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Abstract

We discuss two generalizations of the Rearrangement Lemma for
Shellings.
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1. Introduction

A complex ∆ on a finite set E is a family of subsets of E which contains
all singleton subsets and has the property that whenever S ∈ ∆ and T ⊆
S ⊆ E, T ∈ ∆ too. The elements of ∆ are faces, and the maximal elements
are facets. An ordering F1, ..., Ft of the facets of ∆ is a shelling if there
are subsets R(F1) ⊆ F1, ...,R(Ft) ⊆ Ft such that the Boolean intervals
[R(Fi), Fi] partition ∆ and R(Fi) * Fj for i > j; that is, every subset of
Fj appears in exactly one interval [R(Fi), Fi] with i ≤ j and in no interval
[R(Fi), Fi] with i > j. (Recall that a Boolean interval is [A,B] = {S |
A ⊆ S ⊆ B}.) The subsetsR(F1), ...,R(Ft) are the restrictions of F1, ..., Ft.
Observe that there is no freedom in choosing them: R(F1) must be ∅ and
for j > 1, R(Fj) must be the intersection of the subsets of Fj which are not
contained in any Fi with i < j. For F1, ..., Ft to be a shelling it must be
that for every j > 1, this intersection itself is not contained in any Fi with
i < j. Shellings of pure complexes (those whose facets are all of the same
cardinality) have been studied for several decades, resulting in a body of
theory that is both beautiful and useful; see [1, 2, 5, 7] for four different
discussions.
In their work introducing shellings of non-pure complexes [3], Björner

and Wachs proved the Rearrangement Lemma: a shelling F1, ..., Ft may be
rearranged as F 01, ..., F 0t so that |F 0a| ≥

¯̄
F 0a+1

¯̄
for each a, and moreover the

two shellings have the same restriction map R, i.e., R(Fi) = R(F
0
j) when

Fi = F 0j . In the present note we discuss versions of the Rearrangement
Lemma for two types of generalized shellings.



The first type of generalized shelling we consider is an S-partition [4].
This is a list F1, ..., Ft which satisfies all the requirements for a shelling
except that not all the Fi are required to be facets. Observe that every
complex ∆ admits S-partitions; for instance any list F1, ..., Ft of all the
faces of∆, listed in any order of nondecreasing cardinality, is an S-partition.
The existence of these trivial examples may give the impression that S-
partitions are so ubiquitous as to be uninteresting, but it turns out that
every S-partition of a complex∆ gives rise to a shelling of a related complex
∆0 through the following simple construction. Given a list F1, ..., Ft of
subsets of E such that Fi * Fj for i > j, let e01, ..., e

0
t−1 6∈ E, and let

F 01 = F1 ∪ {e01, ..., e0t−1}, F 02 = F2 ∪ {e02, ..., e0t−1}, ..., F 0t−1 = Ft−1 ∪ {e0t−1},
F 0t = Ft. Let ∆ be the complex of subsets of E which are contained in
some Fi, and let ∆

0 be the complex of subsets of E0 = E ∪ {e01, ..., e0t−1}
which are contained in some F 0i . Then it is easily seen that F1, ..., Ft is an
S-partition of ∆ if and only if F 01, ..., F 0t is a shelling of ∆0. (The elements
e01, ..., e0t−1 are adjoined to E to guarantee that no F 0j contains another, so
there is a more economical version of the construction which introduces a
new element e0j only if there is an i > j with Fj ⊆ Fi.)
The Rearrangement Lemma for Shellings generalizes to the following.

The Rearrangement Lemma for S-Partitions. An S-partition
F1, ..., Ft may be rearranged as an S-partition F 01, ..., F

0
t with the same

restriction function, such that for each a either |F 0a| ≥
¯̄
F 0a+1

¯̄
or F 0a =

F 0a+1 − {x} for some x ∈ F 0a+1.

