18 :18 :19 :20 :21
8 :13 :13 :12 :11 :12
10 :08 :08

8 9 10 20 30 40 50 60 80 100 200 300

k

Table 2: The proportion of ties among non-balanced dice in
D(n; 1; k; n2 (k + 1)).

We do not know how to �nd precise values for the lower limits of tying
proportions in Theorem 1.5. Computer results given in Table 2 indicate
that (1=(n + 1))n is an underestimate; (1=2)

n�2
2 seems closer. (To avoid

wasting run time, the programs that generated the data displayed in Table
2 excluded balanced dice from consideration. This exclusion has little
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e¤ect, as there are few balanced dice in D(n; 1; k; (k+1)n2 ) when k � 2n+1,
and none when k > 2n+ 1 [6].) Whatever the precise values may be, the
table certainly suggests that the asymptotic tying proportion decreases as
n increases. If true, this would explain why n = 4 is the most di¢ cult case
of the Tied Dice Theorem [3]: it is hard to �nd non-tied pairs when n = 4
because there are so few of them!

3. Theorem 1.6

It is a simple matter to explain why Theorem 1.6 requires k � 4: when
k � 3, the proportion of ties in D(n; 1; k; (k+1)n2 ) is 1. For k = 1 this is
obvious, as D(n; 1; 1; n) has only one element. Similarly, if n is even then
D(n; 1; 2; 3n2 ) has only one element.

When k = 3, D(n; 1; k; (k+1)n2 ) = D(n; 1; 3; 2n) has more than one
element; however the proportion of ties is still 1. Note that there is a bi-
jective correspondence between f0; :::;

�
n
2

�
g and D(n; 1; 3; 2n) under which

an integer x corresponds to the die

X = (1; :::; 1| {z }
x

; 2; :::; 2| {z }
n�2x

; 3; :::; 3| {z }
x

):

If
Y = (1; :::; 1| {z }

y

; 2; :::; 2| {z }
n�2y

; 3; :::; 3| {z }
y

)

is any other element of D(n; 1; 3; 2n) then the n2 rolls of X against Y
include x(n� y) wins for X when it rolls a 3, y(n� x) wins for Y when it
rolls a 3, (n� 2x)y wins for X when it rolls a 2 and (n� 2y)x wins for Y
when it rolls a 2. X and Y are tied because

x(n� y) + (n� 2x)y = y(n� x) + (n� 2y)x.

Two de�nitions will be useful in our proof of Theorem 1.6.

De�nition 3.1. The characteristic vector of a die X = (x1; :::; xn) 2
D(n; 1; k; (k+1)n2 ) is the vector vX = (vX1 ; :::; v

X
k ) with

vXi = jfj 2 f1; :::; ng j xj = igj:

Observe that the characteristic vectors of elements of D(n; 1; k; (k+1)n2 )
are the vectors (vX1 ; :::; v

X
k ) whose coordinates are non-negative integers

such that
kX
i=1

vXi = n and
kX
i=1

ivXi =
(k + 1)n

2
:
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De�nition 3.2. The normalized characteristic vector of X is wX = 1
nv

X :

To begin the proof of Theorem 1.6, consider a �xed die A 2 D(n; 1; k,
(k+1)n

2 ). The normalized characteristic vectors of elements of D(n; 1; k,
(k+1)n

2 ) are the vectors (wX1 ; :::; w
X
k ) whose coordinates are non-negative

rational numbers m
n such that

kX
i=1

wXi = 1 and
kX
i=1

iwXi =
k + 1

2
:

As A 2 D(n; 1; k; (k+1)n2 ), wA also satis�es these conditions. Consequently

the normalized characteristic vectors of elements of D(n; 1; k; (k+1)n2 ) are
the vectors w = (w1; :::; wk) whose coordinates are non-negative rational
numbers m

n such that w � (1; :::; 1) = wA � (1; :::; 1) and w � (1; 2; 3; :::; k) =
wA � (1; 2; 3; :::; k) :

Also, a die X 2 D(n; 1; k; (k+1)n2 ) ties A if and only if vA = (vA1 ; :::; v
A
k )

and vX = (vX1 ; :::; v
X
k ) satisfy the equality

k�1X
i=1

kX
j=i+1

vXi v
A
j =

kX
i=2

i�1X
j=1

vXi v
A
j :

