
A note on independent-disjoint analysis of
network reliability

R. E. Andersen
Department of Mathematics

Lafayette College
Easton, PA 18042 U.S.A.

A. O. Balan
Department of Computer Science

Brown University
Providence, RI 02912 U.S.A.

J. P. Rowe
Department of Computer Science
North Carolina State University
Raleigh, NC 27695 U.S.A.

L. Traldi (corresponding author)
Department of Mathematics

Lafayette College
Easton, PA 18042 U.S.A.
email traldil@lafayette.edu

telephone 610 330-5276; fax 610 330-5721

Abstract

We introduce the notion of independent-disjoint analyses of Boolean
functions. These analyses include both SDPs and OBDDs, and are well
suited for network reliability computations.

Keywords. Sum of disjoint products; Binary decision diagram; Net-
work reliability; Boolean function

1

Network reliability calculations are both computationally intractable [9] and

of great practical value; consequently many di¤erent network reliability al-

gorithms have been developed. In particular, several di¤erent techniques of

Boolean analysis have been used, including various kinds of sums of products

(SOPs) and binary decision diagrams (BDDs). A Boolean reliability calculation

in which every variable x has Pr(x) = 0:5 is essentially a count of the number of

satisfying truth assignments of the variables, i.e., an instance of the intractable

problem SAT-COUNT. Most Boolean techniques were not introduced with reli-

ability or SAT-COUNT calculations in mind, and many of these techniques are

not well suited to such calculations �after a Boolean function is analyzed with

one of these ill-suited techniques, reliability and SAT-COUNT computations re-

main intractable. For instance, an ordinary SOP is not well suited to reliability

or SAT-COUNT; typically there are many operational states that satisfy more

than one of the products in the SOP, and it is di¢ cult to take this duplication

into account when calculating the cumulative value. A classical solution is to

analyze an SOP to yield a sum of disjoint products (SDP); see [10] for a survey

of SDP algorithms used in network reliability. The intractability of reliability

and SAT-COUNT is then re�ected in the fact that for some types of Boolean

functions, the SDPs are exponentially larger than the smallest SOPs. Similarly,

an arbitrary BDD description of a Boolean function does not generally lead

to a tractable reliability or SAT-COUNT computation (see [13] for a compre-

hensive discussion of BDDs). The computation can be performed conveniently

if the BDD is converted into an ordered BDD (OBDD), but for some types of

2

Boolean functions the OBDDs are exponentially larger than the smallest BDDs.

We observe that for both BDDs and SOPs, the di¤erence between being

well- and ill-suited for computing reliability and SAT-COUNT can usually be

explained very easily, using only the basic probabilistic ideas of disjointness

and independence: an analysis of a Boolean function is well-suited to reliability

calculations if it can be recursively expressed in terms of conjunctions and dis-

junctions of disjoint and independent Boolean functions. Two Boolean functions

are disjoint if and only if there is no combination of truth values of the variables

that satis�es both functions. Independence is more complicated, because it can

happen that two Boolean functions represent independent events for some com-

binations of variable probabilities and not for others; but presuming that the

variables are pairwise independent, A and B will always be independent if none

of the variables that appear in A appear also in B.

The observation of the preceding paragraph suggests the following.

De�nition. An independent-disjoint analysis (IDA) of a Boolean function

is one of the following:

(a) a single variable or its negation, or

(b) A+B or AB, where A and B are disjoint IDAs, or

(c) A+B or AB, where A and B are independent IDAs.