Shellings and S-partitions have several useful applications in network re-
liability. One application involves algorithms that produce sums of disjoint
products (or SDP); see [6] for an exposition. Classical SDP algorithms pro-
duce lists of disjoint products which define S-partitions when the products
are suitably interpreted as Boolean intervals. A generalization of classical
disjoint product algorithms involves multiple-variable inversion (MVI ). We
call our second type of generalized shelling anMVI S-partition because the
lists of disjoint products produced by MVI-SDP algorithms satisfy the defi-
nition, when the products are suitably interpreted as collections of sets. We
hope that a structural theory of S-partitions and MVI S-partitions may be
useful in analyzing the performance of the two types of SDP algorithms.
An MVI interval of sets is determined by a set F and a family R of

pairwise disjoint subsets of F ; the interval is [R;F ] = { subsets of F which
intersect every element of R }. MVI intervals generalize Boolean intervals:
[∅;F ] = [∅, F ] and if the elements of R are all singletons then [R;F ] =
[{r | {r} ∈ R}, F ]. An MVI S-partition of a complex ∆ is a list F1, ..., Ft
of faces of ∆ together with a restriction function R such that for each i
[R(Fi);Fi] is an MVI interval, these MVI intervals partition ∆, and for
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each j every subset of Fj appears in an MVI interval [R(Fi);Fi] with i ≤
j. As with ordinary S-partitions, there is no freedom in choosing R(Fj):
R(F1) must be ∅ and for j > 1, R(Fj) must be { minimal elements of
{Fj − F1, ..., Fj − Fj−1}}; in order for R(Fj) to be an MVI interval these
minimal relative complements must be nonempty and pairwise disjoint.
(N.b. Requiring the distinct minimal elements of {Fj − F1, ..., Fj − Fj−1}
to be pairwise disjoint does not forbid a minimal relative complement from
occurring more than once among Fj − F1, ..., Fj − Fj−1.)

The Rearrangement Lemma for MVI S-Partitions. An MVI S-
partition F1, ..., Ft may be rearranged as an MVI S-partition F 01, ..., F 0t with
the same restriction function, such that for each a either |F 0a| ≥

¯̄
F 0a+1

¯̄
or

F 0a ∩ F 0a+1 ∈ [R(F 0a);F 0a].

AnMVI shelling of a complex is an MVI S-partition which involves only
facets. Considering the Rearrangement Lemma for Shellings, one might
conjecture that MVI shellings can always be rearranged to be nonincreasing
with respect to cardinality. This turns out not to be the case. For instance,
the complex with facets {c, d, f, g, i}, {a, b, e, h, i}, and {b, d, e, f, g, h} is
MVI shelled by the given order but is not MVI shelled by any order begin-
ning with {b, d, e, f, g, h}; whichever of {c, d, f, g, i}, {a, b, e, h, i} appears
second in such an order will have non-disjoint minimal relative comple-
ments. (The smaller facets {g, h, i}, {e, f, i} and {a, c} may be included to
produce an example that is not subject to series or parallel reductions.)

2. Proofs

We begin with useful alternative definitions of the two types of S-partitions,
generalizing a standard alternative definition of shellings.

Proposition 2.1. A list F1, ..., Ft is an MVI S-partition if and only if
for every j > 1, the distinct minimal elements of {Fj − F1, ..., Fj − Fj−1}
are nonempty and pairwise disjoint. Moreover, if j > 1 then R(Fj) is
precisely the collection of these distinct minimal relative complements.

Proof. Let F1, ..., Ft be an MVI S-partition with restrictions R(Fj).
We claim that if i < j then Fj −Fi contains an element of R(Fj). Suppose
not; then Fj − (Fj − Fi) = Fi ∩ Fj intersects every element of R(Fj), so
Fi ∩ Fj ∈ [R(Fj);Fj ]. This is impossible, though, for Fi ∩ Fj is a subset of
Fi and hence must appear in some [R(Fk);Fk] with k ≤ i. If R ∈ R(Fj)
then Fj − R 6∈ [R(Fj);Fj ], so there is an i < j with Fj − R ∈ [R(Fi);Fi];
then Fj − R ⊆ Fi and hence Fj − Fi ⊆ R. As was just observed, Fj − Fi
must contain an element of R(Fj); this element must be R itself, for the
elements of R(Fj) are pairwise disjoint. Hence Fj − Fi = R.
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This shows that R(Fj) is the set of inclusion-minimal elements of {Fj−
F1, ..., Fj−Fj−1}; the elements ofR(Fj) are nonempty and pairwise disjoint
by definition.
Conversely, suppose that for every j > 1 the inclusion-minimal ele-