(The formula expresses the fact that each of the two dice wins the same
number of rolls.) Dividing by n and collecting terms, this equality becomes

kX
i=1

0@ kX
j=i+1

vAj �
i�1X
j=1

vAj

1AwXi = 0:
Equivalently, if we let uA denote the vector0@ kX

j=2

vAj ;
kX
j=3

vAj �
1X
j=1

vAj ;
kX
j=4

vAj �
2X
j=1

vAj ; :::;
kX
j=k

vAj �
k�2X
j=1

vAj ;�
k�1X
j=1

vAj

1A
then X ties A if and only if wX � uA = 0. As A ties itself, wA � uA = 0;
hence X ties A if and only if wX � uA = wA � uA.

We see that the question �Among the dice in D(n; 1; k; (k+1)n2 ), what
proportion tie A?� is the same as the question �Among the points w =
(w1; :::; wk) 2 [0; 1]k whose coordinates are rational numbers m

n such that
w � (1; :::; 1) = wA � (1; :::; 1) and w � (1; 2; 3; :::; k) = wA � (1; 2; 3; :::; k), what
proportion also satisfy w � uA = wA � uA?�
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To answer this question, notice �rst that the set S of points w =
(w1; :::; wk) 2 [0; 1]k with w �(1; :::; 1) = wA �(1; :::; 1) and w �(1; 2; 3; :::; k) =
wA � (1; 2; 3; :::; k) is of dimension k � 2. The dimension of S cannot be
more than k � 2 because the equations w � (1; :::; 1) = wA � (1; :::; 1) and
w � (1; 2; 3; :::; k) = wA � (1; 2; 3; :::; k) are linearly independent; and the
dimension of S cannot be less than k � 2 because every (w1; :::; wk�2) 2
[0; 1k2 ]

k�2 extends to a point (w1; :::; wk) 2 S.

As n ! 1, the proportion of points w = (w1; :::; wk) 2 [0; 1]k with
coordinates of the form m

n that lie in S and satisfy w � uA = wA � uA
limits to the fraction of the (k � 2)-dimensional volume of S that lies in
the subset T of S de�ned by the equation w � uA = wA � uA. If uA is
not a linear combination of the vectors (1; :::; 1) and (1; 2; 3; :::; k), then
T is of dimension k � 3 and this fraction is 0. In order to complete the
proof of Theorem 1.6, then, it su¢ ces to explain why a typical die A 2
D(n; 1; k; (k+1)n2 ) has the property that uA is not a linear combination of
(1; :::; 1) and (1; 2; 3; :::; k).

Lemma 3.3. The subspace of Rk spanned by (1; :::; 1) and (1; 2; 3; :::; k)
consists of all vectors (u1; :::; uk) with the property that ui+1�ui does not
vary with i.

Proof. There are k � 2 independent equations

ui+1 � ui = uk � uk�1

with 1 � i � k � 2, and these equations are all satis�ed by (1; :::; 1) and
(1; 2; 3; :::; k). �

Note that if A 2 D(n; 1; k; (k+1)n2 ) and uA = (uA1 ; :::; u
A
k ) then

uAi+1 � uAi = �(vAi + vAi+1),

so Lemma 3.3 tells us that uA is a linear combination of the two vectors
(1; :::; 1) and (1; 2; 3; :::; k) if and only if the sums vAi + v

A
i+1 do not vary

with i. The de�ning equations of D(n; 1; k; (k+1)n2 ), namely

kX
i=1

vAi = n and
kX
i=1

ivAi =
(k + 1)n

2
,

are clearly independent of equations of the form

vAi + v
A
i+1 = v

A
j + v

A
j+1;
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where i 6= j. Consequently for a typical A 2 D(n; 1; k; (k+1)n2 ), uA is not
a linear combination of (1; :::; 1) and (1; 2; 3; :::; k).

This completes the proof of Theorem 1.6. �

By the way, one should not be surprised by the fact that if uA is a linear
combination of (1; :::; 1) and (1; 2; 3; :::; k), then A ties an unusually large
proportion of the elements of D(n; 1; k; (k+1)n2 ). Lemma 3.3 and Theorem
2 of [6] tell us that in fact such an A is balanced, i.e., it ties all the elements
of D(n; 1; k; (k+1)n2 ).
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