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MILNOR’S INVARIANTS AND
THE COMPLETIONS OF LINK MODULES
BY
LORENZO TRALDI

ABSTRACT. Let L be a tame link of u > 2 components in S3, H the abelianization of
its group = (S® — L), and ITH the augmentation ideal of the integral group ring ZH.
The TH-adic completions of the Alexander module and Alexander invariant of L are
shown to possess presentation matrices whose entries are given in terms of certain
integers u(iy,...,i,) introduced by J. Milnor. Various applications to the theory of
the elementary ideals of these modules are given, including a condition on the
Alexander polynomial necessary for the linking numbers of the components of L
with each other to all be zero. In the special case y = 2, it is shown that the various
Milnor invariants f([r + 1, s + 1]) are determined (up to sign) by the Alexander
polynomial of L, and that this Alexander polynomial is 0 iff @([r + 1,5 + 1]) =0
for all r, s > 0 with r + s even; also, the Chen groups of L are determined (up to
isomorphism) by those nonzero g([r + 1, s + 1]) with  + s minimal. In contrast, it
is shown by example that for p > 3 the Alexander polynomials of a link and its
sublinks do not determine its Chen groups.

L. Introduction. Let L = K; U --- U K, € S be a tame link of g > 2 compo-
nents; that is, K, . .., K, are pairwise disjoint, embedded copies of S*, each of which
is carried onto a polygonal curve by some autohomeomorphism of S3. We presume
that L is given with a fixed ordering of its components (that is, each component K ;
has been assigned an index i), and also that each component of L carries a fixed
preferred orientation. Two such links are ambient isotopic iff there is an orientation-
preserving autohomeomorphism of §* which maps one onto the other in such a way
that the indices and orientations of the components correspond.

The group of such a link is the fundamental group G = m,(S> — L) of its
complement. The abelianization H = G/[G, G] of G is the free abelian group on
certain elements #,...,,, the meridians of L, and the elements of its integral group
ring ZH may be uniquely represented by Laurent polynomials (with integer coeffi-
cients) in #,...,¢,. The ring homomorphism e: ZH — Z with e(h) =1 Vh € H is
the augmentation map; its kernel is the augmentation ideal IH of Z.H.

The module sequence [5] of such a link L is a short exact sequence

¢ ¥
0> B, —>A, >IH—0
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402 LORENZO TRALDI

of ZH-modules. The module B, is the abelianization G'/G"” of the commutator
subgroup G’ = [G, G] of G, considered as an H-module via conjugation in G (i.e., if
«: G —> H is the natural epimorphism then for ¢ € G', a(g) - c¢G" = gcg 1G");
following [18], we refer to B, as the Alexander invariant of L. The Alexander module
of L is the tensor product 4, = ZH ®,;IG, considered as a ZH-module with
scalar multiplication performed in the first factor. The maps ¢ and ¢ are given by
¢(cG”")=1® (¢ — 1) and ¥(x ® y) = x - a(y). This sequence has been studied
extensively by R. H. Crowell [4-6] and, in particular, may be identified [4] with the
segment

0 - H(X;Z) - H(X,F;Z) > Hy(F;Z) > 0

of the reduced integral homology sequence of the pair (X, F) consisting of the
universal abelian cover X of $* — L and its fiber F.
W. S. Massey [12] has studied the /H-adic completion

—

b
0B, A, >TH-0

of the module sequence of L, showing that it is a much less sensitive invariant of the
link than the original module sequence. The completed sequence is invariant under
(topological) I-equivalence [12, Theorem 4], for one thing. In addition, B, and 4 A,
are less complicated as Z H-modules than B, and A, are as ZH-modules, in that B,
and A have ((4) + p — 1) X (4) and (p — 1) X p presentation matrices respectively
[12, Theorems 1 and 2], while there is no upper bound on the (finite) numbers of
generators and relations B, and A4, may require [21, §4]. This completed module
sequence is not so simple as to be uninteresting, though, as is evidenced by the fact
[12] that for g > 1 the (q + 1)st Chen group of L, G"G,,1/G"G, 4,18 isomorphic to
(IH)" 1. B /(IH)" BL (Here G, denotes the rth lower central series subgroup of
G, given by G, = Gand G, = [G,, G].) We will discuss these groups in §7.

The principal results of the present paper (Theorems (3.4) and (3.5)) give explicit
presentation matrices for the Z H-modules B, and 4, ; the entries of these matrices
are elements of ZH defined using certain integers p(iy,...,i,) introduced by J.
Milnor [14] and discussed in §2. Let 4 be the u X p matrix with diagonal entries
given by

- f S (et i) - T1(t, = 1),

p=1

the sum ¥ taken over the set of those p-tuples (iy,...,i,) of elements of {I,... B}
with i, # i, and other entries given by

= M(j,i) '(ti - 1) + i ZM(il""’ip’ j5i) '(fi - 1) ‘I—[([iA - 1)’
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the sum X now taken over the set of all p-tuples (ij,. . -»1,) of elements of {1,..., pt}
Theorem (3.4) then states that ./ is a presentation matrlx for the Z H-module A
and also that if any single row of . is deleted the resulting matrix is still a
presentation matrix for 4 - Theorem (3.5), which we need not repeat here, gives a
related presentation matrix 2 for B, .

Theorem (3.4) has several interesting applications to the theory of the elementary
ideals of A J‘;The most direct, Theorem (4.1), states that if we re%ard ZH as a
subring of Z H in the natural way, then for any k € Z, E,(#) = E,(A,) is the ideal
of ZH generated by E (A4, ). It is also possible to obtain results within the ring Z H,
rather than the larger ring ZH. For instance, if for ¢ > 1 we let #, be the matrix
obtained by restricting the index of summation p in the definition of ./, to values
< ¢, and restricting p in the definition of /#,; to values < g — 1 (so that, for
example, #, = 0), then Theorem (4.2) states that for 0 < k < p

k-1 . .
‘ZLOE,L-M(AL)-(IH)"'+(IH)”" Z () (IH) " +(1H) ™.

A simple consequence of this is Corollary (4.3):
B, (A +(IH) T = B () +(1H)

Analogous results hold for the elementary ideals of B, (see §4).

M. E. Kidwell [11] has given a condition on the reduced Alexander polynomial
that is necessary for the linking numbers u(i, ;) to be zero for all i # j € {1,...,u}.
Using Theorem (4.2), we lift Kidwell’s condition to the (unreduced) Alexander
polynomial A,(A4,) = Ay(B,) in Theorem (5.3): if u(i, j))=0Vi+#je€ {1,...,p},
then either p is even and A(A4,) € (IH)*"2, or u is odd and there is an
x € (IH)®*~3/? with

(8,(4,)) +(1H)? = ( TG 1)) Y,

(Here for y € ZH, (y) denotes the principal ideal of Z H generated by y.)

In §6 we concentrate, for the most part, on the case u = 2. In this case Theorem
(4.1) amounts to the statement that the Alexander polynomial A,(4, ) generates the
same principal ideal in ZH as either

M/ = 1) =My /(1 — 1)

or

Mp/(t, = 1) =M /(1 ~ 1,).
From this and certain well-known properties of the integers p(iy,. .., ;) we deduce
Theorem (6.4): if for u, v > 1 we let [u, v] = (1,...,1,2,...,2) be the sequence with
u ones and v twos, then after multiplying A;(A4,) by —1 (if necessary) it will be true
that forallr, s > 0

Le(d_‘g;_;(Al(AL))) = (~1)°([r + 1,5 +1]) (moduloA([r + 1,5 + 1]).

ris!
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Here d/dt, and d/dt, are the usual partial derivatives of multivariate calculus, and
A(r+1,s + 1]) € Z is the g.c.d. of those p([u, v]) withu <r+ 1, v <s+ 1 and
u+v<r+s+ 1. (This result is a strengthening of a theorem due to K. Murasugi
[15, Theorem 4.1], and is itself due to N. Smythe [19].) An immediate consequence is
Corollary (6.5): for t > 0, A,(A4,) € (IH)" iff p([r + 1, s + 1]) = 0 whenever r + s
< t, and (hence) A;(A4;) = 0iff u([r + 1, s + 1]) = 0 Vr, s > 0. (In fact, for A;(A4,)
to be 0 it suffices that u([r + 1, s + 1]) be 0 for all those r, s > 0 with r + s even;
see §6.) We also generalize the property (mentioned in passing by J. H. Conway [3])
that a + amphicheiral two-component link has Alexander polynomial 0.