A simple recursive calculation of the reliability of a Boolean function given

in IDA form is based on four facts: if A and B are disjoint events whose prob-

abilities are known then Pr(A [B) = Pr(A) + Pr(B) and Pr(A \ B) = 0,

and if A and B are independent events whose probabilities are known then

3

Pr(A \ B) = Pr(A) Pr(B) and Pr(A [B) = 1 � (1 � Pr(A))(1 � Pr(B)). As

this recursive calculation is so simple, the general intractability of reliability

calculations implies that for some types of Boolean functions, all the IDAs are

exponentially larger than a smallest possible description. Nevertheless a typical

Boolean function has IDAs that are smaller than its SDPs and OBDDs. The

reason is simple: the de�nition of IDAs is so general that it includes all SDPs

and OBDDs along with many other forms.1

The generality of the de�nition implies that there are many di¤erent algo-

rithms that could be used to produce IDAs. Here is an outline of one such algo-

rithm, essentially a Boolean version of the factoring algorithm studied by Satya-

narayana and Chang [11] for graphs and Barlow and Iyer [4] for more general sys-

tems, with a simpli�ed element-choosing heuristic used in step 4. An implemen-

tation is freely available at http://ww2.lafayette.edu/vtraldil/idapage.html.

1. A Boolean reliability function with pairwise independent variables is input

in SOP form. (A Boolean reliability function is given by an SOP which does

not involve any negated variables; the products which appear in the smallest

SOP for that function are its minpaths.)

2. Variables that are in series (i.e., no minpath includes some without the

others) are grouped together, and each group is replaced by a single variable

which represents the product of the grouped variables. Variables that are par-

allel (i.e., they are interchangeable and no minpath includes more than one)

1The observation that OBDDs are related to SDPs has certainly appeared elsewhere; for
instance [14] describes an OBDD representation of a Boolean function is a �graph-based set
of disjoint products�and [5] refers to an SDP as an �explicitly given list of products,�clearly
suggesting that an OBDD is an implicitly given list of disjoint products. However we do not
know of any other structures that generalize both SDPs and OBDDs, as IDAs do.

4

are grouped together, and each group is replaced by a single variable which

represents the sum of the grouped variables.

3. If step 2 has reduced the number of variables, it is applied again.

4. If there is more than one variable and step 2 does not reduce the number

of variables, then a Shannon decomposition f = xfx + �xf�x is performed, and

the algorithm is then applied to fx and f�x separately. (In our implementation

we choose x to be one of the variables that appears in the largest number of

minpaths.)

The output of this algorithm is naturally represented as a generalized BDD,

with variable transformations at the nodes of the diagram representing the re-

placements implemented in step 2. The fact that variable transformations can

be useful in reducing BDD size is well known; see for instance [2, 6, 7, 13]. The

output of the algorithm might also be described as a generalized SDP, one that

allows disjunctions of asserted variables and disjunctions of negated variables to

appear in the products. SDPs that allow disjunctions of negated variables are

commonly called MVI-SDPs (MVI stands for �multivariable inversion�) but we

have not seen SDPs that allow disjunctions of asserted variables mentioned in

the literature.

To illustrate the small size of some IDAs, consider a well-known example of

Abraham [1]. Here is the reliability function in SOP form, with 24 minpaths.

jkl + bcjl + acdh+ dfhk + acfjl + bcdfh+ abdhk + ghijk + efghk +

acegh+ efikl + aceil + dehijk + abeghk + bcefgh+ bcghij + abeikl +

bcefil + dfgikl + acdgil + acfghij + bcdehij + bcdfgil + abdgikl

5

SDP forms of this function have been discussed by many authors; see [3,

5, 8, 12] and their references. The function�s smallest known ordinary SDP

involves 53 disjoint products, and its smallest known MVI-SDP involves 35

disjoint products. The algorithm outlined above produces the much simpler IDA

of the function given below, with only 11 disjoint summands. (N.b. Reducing

the number of disjoint summands directly reduces the number of operations

involved in evaluating the function, as no variable appears more than once in

any summand.)

((e+ f + a)d+ l + g)ijhc(k + b) +�{jhc(k + b)(l + (d+ eg)(f + a)) +

((il + g)e+ d)�jhc(k + b)(f + a) + (d+ l + (i+ e)g)(k + b)hcajf +

(k + b)hca(jf)((il + g)e+ d) + (f + ab)kh�cj(d+ l + (i+ e)g) +

(e(g + il) + d)(f + ab)kh�c�j + (i(de+ g) + l)(f + ab)jkh�c+

((a+ b)c+ k)(j + f)�hli(dg + e) + (kb+ c)a�hli(dg + e)(j + f) +

(i(dg + e))j�hl((fa+ b)c+ k)

There is a similar simpli�cation in BDD representations of the function. An

application available at http://tech-www.informatik.uni-hamburg.de/applets/java-

bdd/bdd-applet.html produces an OBDD with more than 70 internal nodes.