ments of {Fj − F1, ..., Fj − Fj−1} are nonempty and pairwise disjoint. Let
R(F1) = ∅ and for j > 1 let R(Fj) be the set of inclusion-minimal relative
complements Fj − Fi with i < j. If S is a subset of Fj which is not an
element of [R(Fj);Fj ] then S must be disjoint from Fj −Fi for some i < j,
and hence S ⊆ Fi. If S is not an element of [R(Fi);Fi] then the same
argument shows that S must be a subset of an Fh with h < i; continuing
in this vein we must ultimately find a g < j with S ∈ [R(Fg);Fg]. Also,
if i < j then there is an R ∈ R(Fj) with R ⊆ Fj − Fi, so no subset of
Fi intersects R and consequently [R(Fi);Fi] and [R(Fj);Fj ] are disjoint.
Thus the MVI intervals [R(Fj);Fj ] partition F.

Corollary 2.2. A list F1, ..., Ft is an S-partition if and only if for
every j > 1, the inclusion-minimal elements of {Fj − F1, ..., Fj − Fj−1}
are all singletons. Moreover, if j > 1 then R(Fj) is precisely the union of
these singletons.

Proof. As noted in the introduction, a Boolean interval is a special
type of MVI interval. It follows that an S-partition is a special type of
MVI S-partition, one in which every R(Fj) with j > 1 consists solely of
singletons.

The Rearrangement Lemma for MVI S-partitions is proven in two stages.

The Transposition Lemma for MVI S-Partitions. Suppose
F1, ..., Ft is an MVI S-partition and a < t. Then F1, ..., Fa−1, Fa+1, Fa,
Fa+2, ..., Ft is not an MVI S-partition with the same restriction function
R if and only if Fa+1 ∩Fa ∈ [R(Fa);Fa]. Moreover, if this is the case then
Fa+1 − Fa ∈ R(Fa+1).

Proof. If F1, ..., Fa−1, Fa+1, Fa, Fa+2, ..., Ft is not an MVI S-partition
with the same restrictions as F1, ..., Ft, there must be an S ⊆ Fa+1 which
appears in [R(Fa);Fa]. S cannot also appear in [R(Fa+1);Fa+1], for the
intervals are disjoint; hence there must be an R ∈ R(Fa+1) such that
R ∩ S = ∅.
Consider Fa+1 − R. It is contained in Fa+1 and does not appear in

[R(Fa+1);Fa+1], so Fa+1 − R ∈ [R(Fi);Fi] for some i ≤ a. If i < a then
S ⊆ Fa+1 − R ⊆ Fi and hence S appears in [R(Fj);Fj ] for some j ≤ i,
violating the disjointness of [R(Fj);Fj ] and [R(Fa);Fa]. It follows that
i = a, and hence that Fa+1 − R ⊆ Fa; equivalently, Fa+1 − Fa ⊆ R. By
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Proposition 2.1 this implies that Fa+1 − Fa = R and consequently that
Fa+1 ∩ Fa = Fa+1 −R ∈ [R(Fa);Fa].
Conversely, if Fa+1 ∩ Fa ∈ [R(Fa);Fa] then clearly F1, ..., Fa−1, Fa+1,

Fa, Fa+2, ..., Ft is not an MVI S-partition with the same restrictions as
F1, ..., Ft, because Fa+1 − Fa is a subset of Fa+1 which appears in an MVI
interval listed after [R(Fa+1);Fa+1].