Finally, in §8 we discuss questions suggested by the results of the paper.

We would like to express our gratitude to the Committee on Advanced Study and
Research of Lafayette College, under whose auspices this investigation was carried
out. Further thanks are due to J. W. Cogdell, J. A. Hillman and especially the
referee, for their encouragement and suggestions.

2. The integers u(iy,...,i,). As is well known, if L=K, U --- UK, C S3is a
tame link, a presentation of the group G = m;(S? — L) may be obtained from any
regular projection of L in the plane. The arc components of such a projection may
be denoted ¢;; (1 < i < p, 1 <j <), in such a way that for each i, e; U - -+ Ue;;
is the image of K in the projection, and e,j,...,e;; are encountered successively as
one traverses K, in the preferred direction. (The index j of e;; should be considered
modulo j;.) G then has the presentation (x,. i j>, in which there is a generator x,;
whenever 1 <i < p and 1 <j <, and a relator r,; = xi,x,;x,.0ux;;}; whenever
e,., is the arc component separating the terminal endpoint of e;; from the initial
endpoint of e;;, ;; here §;;is 1 or —1, depending on whether e, , is oriented from left
to right or from right to left, as seen by an observer standing on e;; and facing ¢, ;.
Any one of these relators is redundant [18, §3.D], and can be deleted from the
presentation without effect.

If Fis the free group on {x;; |1 <i<p, 1 <j<J;}, then there is an epimor-
phism n: F = G whose kernel is the normal subgroup of F generated by {r;,}. If a:
G — H is the natural epimorphism, then clearly an(x;;) = an(x;,) whenever 1 <
< pand 1 <, k <j, and the elements ¢, = an(x,;;), 1 < i < p, constitute a basis of
the free abelian group H.

If ¢g>1, it is a simple matter to obtain a presentation (xi 5 T Sk q+1> of
G/G,,,, by adjoining sufficiently many relators s,,,, to generate the normal
subgroup F, ., of F. A less cumbersome presentation for G/G, ., has been found by
J. Milnor [14]. If ® C F is the subgroup (freely) generated by {x; = x;|1 <i<p},
and B,,,: G~ G/G,,, is the natural epimorphism, he shows that the restriction
B,+m®: ® > G/G,,, is surjective, and its kernel is generated (as a normal
subgroup of ®) by @_. , together with certain elements p,,,; = [x;, Wige1h 1 < i< p
Thus G/G, ., has the presentation < X5 Pig+1s Ok q+1>, in which there are a generator
x; and a relator p, ., for 1 < i < p, and sufficiently many relators o, ,,, to generate
the normal subgroup @, , of ®. The element w,,,, € ® depends on the integer g; if

p > q then w,,,, can be substituted for w;,, ,, since the two are congruent modulo
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@, [14, §3, assertion (6)], and hence [x;, w,,,] and [x;, W,,+1] are congruent modulo
®, 1. (Incidentally, we might note here that it is not difficult to slightly sharpen the
arguments of [14, §3, assertions (4) and (6)], so that (in the notation of [14]) one can
take w;, ., = m,_,(v;,) rather than (v, ), where 1, = 1.) Also, since the presen-
tation <x,-; Pig+1s oqu) of G/G,, is derived from the presentation <x,-j; rij> of G,
the redundancy property of the latter implies that any one relator p, g+1 in the former
is redundant.

If g > 2, then for each g-tuple (iy,...,i,) of elements of {1,...,u} an integer
p(iy,...,i,) is defined in terms of R. H. Fox’s free derivatives [7] by the formula

. . 097!
""(11""’lq) =¢ W(Wiqq+l) )

where e: ZF — Z is the augmentation map. In the simplest case, g = 2, p(iy, i,) is
either zero (if iy = i,) or the linking number of K; and K, (if i; # i,). For ¢ > 3,
By, osiy) is not, in general, an invariant of the link L; rather, it depends on the
choice of a regular projection of L in the plane, and the choice of an indexing of the
arc components of the projection. J. Milnor has shown, however, that if A(iy,...,i,)
is the greatest common divisor of the integers p( j;. .. ,j,), as (Jy,...,j,) varies over
the proper subsequences of (i,...,i,), then A(iy,...,i,) and the congruence class
By, 5i,) of p(iy,...,i,) modulo A(iy,...,i,) are not only invariants of L, but
isotopy invariants of L [14]. (This definition of A(iy,...,i o) differs from that given in
[14]; that the two agree is a consequence of the “cyclic symmetry” of Milnor’s
invariants [14, Theorem 6].) Furthermore, if i,...,i q are pairwise distinct then
p(iy,...,i,) is a homotopy invariant of L [14, Theorem 8]. A weaker version of this
invariant [E(i,...,i,) may be obtained by considering its congruence class
p*(iy,...,i;) modulo A*(iy,...,i,), the greatest common divisor of the integers
p(Jrs---5Jp) @S (Jis---,j,) varies over the permutations of proper subsequences of
(g osiy)-

3. Presentations of A, and B, . The Alexander module of the group G is defined to
be the tensor product-ZH ®,; IG, considered as a ZH-module with the scalar
multiplication performed in the first factor; we denote this module 4;. For ¢ > 1
the Alexander module of G/G,,, is defined analogously; we identify H with the
abelianization of G/G,,; in the natural way and consider this Alexander module as
a ZH-module, which we will denote 4, ;.

The Alexander matrix of the presentation <xi T j> of G has a column for each
generator x,;, and a row for each relator r, 5 the common entry of the column
corresponding to x,,, and the row corresponding to ;) is

an(arij/axmn)'
As shown by R. H. Crowell [4, §3], this matrix is a presentation matrix for the

ZH-module 4, . In fact, if X, is the free Z H-module on the set of relators r,;, and X,

is the free Z H-module on the set of generators x; ;» then there is an exact sequence

&y dy
X, > X, 5 A4, -0
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in which the matrix of d, is this Alexander matrix, and d;(x;;) =1 ® (n(x;;) — 1).
Similarly, if ¢ > 1 each of the presentations <x,J, Fijs skq+1> and <x,, p,qﬂ, oqu)
of the group G/G,,; gives rise to a presentation of the ZH-module 4,

LEMMA (3.1). Let 3: F — ZF be a derivation, that is, a function with a(xy) = 9(x)
+ x3(y) Vx, y € F. Then and(F,, ;) € (IH)? for every ¢ > 1.

ProOOF. Note that (1) = 3(1) + 9(1), so-d(1) = 0; hence (x~ 1) = —x719(x)
Vx € F. It follows that for x, y € F

and([x, y]) = and(xyx~ly™") = (1 — an(y))and(x) + (an(x) = 1)and(y).
From this we conclude directly that and(F,) € IH.

Proceeding inductively, suppose ¢ > 2. If x € F, and y € F, then

and([x, y]) = (1 — an(y))and(x) € (IH)". Q.E.D.

We will apply this lemma with the various free derivatives d,/dx,; playing the role
of 0.

For g> 1, let B,1: G > G/G,, be the canonical map onto the quotient; we
also denote by S, the map mduced on the integral group rmgs and the restriction
of this map to the augmentation ideals. -

PROPOSITION (3.2). For g > 1,id ® B, — A, induces an isomorphism
Ay/(IH)" -4, — Aq+1/(1H)"'A -

PROOF. Let
& d
X-> X >4, -0

be the presentation of the ZH-module A, arising from the presentation
< Xijs Tijs Sk q+1> of G/G,,,. Comparing this with the presentation of A, discussed
earlier, we note that X; = X{ and (id ® B,,,)d; = d]. Furthermore, by the lemma,
dy(X,) € dy(X3) € dy(X,) +(IH)? - X;. Q.E.D.
Suppose g > 1, and recall the matrix .# , that was defined in the introduction. Let
Y be the free ZH-module on the set {x,,...,x,}, and for 1 <r < p let Y, be the
submodule of Y (freely) generated by those x; # x,; let ¥y = Y. For 1 <r < p let
: Y, > Y be the ZH-linear map whose matrix is the submatrix of /4, obtamed by
deletmg its rth row, and let e;,: Y, — Y be the ZH- linear map whose matrlx is A ; q,
also,lete,: Y —> A4, be the homomorphism given by e (x,) = 1 ® (B, 1n(x;) —
We use é to denote the homomorphism induced by a homomorphlsm e from some
quotient of its domain to a suitable quotient of its codomain.