As pictured below, a BDD with node transformations requires only 21 inter-

nal nodes to represent the IDA form of the function. In the �gure each node

contains an expression, and under each node the left-hand link represents the

negation of that expression and the right-hand link represents the assertion of

6

h

i(dg+e) c

jl*
((fa+b)c+k)

f+abj+f k+b

(kb+c)al ((a+b)c+k)l (i(de+g)+l)
*jk

j

(e(g+il)+d)k k*
(d+l+(i+e)g)

jf j

(f+a)*
((il+g)e+d)

a((il+g)e+d) a*
(d+l+(i+e)g))

i

l+(d+eg) *
(f+a)

(e+f+a)d
+l+g

Figure 1: an IDA of Abraham�s example

that expression. Technically, there should also be left-hand links to 0 and right-

hand links to 1 from the nodes at the bottom of the diagram; these links have

been omitted for simplicity.

In closing we observe that IDAs can be made even more �exible if we allow

them to be combined using operations other than addition and multiplication.

For instance, parts (b) and (c) of the de�nition might be modi�ed to include

A�B, the exclusive disjunction, and AB+AC +BC, the 2-out-of-3 reliability

problem. There are simple formulas for Pr(A � B) and Pr(AB + AC + BC)

when A;B and C are disjoint or independent, so evaluating the reliability of

networks represented by the resulting modi�ed IDAs will be convenient.

Acknowledgment

We are grateful to Lafayette College for its support of this work.

7

References

[1] J. A. Abraham, An improved method for network reliability, IEEE Trans

Reliab R-28 (1979), 58-61.

[2] S. Aborhey, Binary decision tree test functions, IEEE Trans Comput 37

(1988), 1461-1465.

[3] A. O. Balan and L. Traldi, Preprocessing minpaths for sum of direct prod-

ucts, IEEE Trans Reliab 52 (2003), 289-295.

[4] R. E. Barlow and S. Iyer, Computational complexity of coherent sytems

and the reliability polynomial, Prob Eng Inf Sci 2 (1988), 461-469.

[5] E. Châtelet, Y. Dutuit, A. Rauzy, and T. Bouhoufani, An optimized proce-

dure to generate sums of disjoint products, Reliab Eng Syst Saf 65 (1999),

289-294.

[6] W. Günther and R. Drechsler,. E¢ cient minimization and manipulation

of linearly transformed binary decision diagrams, IEEE Trans Comput 52

(2003), 1196-1209.

[7] Y. Jiang, S. Matic, and R. K. Brayton, Generalized cofactoring for logic

function evaluation, Proc 40th Conf Design ACM, Anaheim, CA, 2003, pp.

155-158.

[8] M. O. Locks and J. M. Wilson, Nearly minimal disjoint forms of the Abra-

ham reliability problem, Reliab Eng Syst Saf 46 (1994), 283-286.

8

[9] J. S. Provan and M. O. Ball, On the complexity of counting cuts and of

computing the probability that a graph is connected, SIAM J. Comp. 12

(1983), 777-788.

[10] S. Rai, M. Veeraraghavan, and K. S. Trivedi, A survey of e¢ cient reliability

computation using disjoint products approach, Networks 25 (1995), 147-

163.

[11] A. Satyanarayana and M. K. Chang, Network reliability and the factoring

theorem, Networks 13 (1983), 107-120.

[12] L. Traldi, Non-minimal sums of disjoint products, Reliab Eng Syst Saf 91

(2006), 533-538.

[13] I. Wegener, Branching programs and binary decision diagrams, SIAM,

Philadelphia, PA, 2000.

[14] F.-M.Yeh and S.-Y. Kuo, OBDD-based network reliability calculation, Elec

Letters 33 (1997), 759-760.

9

