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Abstract

We observe that non-transitivity is not the most general way that
Arrow’s impossibility theorem is reflected in dice games.

Non-transitivity in dice games is a well-known phenomenon. It was
described in several Scientific American columns in the 1970s, beginning
with [3], and has since become a popular topic, discussed in articles like
[4, 5] and textbooks on elementary mathematics and probability. In many
discussions, non-transitivity of dice is mentioned in connection with voting
paradoxes like Arrow’s impossibility theorem [1], which states that transi-
tivity and several other seemingly natural conditions cannot all be satisfied
by any mechanism that might be used to determine the outcome of elections
involving three or more candidates. Our purpose here is to observe that
non-transitivity is not actually the most general way that dice games illus-
trate Arrow’s theorem: dice games connected with elections involving three
or more candidates (or more generally, dice games connected with elections
in which voters express three or more levels of preference) violate indepen-
dence of irrelevant alternatives (ITA), but only dice games connected with
elections involving four or more candidates can be non-transitive.

If m is a positive integer then an m-sided generalized die with integer
labels is simply a list X = (x1,...,2,,) of integers; for convenience’ sake
we presume that x; < x93 < ... < x,,. For integers a < b let D(a,b)
denote the collection of all such dice with ¢ < 1 < ... < z,, < b. If
X = (1'1, -'~amm)aY = (yb '~ayn) € D(a7b) then we call |{(Zﬂj)|xz > yj}| -
{(%,5)|zs < y;}| the win-loss difference of X against Y. X is stronger than
Y if this difference is positive, and Y is stronger if the difference is negative;
if the win-loss difference is 0 then X and Y are tied. This relation reflects the
natural game in which a “roll” consists of picking one of the z; at random
with probability 1/m, and picking one of the y; at random with probability
1/n; X wins that roll if z; > y;. Note that if b — a = d — ¢ then D(a,b) is
isomorphic to D(c, d) under the map (z1, ..., T, ) — (x1+c—a, ..., Tm+c—a).



Arrow’s theorem [1] applies to elections in which each voter expresses a
preference order of the candidates. A preference order is a reflexive, tran-
sitive relation which is complete (no two candidates are incomparable); a
voter may express identical levels of preference for some candidates. Ob-
serve that a preference order does not specify how strongly a voter prefers
one candidate over another; see [1, 2] for discussions of the difference be-
tween ordinal and cardinal measures of preference.

The preference order of an individual voter is equivalently expressed
by assigning each candidate the rating r = |{candidates whom that voter
does not strictly prefer to that candidate}|. The ratings assigned to a given
candidate by the various voters determine an element of D(1,c¢), where
¢ is the number of candidates. If we allow voters to decide to abstain
from assessing certain candidates, the dice may not all be the same size.
Although the stronger relation on D(1,c¢) is a natural way to judge a dice
game, it is rather unnatural as a vote-counting scheme: candidate X is
stronger than candidate Y if, when one among the m voters who assessed
X is chosen randomly with probability 1/m and one among the n voters
who assessed Y is chosen randomly with probability 1/n, it is more likely
than not that the first voter’s rating of candidate X is at least as large as
the second voter’s rating of candidate Y.

A crucial feature of the representation of elections with dice is commonly
neglected. When we restrict our attention to an election involving a subset
of the original set of candidates, the ballots pertinent to this “sub-election”
are obtained by restricting the voters’ preference orders to that subset; in
general, restricting the preference orders will change the dice associated
with the candidates.

Example 1. Consider the Condorcet triple.

voter 1 2 3

rating for candidate 1 3 1 2
rating for candidate 2
rating for candidate 3 1 2

w
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If we represent this election with dice then every candidate is repre-
sented by the same die (1,2, 3), so naturally no candidate is stronger than
any other. However, if we restrict our attention to the election involv-
ing only candidates 1 and 2 then candidate 1 wins because voters 1 and



3 both favor candidate 1 over candidate 2, so that in this election can-
didate 2 is represented by the die (1,1,2) and candidate 1 is represented
by the stronger die (1,2,2). Consequently, when applied to the Condorcet
triple the vote-counting scheme based on dice games violates IIA: removing
candidate 3 from consideration changes the assessment of whether or not
candidate 1 is stronger than candidate 2.

Example 2. Here is an example which appears in several places in [2].

voter 1 2 3 4 5
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rating for candidate 1
rating for candidate 2
rating for candidate 3

— o
—_

— o
O o
O o

If this election is represented as a dice game, then candidate 2 is rep-
resented by the strongest die, with candidate 1 next and candidate 3 last.
However ITA is violated because in the election involving only candidates
1 and 2, candidate 2 is represented by the die (1,1,1,2,2) and candidate 1
is represented by the stronger die (1,1,2,2,2).

In each of these examples the stronger relation is transitive — it is trivial
in the first example, and a strict linear order in the second. It turns out
that all dice games representing three-candidate elections are transitive.

Theorem. If a € Z then stronger is a transitive relation on D(a, a+2).

Proof. Suppose X = (z1,...,2m) € D(a,a+ 2) and let m,, my41 and
Mat2 denote (respectively) the numbers of labels z; which are equal to
a,a+ 1 and a + 2. Define the strength of X as follows.

Mag42 — Mg
Mg + 2TnaJrl + Ma42

IfX = (z1,.s2m),Y = (Y1, ..,Yn) € D(a,a + 2) then we claim that
X is stronger than Y if and only if str(X) > str(Y). To see why, observe
that if ng, neq1 and ngqo are (respectively) the numbers of labels y; which
equal a,a + 1 and a + 2 then

str(X) =

2- @@, )i > s} =2 [{(@ )@ <y}
= 2mg42 (na + na-i—l) + 2ma+1(na - na+2) —2my (na+1 + na+2)

= (Mg +2may1 + Mmag2)(Na + 2na11 + Nay2) (str(X) — str(Y)),



so str(X) — str(Y) and the win-loss difference of X against Y are both
positive, both negative or both zero.

The usual ordering of real numbers is transitive, so it follows that
stronger is a transitive relation on D(a,a + 2). Q. E. D.

Observe that the sum (or equivalently, the mean) of labels does not
determine stronger for elements of D(a,a + 2). For instance, suppose X is
a b0-sided die with 39 labels equal to 0 and 11 labels equal to 1 and Y is
a 50-sided die with 10 labels equal to -1, 20 labels equal to 0 and 20 labels
equal to 1. Then the labels of X have a greater sum than do those of Y,
but Y is a stronger die than X. We leave it to the reader interested in the
interrelationships among vote-counting schemes to verify that if the dice
X and Y reflect 50 voters’ ratings of two of the candidates in an election,
then either of these two candidates could be preferred over the other by a
plurality. Similarly, Example 2 above can be modified in such a way that
candidate 2 defeats candidate 1 by a plurality in their pairwise contest,
without changing the dice representing candidates 1 and 2 in the three-way
contest.

To summarize: if the voters in an election express three levels of pref-
erence, then the only way the dice games corresponding to this election
and its “sub-elections” can illustrate Arrow’s theorem is by violating ITA.
If there are more than three levels of preference, then there may be non-
transitivity too; for instance the dice (1,1,4,4), (1,3,3,3), and (2,2,2,4)
form a cycle in D(1,4).
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