PROPOSITION (3.3). For every ¢ > 1 and every r € {0,...,u} the sequence
e, e
Y,/(IH)! - Y, = Y/(IH)" - Y = Ay /(IH) - Agq = 0
is exact.

PROOF. Suppose, first, that » = 0, and let

fe €q
X— Y—>Aq+1 -0
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be the presentation of the ZH-module A4 q+1 that arises from the presentation
<x,.; Pig+1s okq+1> of G/G,.,. Then X is the free ZH-module on the set of relators
Pig+1 and o, ;, and, by Lemma (3.1), fo(04441) € (IH)? - Y for each k. Let X, be
the submodule of X (freely) generated by the set of relators Pig+1> and g0 Xy = Y
the restriction of /, to Xg; then

g e
Xo/(IH)? - Xy = Y/(IH)"- Y = A, /(IH) - 4, - 0

is an exact sequence of Z H-modules.

To complete the proof in this case r = 0, then, we need only show that g, and &,
have the same image. If g = 1, 8, = 0and &;, = 0, so we need proceed no further. It
happens that for ¢ > 2 and 1 < i, j < p the ij entry of /# 4 1s congruent, modulo
({H)?, to the ij entry of the matrix of g,. To show this we need to recall R. H. Fox’s
“Taylor series” [7, p. 553], which asserts that for every integer s > 1 and every
x € Z®

s .
x—e(x) = ¥ Le(d7(x)/0x, - ox, ) -TT(x, — 1)
is an element of (I®)**!, where the sum X is taken over the set of all p-tuples
(iy,-..,i,) of elements of {1,...,u}.
If 1 < i,j < pthe jj entry of the matrix of g, 1s

an(a(piq+l)/axj) = (1 - an(Wqu))an(a(xi)/axj)
+(an(x;) - 1)“77(8(Wiq+1)/axj)-
Applying the “Taylor series” to w,,,; (with s = ¢ — 1) and d(W;g41)/9x; (with

s = g — 2), we conclude that the ij entry of the matrix of 8, is congruent (modulo
(IH)?) to

_an(a(xi)/axj) ’ qlial Z’J‘(il""’ip’ i) 'l_I(t,-k - 1)

q—2
+(t, - 1) -p(j,i) + 2 Lplinseensiy, joi) (6= 1) - T1(z, - 1),

where each sum X is taken over the set of all p-tuples (ij,. ..»1,) of elements of
{1,...,u}. Since this element of ZH is precisely the ij entry of /# ¢» our proof in the
case r = 0 is complete.

Suppose, now, that 1 < r < p. As noted in §2, in the presentation
<x,»; Pig+1s okq+1> of G/G,,, the relator p,,; is redundant, and so may be deleted.
Applying the argument just given in the case r = 0 to this simplified presentation
completes the proof. Q.E.D.

We are indebted to the referee for pointing out that the exact sequence of
Proposition (3.3) has been described by N. Smythe [19].

Recall that for a Z H-module 4 the IH-adic completion A may be identified with
the inverse limit of the quotients 4/(IH)? - A [1, 111, §2.6]; the canonical epimor-
phisms 4 — A/(IH)7 - A then define a natural mapping h: 4 — A, whose kernel is
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Ny_o(IH)7 - A. In case h is injective (e.g., if 4 is free) we may suppress it, regardmg
A as a subset of A. If A is finitely generated, there is an isomorphism ZH® znd = A
under which x ® a corresponds to x - h(a) [1, III, §3.4]. From the additivity of
tensor products it follows that if 4 is the free Z H-module on a finite set {ay,...,a,},
A is the free Z H-module on the same set.

_ Continuing to use the notation of Proposition (3.3), let f: Y- 4, ‘be the
ZH-homomorpmsm with f(x,) = k(1 ® (9(x; ) —1)). Let e’ Y0 - ¥ be the ZH-ho-
momorphism whose matrix is.#, and for 1 < r < plete,: ¥, — Y be the homomor-
phism whose matrix is obtained from .# by deletmg its rth rOW.

THEOREM (3.4). For every r € {0,...,u} the sequence
75954, -0
is exact.

PrOOF. Let r € {0,...,p}. Combining Propositions (3.2) and (3.3), we see that for
every ¢ > 1 the sequence

e T
Y,/(IH)!- Y, 3 Y/(IH)"- Y = A4, /(IH)" - 4, ~ 0

is exact, where f,: Y — 4, is the ZH-homomorphism given by f(x) =18 (n(x;)
— 1). (The sequence of the statement is the inverse limit of these sequences as
q— 0. ' :

Let m: ¥ — coker e, be the canonical map onto the quotient. Certainly fe, = 0, so
there is a ZH- homomorphism f: cokere, = A, with fm = f. Recall that for any
finitely generated Z H-module A4 the natural mapping h: 4 — A induces an isomor-
phismA/(IH)? -4 — A/(IH)" A for every ¢ > 11, I11, §2.12]. From this and the
exact sequences of the first paragraph, we deduce that finduces an isomorphism

cokere,/(TH)? - cokere, — A, /(IH)? - 4,
for every q > 1; it follows that f is an isomorphism [1, I1I, §2.8, Corollary 3].
Q.E.D.

A presentation of the Z H-module B, may be derived from that of A, just given,
using a construction due to R. H Crowell [5, 6]. Let Z,, Z,, Z, be the free
ZH-modules on the sets {z;|1 <i<p}, {z;|1<i<j<p})and {z,|l <i</j

k < p}, respectively (if p = 2, Z3 = (). There is an exact sequence

$3 $
Z, —»ZZ—>Zl—>IH—>O
in which {;(z,) =1, — 1, §,(z;;) = (¢, = Dz; — (1; — 1)z;, and §3(z,) = (4 — Dz,
— (t; — Dz, + (2, — 1)z;;. We denote the matrix of $, N, (), and that of §3N;(p)
(in particular, N;(2) is the empty matrix). The IH-adic completion

W 5oa o —
Zg—->Zz—>Zl—->IH—->O

is then an exact sequence of Z H-modules.



MILNOR’S INVARIANTS 409

_Let&: Y — Z, be the isomorphism with £(x,) = z; Vi, and let »,: ¥, » Z, be the
Z H-homomorphism given by

vo(x) = X (A= 1))z = L (M (1, - 1))z,

Jj>i j<i

we denote by 4" the matrix of »). For 1 <r < pletn: ¥, — Z, be the ZH-homo-
morphism whose matrix is obtained from ./V by deleting its r th row; if we regard ¥,
as a submodule of Y0 in the natural way, then », is simply the restriction of », to ¥,.
Also, let 1: Z, — B, be the ZH- -homomorphism with ith 7(z;,) = h(n([x;, x;,))G"). For
0 < r < p we now have the following diagram of ZH-modules and ZH homomor-
phisms:

Y e 7, Y, Z,
(n.6) e 16
, E1g . £ ,
Z, S G4
T l f ! lfl
. ¢ . Vo=
B, - A4, > 1IH
) ) )
0 0 0

THEOREM (3.5). This diagram commutes and has exact columns. Consequently, the
matrix

- (N:<’2>)

is a presentation matrix for the 7 H-module éL, as is the submatrix of P obtained by
deleting any one of its first u rows.