The Rearrangement Lemma for MVI S-Partitions. An MVI S-
partition F1, ..., Ft may be rearranged as an MVI S-partition F 01, ..., F 0t with
the same restriction function, such that for each a either |F 0a| ≥

¯̄
F 0a+1

¯̄
or

F 0a ∩ F 0a+1 ∈ [R(F 0a);F 0a].

Proof. Let b = b(F1, ..., Ft) be the least a with |Fa| < |Fa+1| and
Fa ∩ Fa+1 6∈ [R(Fa);Fa]. If there is no such a then let b(F1, ..., Ft) = t and
observe that the proposition is satisfied without any rearrangement.
Suppose b = t− 1. The Transposition Lemma implies that F1, ..., Ft−2,

Ft, Ft−1 is an MVI S-partition with the same restrictions as F1, ..., Ft. If
|Ft−2| ≥ |Ft| or Ft ∩ Ft−2 ∈ [R(Ft−2);Ft−2] then this rearrangement sat-
isfies the proposition, because |Ft−1| < |Ft|. Otherwise the Transposition
Lemma implies that F1, ..., Ft−3, Ft, Ft−2, Ft−1 is an MVI S-partition with
the same restrictions as F1, ..., Ft. Continuing in this vein, if we do not
find a rearrangement that satisfies the proposition we will eventually con-
clude that F1, Ft, F2, ..., Ft−1 is an MVI S-partition with the same restric-
tions as F1, ..., Ft. This rearrangement satisfies the proposition because
F1 ∩ Ft ∈ [R(F1);F1] = [∅, F1].
The proof proceeds by induction on t−b > 1. There must be a k < b such

that F1, ..., Fk, Fb+1, Fk+1, ..., Fb, Fb+2, ..., Ft is an MVI S-partition with the
same restrictions as F1, ..., Ft and either |Fk| ≥ |Fb+1| or Fb+1 ∩ Fk ∈
[R(Fk);Fk], for 1 will be such a k if there is no greater such k. Then
b(F1, ..., Fk, Fb+1, Fk+1, ..., Fb, Fb+2, ..., Ft) > b and the inductive hypothe-
sis applies.

S-partitions are simply MVI S-partitions for which the restrictions
R(Fj), j > 1, contain only singletons. As the Transposition and Rearrange-
ment Lemmas for MVI S-partitions are concerned with rearrangements
which do not alter the restrictions, they apply directly to S-partitions. We
deduce the following results regarding rearrangements of S-partitions.

The Transposition Lemma for S-Partitions. Suppose F1, ..., Ft is
an S-partition and a < t. Then F1, ..., Fa−1, Fa+1, Fa, Fa+2, ..., Ft is not an
S-partition with the same restriction function R if and only if Fa+1∩Fa ∈
[R(Fa), Fa]. Moreover if this is the case then Fa+1 − Fa ⊆ R(Fa+1) and
|Fa+1 − Fa| = 1.
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The Rearrangement Lemma for S-Partitions. An S-partition
F1, ..., Ft may be rearranged as an S-partition F 01, ..., F 0t with the same re-
striction function, such that for each a either |F 0a| ≥

¯̄
F 0a+1

¯̄
or there is an

x ∈ F 0a+1 with F 0a = F 0a+1 − {x}.

Proof. The Rearrangement Lemma for MVI S-partitions provides a
rearrangement F 01, ..., F 0t with the same restriction function, such that for
each a either |F 0a| ≥

¯̄
F 0a+1

¯̄
or F 0a ∩ F 0a+1 ∈ [R(F 0a), F 0a]. If |F 0a| <

¯̄
F 0a+1

¯̄
,

then F 0a ∩ F 0a+1 ∈ [R(F 0a), F 0a]; the Transposition Lemma for S-partitions
tells us that F 0a+1 − F 0a ⊆ R(F 0a+1) and

¯̄
F 0a+1 − F 0a

¯̄
= 1. Together, |F 0a| <¯̄

F 0a+1
¯̄
and

¯̄
F 0a+1 − F 0a

¯̄
= 1 imply that there is an x ∈ F 0a+1 with F 0a =

F 0a+1 − {x}.
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