PROOF. If 1 < i < j < puthen

78 (2) = £((6, = Vx; = (4, - 1)x,)
=h(1®n((x, - 1)(x - 1) —(x,— 1)(x, - 1)))
h(1 @ 7(xx,)(1 = n(x; b % x, )

-t h¢(n(xjflxi‘1xjxi)G")

—h¢(n(xx X7 gx, o x; x‘l)G”)

—th(- (xjx,xj x; )G")=<ﬁfr(zij),

so the diagram does indeed commute.
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In addition, note that for 1 < i < p, Zj;l M (,-1)= 0, and hence »

§2V0(xi) = Z‘//{ijzj - Z (//lij/(ti - 1))(6’ - 1)Zi

J#FI J#Fi

n
= Z Mz = geo(x,),
j=1
so that {,», = £e,; it follows also that $v,=Ee, forl <r<p.
A straightforward diagram-chase completes the proof. Q.E.D.

4. Elementary ideals. Recall that if m,n > 1 and M is an m X n matrix with
entries in a commutative ring R with unity, then its elementary (or determinantal)
ideals, denoted E,(M) and indexed by k € Z, are ideals of R defined by: if
k<n—mork<0then E,(M)=0;ifk > nthen E,(M)=R;andif O, n — m <
k < n then E, (M) is the ideal of R generated by the determinants of the (n — k) X
" (i =k) submatrices of M. If M is a presentation matrix for an R-module 4, then
the elementary ideals (or Fitting invariants) of A are defined by E,(A) = E.(M);
* these ideals depend only on the isomorphism-type of 4, and are independent of the
choice of a particular presentation matrix M [17, p. 58]. If f: R — § is a homomor-
phism of commutative rings with unity, and we consider S as an R-module via f,
then it follows from the right exactness of tensor products that f(M) is a presenta-
tion matrix for the tensor product S ®y 4, considered as an S-module with the
scalar multiplication performed in the first factor. Consequently, for k € Z,
E, (S ® A)is the ideal of S generated by f(E,(4)).

Considering the inclusion ZH < ZH, we conclude that if 4 is a finitely | presented
Z H-module then for k € Z the ideal of ZH generated by E, (A4) is Ek(ZH ®znA);
since ZH ® z A is isomorphic to A [1, 111, §3.4], this ideal is Ek(A) In view of
Theorems (3.4) and (3.5), we conclude

THEOREM( 4.1.). For any k € Z, the ideal of Zﬁgenerated by E(AL) is E (M), and
this remains true if any row of A is deleted. Also, the ideal of ZH generated by E,(B;)
is E, (), and this remains true if any one of the first p rows of 2 is deleted.

In practice, the matrices .# and £ may be rather inconvenient, since determining
their entries requires the determination of all the (infinitely many) integers
p(iy,...,i,); for this reason we state several results which are weaker than Theorem
(4.1) but involve only the simpler matrices # , and Z,.

THEOREM (4.2). If 0 < k < pand q > 1, then
k=1 A .kl ‘ .
Z E/.L—k+i(AL) '(IH)q +(IH)q = Z E,L—k+i(‘//{q) '(IH)q +(IH)q >
i=0 i=0

and this remains true if any row of # , is deleted.

ProOF. Clearly any presentation matrix of 4, may be transformed into a
presentation matrix of A, /(IH)? - A, by the adjunction of a number of rows whose



MILNOR’S INVARIANTS 411

entries all lie in (/H)4. By [22, Lemma (3.1)], then,

L Eyihi(AL) - (IH)" = X E, o (A/(IH)? - 4,) -(IH)

i>0 i>0
for any k € Z. Combining Propositions (3.2) and (3.3), we note that M , can be
transformed into a presentation matrix of A, /(IH)?- A, by the adjunctlon of a
number of rows all of whose entries lie in (IH )7, so that for kel

ZE/.L—k+i(AL)'(IH)qI Z ki M q)'(IH)qi.

20 i>0

In particular,
)» u+1(AL)'(IH)qi u+z(‘/// )-(IH)" = ZH,
i>0 i>0

soforO <k <up

k-1 ) )
L Eyoi(dr) ()" +(IH)" = X B,y (4,) -(1H)*

iz0

=Y E, () -(IH)"

i>0

=Z () (I + (IH)

By Proposition (3.3), this remains true if any row of M ,is deleted. Q.E.D.

The case ¢ = 1 of this result is essentially the assertion that E,_(A;) < (IH)/ for
0 <j < p, which was observed by R. H. Fox [8, p. 209]. The case ¢ = 2 is also
already known [22, Theorem 1]. Since E, (A,)and E,_,(A,) are both contained
in (IH)’ for 0 <j < p, itis a simple matter to derive

COROLLARY (4.3). For 0 < k < pandq > 1
En—k(AL) + (IH)k+q_1 = E;.L—k(‘//q) +(IH)k+q_1’
and this remains true if any row of M o IS deleted.
For g > 1 let #, be the matrix obtained from & by ignoring those summands in
the definition of the entries of & which are of degree > ¢ as monomials in

tpy —1,...,¢, — 1. That is, Z, is related to 2 just as A , is related to /. In analogy
with Theorem (4.2), we have

THEOREM (4.4). If 0 < k < (%),
k—1 k—1
i i k
Y Ewy—iri(BL) -(IH)" +(IH)™ = ¥ Egy_i(2,) -(IH)" +(IH)*,
i=0 i=0

and this remains true if any of the first u rows of P, is deleted.

PROOF. Any presentation matrix of B, can be transformed into a presentation
matrix of B, /(IH)?- B, by adjoining a number of rows whose entries all lie in
(IH)4. By [22, Lemma (3.1)],

Y Eggy—iei(B) -(IH)™ = ¥ By vy (B/(1H) - B,) - (1H) "

i>0 i=0
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for all k€ Z. Since h: By - B, induces an isomorphism BL/(IH Y- B, —

L /(IH)" BL [1, III, §2.12] and £ is a presentation matrix for BL, a presentation
matrix of B, /(IH)? - B, can be obtained from £, by adjoining some rows whose
entries all lie in (/H )Y, so by another application of [22, Lemma (3.1)]

Z E(t;)—k+i(BL) '(IH)ql = Z E(#;)—k+i(g’q) '(IH)ql
i»0 i>0
for every k € Z.

The proof proceeds in the same manner as that of Theorem (4.2). Q.E.D.

The matrix &, is simply e(A#") with (4) rows of zeros adjoined, so when ¢ =1
Theorem (4.4) remains true if &, is replaced by &(.#"). In this form, the ¢ = 1 case
of Theorem (4.4) is already known [23, Theorem 2].

In analogy with Corollary (4.3), we have

COROLLARY (4.5). If 0 < k < pand q > 1, then
Ew _(B,) +(IH)" = Ey_(2,) +(IH)".
Also,ifu < k < (4) and q > 1, then
Egpy-i(BL) +(TH) "™ ¥ = B (2,) +(1H) """,
Both statements remain true if any one of the first p rows of 2, is deleted.

ProoF. The first equality of the statement follows immediately from Theorem
(4.4).

The rows of the p X (4) matrix e(.#") are linearly dependent (in fact, their sum is
zero), so Ey)_,(&(4")) = 0. From this and the modified form of Theorem (4.4) just
mentioned, it follows that E.-,_(B.) € (IH )/ for 0 < j < (**). This and Theo-
rem (4.4) imply that also E-1y_; (97’ ) € (IH)’ for 0 <j < (*;'). Combining these
inclusions with Theorem (4.4) yields the second equality of the statement. Q.E.D.

5. The Alexander polynomials of links with all linking numbers zero. A couple of
ring-theoretic lemmas will be useful.

LEMMA (5.1). Let m > 1, and let Z[u,,...,u,,, u;",...,u,'] be the ring of Laurent
polynomials (with integer coeﬂzczents) in the m commuting indeterminates uy, . .. ,u,,. If
I is the ideal of Z[u,,.. m, url,...,u,'] generated by {u; — 1,...,u,, — 1}, then
for a, b € Z[u,,...,u,, u1 ,. ml] andk > 0,ab € I*iff thereisaj € {0,...,k}
witha € I’ andb € I¥7/.

ProOF. This is easily verified using the fact that, for j > 2, I consists of those
elements of I whose partial derivatives (in the usual sense of multivariate calculus) of
orders < j all vanish at the pointu; = 1,...,u4,,=1. Q.ED.

Note that if m = p, there is an isomorphism between Z[u;,...,u,,, u; ',. cout]
and Z H under which each u; corresponds to ¢;, and (hence) I corresponds to IH.

LEMMA (5.2). Let n > 0 be an integer, and suppose y,z € LH. Then (z)IH C
(V)H + (IH)"*Viffz € (y) + (IH)".

PROOF. Certainly if z € (y) + (IH)" then (z)IH C (y)IH + (IH)"*'.
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Conversely, suppose (z)IH C (y)IH + (IH)"**.1fy € (IH)", then z € (IH)".

On the other hand, suppose y & (/H)"; then there is a unique r € {0,...,n — 1}
such that y € (IH)" — (IH)"*'. Since (z)IH C (y)IH + (IH)"*', whenever 1 < i
< ptherearea,,...,a,, € ZH and w; € (IH)"*! with

"
(-1 =w+ Y a,.jy(tj -1).
j=1

We claim that whenever 1 <, k < p there are a,y;,...,a;,, € ZH and w, €

(IH)"*! such that
2 (=) =wytayuy(t,—1)+ Y aijky(tj -1).
i#j>k

This claim is verified by induction on k; if k£ = 1, it is clearly true.

Suppose, now, that k > 2 and the claim is satisfied by kK — 1 and every i €
{1,...,p}. If i = k — 1, the claim is immediately satisfied by k and i.

Ifi # kK — 1, then

v=w_py_1(t; = 1) = w1 (1, = 1)

Gy (=D, - 1)+ ) aijk—ly(tj = 1)(t— - 1)
i#j>k—1

=Gtk V(o — (5, = 1) = Zkak—ljk—ly(tj -1)(1, - 1)
Jj=
is an element of (IH)"*2. Sincey € (IH)" — (IH)"**, then, v/y € (IH)"*2~".

Let m=k —2 or k— 1 according to whether i <k —1 or i >k — 1. For
I<j<mleti;=jifj<i,andi,=j+ 1ifj> i, so thati,...,i, are the integers
strictly less than k and not equal to i, in ascending order. Let ¢: ZH —
Zuy,...,u,,u;',...,u,'] be the homomorphism of rings with unity given by
(¢ ) u; for 1 <j <m, and ¢(t,)=1 for s & {i},...,i,}. Then ¢(v/y)=
95(01/( k- 1)(“ —1D* € ¢(IH)""?7", 50 ¢p(ay_15-1) € ¢(IH)" " Then a; 14
€ (IH)"™" + ker ¢, so

Qo1 =W +ta(, - 1)+ X aj(tj -1)
i#j>k
for some a;, a,. .. ,a, € ZH andw’ € (IH)""". Then
2 (=) =wy +ayy(t,=1)+ Y aijky(tj - 1),
i#j>k
where wy = wy_y + wy(t,_y — 1) € (IH)"*!, and forj = iorj > k,a,; = a,;_,
+ a;(t_; — 1). This completes the proof of the claim.

By the claim, z(z, — 1) = w,, + ay(z, — 1) for some a = 4y, € ZH and w,, €
(IH)"*L If w =2z — ay, then w(t, — 1) =w,, € (JH)"*', so w e (IH)". Then
z=w+ay € (IH)" + (y). QED

THEOREM (5.3). Let L=K, U --- UK, C S’ be a tame link with p(i, j) =0
Vi#j€{1,...,pn). Then Aj(A;) € (IH)* 2 if p is even, while if u is odd there is an
x € (IH)®*=372 with

(Ay(4,)) + (1) = ( T 1)) Y,
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PROOF. Let .} be the matrix obtained from .#, by deleting its last row. By
Theorem (4.2),

w2 . p—2 4
2 Ei(4) '(IH)3I +(IH)3(”_1) = 2 E,(A5) '(IH)3I +(IH)3(”_1).
i=0 =

Since p(i, j)=0 Vi #j € {1,...,u}, every entry of A} is in (IH)?, so E, (M)
C (IH)X* 17D for 0 <i<p—2; it follows from Theorem (4.2) that also
E,, (A;) < (IH)*»71=D for 0 < i < p — 2. Hence adding (/H)*" to each side
of the equality above yields

E\(4,) +(IH)* ' = E\(5) +(1H)™ .

Consider the ideal E;(#%) C ZH. 1t is generated by the dgterminants of the p
square submatrices of .#4 of order p — 1. Since X ;(#%),;(1, — 1) = 0 whenever
1 <i < p— 1, a simple argument shows that there is a single element A € ZH such
that these p determinants are A - (1, — 1),...,4A - (¢, — 1), up to sign. Then E,(A43)
= (A)- IH, so since E,(A;)= (A,(A,)) - IH we may deduce from Lemma (5.2)
that

(A,(4,)) +(IH)™* > = () +(1H)™* .

Let /% be the submatrix of /% obtained by deleting its last column; then
A- (1, — 1) = tdet A7, and we may as well assume that A - (¢, — 1) = det A7.
Since u(i, j)=0Vi, je€ {1,...,pn},

A(i, j,k)=0 Vi, j,ke{l,....,p},

and hence by cyclic symmetry [14, Theorem 6] u(i, j, k) = p(k, i, j) Vi, j, k €
(1,...,p}. Also, p(i, j, k) = —p(j, i, k) Vi, j, k € {1,...,p} [14, Theorem 6], and
consequently (i, j, k) = 0 whenever any two of i, j, k coincide.

It follows that if i # j € {1,...,u — 1} then the ij entry of A7 is

(M), = > wlk, j, i) = 1)(z, = 1).

it k+)

Also, if i € {1,...,u — 1} the ii entry of A7 is

('//{3)1‘1‘: - Z P'(k’ j’i)(tk_l)(tj_l)’

i#jEk*i

and since p(k, j, i) = —u(J, k, i) Vi, j, k € {1,...,p} this sum is 0. Note that in
general every entry of the ith row of /% is divisible by 7, — 1.

If Y is the matrix obtained from % by dividing its ith row by ¢, — 1 for each i,
then

p—1
detY- [](z; —1) = det#y.
i=1
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The diagonal entries of Y are all 0, whileif i # j € {1,...,u — 1} the jj entry of Y is

Z [,L(k, j5i)(tk - 1);

itk#j

since p(k, j,i)= —u(k,i, j) Vi, j,k € {1,...,n}, this is the negative of the ji
entry of Y. Thus Y is a skew-symmetric (g — 1) X (p — 1) matrix, so either
detY =0 (if p — 1 is odd) or there is a y € ZH with det Y = y? (if p — 1 is even)
(see, for instance, [10, p. 334]).

If pis even, then, det Y = 0, s0 A = 0.

On the other hand, suppose p is odd. Then y? - I, (6, =) =det#y =A4-(s,
— 1), so since 7, —1 € ZH is a prime, y = x(¢, — 1) for some x € ZH; by
cancellation, then,

M
A=x2-1jl(t,—1).

Note that since every entry of Y lies in IH, necessarily xz(t” - 1)?=detY e
(IH)*~1, s0 x must be an element of (IH)*~3/2, Q.E.D.

Incidentally, for even p the proof can be considerably shortened by using
Proposition (6.1). Also, we should remark that Theorem (5.3) is best possible, in the
sense that it is possible to have A,(A;) & (IH)* ! if p is even, and A;(4;) &
(IH)*~%if p is odd. If p = 2», such an example is the connected sum of » — 1
copies of the Borromean rings (6; in [18, Appendix C]) and one copy of Whitehead’s
link (57 in [18, Appendix C]); if p = 2» + 1, such an example is the connected sum
of » copies of the Borromean rings.

6. Links of two components. Before restricting our attention to the special case
p =2, we state an interesting consequence of the symmetry of the Alexander
polynomials of links, first noted (for u = 2) by W. S. Massey [12, §2, condition (a)].

PROPOSITION (6.1). Let L C S* be a tame link of p > 2 components. If Aj(A,) €
(IH)““”‘l, then A(A;) € (IH)*+2".

PRroOF. The ring Z H possesses an involution, denoted by an overbar, defined by
t;=1t;7". 1f Aj(A,) € (IH)**2"~1 then, by Torres’ first relation [20], A,(A4,) —
(~1)*3,(4,) € (IH)**2",

If ry,...,r, > 0 have Xr, = p + 2n — 1, then clearly for any m € Z the monomial
y=m-TI(t; — 1)" has the property that y — (=1)**2""1 .5 e (IH)***". Since
A(A;) € (IH)**2"~1 A (A,) is congruent (modulo (IH)**?") to a sum of such
monomials, and hence A;(A4;) — (—1)**2" 1 - A (4,) € (IH)*?".

Thus A, (4,) + A (4,) € (IH)**?", 50 A\(A4,) € (IH)**>". Q.E.D.

For the remainder of this section we will assume, unless stated otherwise, that
L C S*is a tame link of g = 2 components.

For integers v > 1 and w> 0 let C(v,w) be the set of all (v + w)-tuples
(¢1s..-5¢,4,) in which 1 appears v times and 2 appears w times.
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LEMMA (6.2). For any integer u > 1,

Y B(Cpse s Cornr2ireer2451)
C(v,w)

s iU i\(p(2,1)—i—u
I A A

i w—i
where 1, = 1 and2; = 2Vj.

PROOF. Suppose, first, that w = 0. Then C(v, w) has only one element, (1;,...,1,),
so the first of the two sums is u(1;,...,1,,24,...,2,, 1). The second sum is the same.

Proceeding inductively, suppose w > 1. Define functions i Clo,w =1~
C(U W) 1 <.] v+ ow, by f(cla < Cypw— 1) (Cl’ . 2 C cesChrw— 1)
Clearly then each f; is injective, and each element of C(U, w) is in the image of
precisely w of the f;. Hence

w Z lu'(cl""’CU+W’21"“’2M’1)

C(v,w)
vt+w
= Z Z M(fj(cl,...,Cv+w_1),21,...,2u,1).
C(v,w—1) j=1

If (¢1,...,Cpsp—1) € C(v,w — 1), then (in the terminology of [2]) the sequences
(ClovrCyiry—1s215e-»2,) and (2) have 2u + v + 2w — 1 infiltrations: u + w — 1
with result (€g,...,Cpuw—1>210--524) 4 With Tesult (cpye sCypy152150-52441)
and one with result (fj(c1,---»cu+w—1),21»- ..,2,)foreachj € {1,...,v + w}. By [2,
Lemma (3.3)], then,

w - Z lu'(cl""’CU+W’21""’2u’1)

C(v,w)
= Y (@) —u—wH)plcresChrp-15215-42245 1)
C(v,w—1)
- Z u- M(Cl, Cotrw— 1’21’ 2u+171)'
C(v,w—1)

Applying the inductive hypothesis, this is equal to

T () wen —u-w )

i=0
x(“(z’l) —i “)u(ll,...,lv,Zl,...,2u+,-,1)

w—i—1
P C CHRPy () URRR RN
. ,ZO( 1)(u—1+z)(u(2 B—;—u)“(l“ 2 20 1)

(Repeated use has been made of the identity a(%?) = (b + 1)(5/7).) Q.E.D.
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Taking u = 1, we immediately conclude
COROLLARY (6.3). For any integersv > 1 and w > 0,

Z p‘(cl’ 9c()+w’2’1)E (_1)w“'(11"“’1U921”"’2w+1’1)

C(v,w)
(modulo A(1,,...,1,,24,...,2,, .1, 1)).

Recall that for r,s > 0 we use [ + 1,5 + 1] to denote the (r + s + 2)-tuple
(1,...,1,,1,24,...,2,,;). Using this notation, we have the following result of N.
Smythe [19].

THEOREM (6.4). After multiplying the Alexander polynomial A(A;) by —1 if
necessary, it will be true that

more| (4 = (Dullr + 154 1)

rls!
(modulo A([r + 1, s + 1)) forall r, s > 0.

Proor. After deleting the second row of the matrix &, what remains is a 1 ﬁ
matrix whose sole entry is /#,,/(¢; — 1). By Theorem (4.1), this element of ZH
generates the same principal ideal as A,(4,) = A,(B;), since Ay(B, ) generates the
ideal Eq(B,) of ZH. Thus there is a unit e € ZH with A(Ap) = e(My/(t — 1))
If e: ZH — Z is the unique continuous extension of the locally constant homomor-
phism e: ZH — Z, then e(e) = +1, since e is a unit; multiplying A,(A4,) by —1 if
necessary, we may as well assume that e(e) = 1.

For r,s > 0 let y(r, s) be the coefficient of (z, — 1)"(¢, — 1)° in A&, /(t; — 1),
and let §(r, s) be the g.c.d. of those y(u,v) withu<r,v<s,andu+v <r+s.
Then since e(e) = 1,

r+s
e (44 = 1)

(modulo &(r, 5)).

To complete the proof, then, it suffices to show that for all r, s > 0, 8(r, s) =
A(r +1,s + 1)) and y(r, s) = (=1)*u(r + 1, s + 1]) (modulo &(r, s)). Note that
8(0,0) = 0 = A([1,1]), and ¥(0,0) = u(2,1) = (—l)OpL([l,l]) is the linking number
of the components of L.

Proceeding by induction on r + s, suppose r + s > 1. The inductive hypothesis
directly implies that 6(r, s) = A([r + 1, s + 1]).

If r > 1, then

y(r,s)= Z “‘(Cl’ <3Cripys al)a

C(r,s)
and so, by Corollary (6.3) and cyclic symmetry [14, Theorem 6],

v(rys) = (=1 p(1se e 12000 02000)
(modulo A(1y,...,1,,1,21,--,2,4) = A(Ly,...,1,,2,...,2, 40, 1)).
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If =0, on the other hand, then ¥(r,s)= p(24,...,2,,1,1). Noting that
ARy, 02,41, 1) = A%(24,...,2,,1,1), we may apply [14, assertion (27)] to conclude
that

y(r,s)=(-1)""u([1,s +1]) (moduloA(2,,...,2,,,,1) = A([1, s + 1])).
Q.ED.

That the congruence of Theorem (6.4) holds modulo A*([r + 1, s + 1]) was shown
by K. Murasugi [15, Theorem 4.1]. Though the improvement seems modest, it leads
to a considerable simplification of several other results due to Murasugi; compare
[16, Lemma 7.3] with Corollary (6.5) below, for instance, or [16, Theorem 8.1] with
the description of the Chen groups of L in the next section. By the way, [15,
Theorems 4.2 and 4.3] can also be deduced from our Theorem (4.1); we leave the
details to the reader.

Recall that for ¢ > 2, (IH)' consists of those elements of IH all of whose partial
derivatives of orders < ¢ are mapped to 0 by . From Theorem (6.4) we directly
conclude

COROLLARY (6.5). For t >0, Aj(A;)€ (IH) iff g((r +1,s + 1)) =0 for all
r,s >0 with r + s <t. Consequently, Aj(A;) =0 iff g((r + 1,5 + 1]) =0 for all
r,s > 0.

Note that by Proposition (6.1), the greatest integer ¢ with A,(A4;) € (IH)', if it
exists, must be even.
Another interesting consequence of Theorem (6.4) is

COROLLARY (6.6). Whenever r + s is odd, 2p([r + 1,5 + 1]) = 0.

PROOF. Let L’ be the link obtained from L by reversing the orientations of both of
its components. By Torres’ first relation [20], A,;(A4,) is also an Alexander poly-
nomial for L’. By Theorem (6.4), the g-invariants @'([r + 1, s + 1]) associated to L’
are related to those of L: there is a fixed & € {0,1} such that @'((r + 1, s + 1)) =
(=1%a(r + 1,5+ 1]) Vr,s> 0. Also, according to J. Milnor [14, p. 296],
Fr+1L,s+1)=(-1)""g(r+1,s+1)Vr,s > 0.

Ifg(r+1,s + 1)) = 0 Vr, s > 0, then, of course, the conclusion holds.

If not, then there is a nonzero g([r, + 1, s, + 1]) with 75 = ry + 5, as small as
possible; then A,(A4,) € (IH)" — (IH)"**. Since ¢, must be even,

B[ +1,50+1]) = (=D)"g5([r,+ 1,50+ 1]) = & ([ro + 1, 50 + 1]).

Since A([r, + 1,5, + 1]) = 0 by the minimality of ¢,, and F'([r, + 1,50 + 1)) =
(- 1)%(r, + 1, sy + 1]), necessarily 8 = 0. Thus (—1)""g(r + 1,5 + 1) =
gr+ 1, s+1D)=pg(r+1,s+1)Vr,s > 0. QE.D.

J. H. Conway [3, p. 340] has observed that the Alexander polynomial of a +
amphicheiral two-component link (i.e., one which is ambient isotopic to its mirror
image) is 0. (Conway uses “amphicheiral” in this sense; see [3, p. 336].) Using
Corollary (6.6), we generalize this somewhat:
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COROLLARY (6.7). If the p-invariants of L and its mirror image coincide, then
A(4,)=0

PrROOF. According to J. Milnor [14, p. 296], the g-invariants g"(iy,...,i ) of the
mirror image of L are related to those of L by g"(iy;...,i,) = (— 1)"‘1ﬁ(i1,...,iq).
By hypothesis, then,

p(lr+1,s+1]) = (—l)r””ﬁ([r +1,s+1]) Vr,s>0,

so that 2fi([r + 1, s + 1]) = 0 whenever r + s is even. Combining this with Corollary
(6.6), we conclude immediately that there can be no nonzero g([r + 1, s + 1]) with
r + s minimal, so g([r + 1, s + 1]) = 0 Vr, s > 0. By Theorem (6.4), then, A,(A4,)
=0. Q.E.D.

Corollary (6.7) does not generahze to the case p = 3, since the Borromean rings
(6; of [18, Appendix C]) are + amphicheiral and have nonzero Alexander poly-
nomial. On the other hand, any link of two or more components whose j-invariants
are the same as those of the link obtained by reversing the orientations of all the
components of its mirror image (e.g., any — amphicheiral link) must have all its
p-invariants O (this follows from remarks of [14, p. 296]), and so must have
E,_,(A;) = 0, by Theorem (4.1).

7. The Chen groups. In the last two sections of the paper we revert to the general
case ju > 2, except where stated otherwise.

The associated graded module [1, 111; 24, VIII] of a finitely generated Z H-module
B is the graded abelian group

gr(B) = @ (/H)"- B/(1H)"" - B
q=> >0
it is a graded module over the graded ring gr(ZH) in a natural way. The associated
graded module of the /H-adic completion B is defined analogously:

gr(B) = 52 (IH)* - B/(IH)*"" - B.

The natural mapping h: ZH — ZH induces an isomorphism gr(h) gr(ZH) -
gr(ZH) of graded rings, with respect to which gr(/): gr(B) — gr(B) is an isomor-
phism of graded modules [1, III, §2.12].

Our interest in associated graded modules stems from the fact that for g > 1 the
(g + 1)st Chen group of L, G”G,.,.,/G"G,,,, is isomorphic to (IH)*'- B, /(IH)1
B, = gr,_;(B,), and hence to gr,_ 1(BL) [12].

Following [24, VIII, §1] in substance if not notation, for a finitely generated
LH-module B we define the initial form function in: B — gr(B) as follows: if x €
(IH)" - (IH)qul B then in(x)= x + (IH)qul Be grq(B), and if x €

q>O(IH) - B then in(x) = 0. If K Bisa ZH—submodule the leadzng submodule
of K is the gr(ZH) -submodule of gr(B) generated by in(K). If g: B - Cisa
ZH-eplmorphlsm with kernel K, then gr(g): gr(B) — gr(C) is a gr(ZH) epimor-
phism whose kernel is the leading submodule of K.
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It follows from Theorem (3.5), then, that the gr(Zﬁ)-moduIe gr(B, ) is isomorphic
to the quotient of gr(Z,) by the leading submodule of the image of <V,, §‘3>, for
every r € {0,...,u}. Unfortunately, the initial forms of the elements of a generating
set of a submodule of a ZH-module do not necessarily generate its leading
submodule (see, for instance, [12, Example 2]), so we do not obtain a presentation of
gr( EL) asa gr(i?l)-module directly from Theorem (3.5). Nevertheless, we can prove
the following theorem, due (for the most part) to J. A. Hillman [9, V].

THEOREM (7.1). Let g > 1. Then any two of these are equivalent:
@) E,(4,) € (IH),

(b)E _,(B;) S (IH) ~1*2D and

(©G"G,/G"Gyyq = @7 p/‘IJ” 1 VP € {1,....,q}.

ProoF. Since (a), (b) and (c) are all true for g = 1, we may restrict our attention to
values g > 2.

According to [21, Theorem 1.1}, E, _,(4,) - (TH)":h-1 ¢ E, ,(B,)if p> 3, and

E, (A;)=E, ,(B;) IHif p = 2. The implication (b) = (a) follows immediately.

Note that 1f L, is the trivial link of p components then its group is ®, and
Theorem (3.5) asserts that BL = coker {;. Thus for p > 2 the pth Chen group of L,

7, /97D, 4, is 1somorph1c to gr,_,(coker {,). The condition (c), then, may be
restated as gr, (B = gr, 2(cokerf,j) Vpe {2,...,9}.

Suppose, now, that (a) holds. By Corollary (4.3), it follows that (/H)? also
contains E, (4 ), the ideal of ZH H generated by the entries of ./ . Equivalently,
every entry of ./ is an element of (IH)" and so every entry of & 1s an element of
(TH)"'. Then kert + (IH)" ! Z2 §3(Z3) + (IH)" ! Zz, so 7 induces an iso-
morphlsm between coker §3 /(IH)" - coker §'3 and BL/(IH)" ! BL, certainly then

gr, _,(coker §‘3) = gr, _,(B,) for 2 < p < q. This verifies the Aimplication (a) = (c).

Finally, suppose (c) holds. Since §3(Z3) C ker 7, thereis a ZH-eplmorphlsm

7: coker §, /(IH) "' - coker§, » B, /(TH)" ' - B,
induced by 7. The TH-adic topology on B, / (Tﬁ)" ~1. B, is obviously discrete, so by
[1, I11, §2.8, Theorem 1] we may conclude that
b2 (7):gr, _z(coke:rfg/(flfl)q_1 . cokerf3) - gr, 2(].’?L/(Il'?f)q_l : BL)

is surjective for every integer p > 2. For p > ¢, gr,_,(coker { /(IH)" L. coker ;)
= 0, s0 gr,_,(7) is, in fact, an isomorphism. Furthermore, for 2 < p < ¢,

grp_z(coker &/(IH) coker {3) = gr, ,(coker {;)

and

grp—Z(BL/(m)q_l ) BL) = grp—Z(BL)

are isomorphic finitely generated abelian groups, by (c), so by the Hopfian property
of such groups the epimorphism gr, _,(7) must be an isomorphism. Thus gr,_,(7) is
an isomorphism for every p > 2, so 7 itself must be an isomorphism, by [1, III §2.8,
Corollary 3].
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A presentation matrix for the Z H-module B, /(Tﬁ)" ~1. B, can be obtained from
any presentation matrix for By by adjoining a number of rows whose entries are all
in (IH)71; by [22, Lemma 3.1], then,

A =Th\(a—Di N T B ==\ (q—Di
Z Eu—2+i(BL) ‘(IH)(q = Z En—2+i(BL/(IH)q : BL) ‘(IH @
i=0 i=0

Similarly, since N;(p) is a presentation matrix for coker o

Y Ey o (Ns(w)) - (TH)

i=0
= Z En—2+i(COker gc3/(71\'1)‘7_1 * coker gc3) '(m)(q_l)l'
i>0

Since BL/(Tﬁ)q ~1. B, and coker {, /(717)" ~1. coker §, are isomorphic Z H-modules,
they have the same elementary ideals, and hence

Z Ep,—2+i(BL) '(IH)(q_l)’ = Z E,L—2+i(N3(P')) '(IH)(q_l)l-

i>0 i=0
Forl<i<(®)-p+2=M"MH+1E u—2+i(NV3(p)), the ideal of ZH generated by
the determlnants of the ((*; 1) +1- 1) X ((*;1) + 1 — i) submatrices of N;(p), is
certainly contained in (TH)'Z " *17/, since every entry of N;(p) is an element of TH.
Furthermore, E, _,(N;(p)) = 06, (5.1)], and hence

Y Eyas(M(w) - (@) < (TH) T
iz0
Thus E, (B,) c @H)"T"+971, 50 since E, _,(B,) is the ideal of ZH generated by
E,_ 2(]."r’L), necessarily (1H)"> Fta-1 D E —2(BL)

The proof of the implication (c) = (b) completes the proof of the theorem.
Q.ED.

In the particular case p = 2, the image of <V1, §3> = p, is a principal ideal in
Z,= ZH. 1t is not difficult to deduce that the leading submodule of the image of »,
is generated by the initial form of any generator of this ideal, so that in this case
Theorem (3.5) does yield an explicit description of the Chen groups of L, closely
related to that found by K. Murasugi [16, Theorem 8.1}, as follows.

If L € S?is a tame link of p = 2 components, let v be the greatest integer with

A,(A;) € (IH)®, if any such integer exists, and v = oo otherwise. Equivalently, v is
the least integer with u([r + 1, s + 1]) # 0 for some r, s > 0 with r + s = v, if any
such integer exists. If v is finite, let d > 0 be the g.c.d. of the p([r + 1, s + 1]) with
r + s = v; we denote by Z,, the cyclic group of order d. Then we have

THEOREM (7.2). If v = 0, G"G,/G"G, ., = ZP"'Vp > 2.
If v is finite, then G"G,/G"G, | = Zr'Vpe (2,...,0+1},and G'G,/G"G,
=Z'®Z2 " 'Vp>uv+2

PrROOF. If v = o0, then .//lu = 0 (see the proof of Theorem (6.4)), so A, = 0, so
by Theorem (3.5) B, = = ZH. Hence for p =2,

” ” ~ (7O -2 7\ P!
G"G,/G"G,,, = grp_z(ZH) = (IH)" " /(IH)"

is isomorphic to Z” 1.
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If v is finite, on the other hand, then
1
in(A7,) = L (-D’p(lv—s+1L,s+1)(6 - 1) (6, - 1) +(1H)""
s=0
(again, see the proof of Theorem (6.4)). That gr( B, ) is isomorphic to the quotient of
gr(ZH) by the graded ideal generated by in(.#7,) implies that, for p <v + 1,
G"G,/G"G,,, = gr,_,(B) is isomorphic to gr, 2(ZH) = Z? ' Forp>v+2o0n
the other hand, gr,_,(7): gr,_,(ZH) — gr, ,(B;) is an epimorphism whose kernel
is the subgroup of gr, ,(ZH) = (IH)”~*/(IH)? "' generated by the elements

X (1) nllo =+ L+ )6 =17 (6 = )7 T

0<t<p-2-v Thus G'G,/G"G,,, = gr,_,(B,) is a Z-module with a (p — 1
— v) X (p — 1) presentation matrix whose ij entry is 0 if j <i or j > i + v, and
(D)) "w(v—j+i+l,j—i+1)ifi<j<i+v That G'G,/G"G,,; =L’ ®
Z2~ "~ follows from the calculation of the elementary ideals of such a matrix, which
can be accomplished with a relatively simple inductive argument [16, Lemma 8.1].
Q.E.D.

Alternatively, this theorem could be proven directly from [16, Theorem 8.1], using
Theorem (6.4) to describe the integers A‘?( L) defined in [16] in terms of the various
integers p([r + 1, s + 1]); since the proof of [16, Theorem 8.1] is rather involved,
though, we have included the more self-contained argument just given.

Having found that the Alexander polynomial of a two-component link determines
its Chen groups (as we have just seen), K. Murasugi [16, §1] raised the possibility
that the Chen groups of a p-component link, p > 3, may be determined by the
Alexander polynomial of the link, together with those of its sublinks. This turns out
not to be the case, as we proceed to show by example.

For p > 4, J. Milnor [13, Figure 7] has given an example of a p-component tame
link L in S* with these properties: its Alexander polynomial A,(A4;) = 0, every one
of its proper sublinks is trivial, and the only sequence (iy,...,i,, p — 1, p) of
pairwise distinct elements of {1,...,p} with p(iy,.. .0, 0 — 1, ) # 0is (iy,... 05,
- 1,pw)=(1,...,p). The latter property clearly implies that the coefficient of
(t, =1 [14-3(t; — 1) in A uu—1 18 not 0, and consequently .#, # 0. By Corollary
(4.3), then, E,_,(A4;) £ (IH)", and so by Theorem (7.1) at least one of the first p
Chen groups of L must not be isomorphic to the corresponding Chen group of the
trivial y-component link, L,. However, L, L, and all their sublinks of two or more
components have Alexander polynomial 0, while all their one-component sublinks
have Alexander polynomial 1.

For p = 3, the link of [13, Figure 7], the Borromean rings, has nonzero Alexander
polynomial. However, if L is the link obtained from the Borromean rings by
doubling the first component (L is pictured in the lower left-hand corner of [18, p.
138]), then A,(A4;) = 0 and

E)(A4;)= (4 - Dt - 1D)(t5—=1) (1, — 1,15 = 1).
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Thus L and the trivial three-component link both have Alexander polynomial 0, all
the proper sublinks of either are trivial, and we conclude from Theorem (7.1) that
their sixth Chen groups are not isomorphic.

8. Some questions. If L C S* is a tame link of p components, then it follows from
Corollary (4.3) that for ¢ > 2, E,_,(A,) < (IH)? iff ¢ = 0. We immediately
conclude

ProrosiTION (8.1). If p(iy,...,i,) =0 whenever 2 < p < g, then E,_(4;) <
(IH)“.

Since N ,(IH)? = 0, we also have
COROLLARY (8.2). If p(iy,...,i,) = O whenever 2 < p, then E,_1(4)=0

To what extent do the converses of these two statements hold? If g = 2, the
converse of Proposition (8.1) follows immediately from the definition of .#; this is
already known [22, Theorem 2]. At first glance, though, the prospects for ¢ > 3 seem
dim, given the potential cancellation apparent in the definition of the entries of /.
However, the integers p(iy,...,i,) satisfy many relations (cyclic symmetry [14,
Theorem 6] and the relations of [2, Lemma (3.3)], for instance), and using these we
have been able to verify the converse of Proposition (8.1) for ¢ = 3, 4 and 5. We will
not present these arguments here, though, since they are cumbersome and represent
only an incomplete answer to our question.

For g > 2, p(iy,...,i,) = 0 whenever 2 < p < qiff G/G, = ®/®, for3<r<gq
+ 1 (this is a simple consequence of [2, Corollary (3.6)]). By Theorem (7.1), then,
Proposition (8.1) is equivalent to the assertion that if G/G, = ®/®,for3 <r< g+
1, then G"G,/G"G,,, = ®"®,/®"®,, , for2 < p <gq.

In the particular case p = 2 Corollary (6.5) indicates that Proposition (8.1) is
equivalent to the assertion that if w(ij,...,i ») =0 whenever 2 < p <gq, then
p(r + 1,5 + 1]) = 0 whenever 0 < r + s < ¢ — 2. In this case the converse can also
be verified for ¢ = 6, using some relations from [14, §4].

An interesting consequence of the converse of Proposition (8.1) would be that a
link with E,_,(A4;) € (IH)* would have p(iy,.. .»i,) = 0 whenever i,,...,i, are
pairwise dlstmct and so would be homotopically tnvial [13, §5]. For 2 < p < 5 this
consequence is true, because of our partial verification of the converse of Proposition
(8.1). In addition, it is not difficult to show that, for p = 2 or 3, E w-1(4r) € (IH)*
if and only if L is homotopically trivial.
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