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A GENERALIZATION OF TORRES’ SECOND RELATION
BY
LORENZO TRALDI

ABSTRACT. Let L = K, U - - - UK, be a tame link in S* of p > 2 components,
and let L, be its sublink L, = L — K,. Let H and H, be the abelianizations of
ﬂ',(S3 — L) and 1r,(S3 — L), respectively, and let ¢, .. ., L, (resp., ty, ..., t_1)
be the usual generators of H (tesp., H,). If ¢: ZH —»ZH, is the (unique) ring
homomorphism with ¢(%,) = ¢, for 1 <i < p, and ¢(#,) = 1, then Torres’ second
relation is equivalent to the statement that ¢E,(L) = ((I;<, tHh-1) - E(L),
where for 1 < i < p, /; is the linking number /; = I(K;, K,). We prove that if IH,, is
the augmentation ideal of ZH,,, then for any k > 2,

E,_ (L) + (( i1<1“ t,") - 1) - E (L) C¢E(L) C E,_\(L,) + IH,- E(L),

and examples are given to indicate that either of these inclusions may be an
equality. This theorem is used to generalize certain known properties of E, to the
higher ideals.

1. Introduction. Let L = K, U - - - UK, C §* be a tame link with p > 1 com-
ponents, and let G = 7,(S* — L) be the group of L, H its abelianization. Then H
is the (multiplicative) free abelian group generated by certain elements ¢, . . ., ¢,
which are defined geometrically (see §2), and its integral group ring ZH consists of
polynomials (with integer coefficients) in the ¢ and their inverses. In particular, ZH
is a unique factorization domain, and hence a g.c.d. ring.

The elementary ideals E, (L) are defined (in §2) for every & > 1; they are ideals
of the ring ZH, and form an ascending sequence of invariants of L. These ideals
have g.c.d.s A (L) = g.c.d. E (L), which are also invariants of L. In general, the
polynomials A, (L) are weaker invariants than the ideals E (L); however, it is well
known that A,(L), the Alexander polynomial of L, determines E;(L) by the
following property:

(1) if p = 1 then E\(L) C ZH is the principal ideal E,(L) = (A,(L)); and

(1) if p > 2 then E\(L) C ZH is the product ideal E,(L) = A,(L)IH, where
IH C ZH is the ideal generated by {#;, — 1, . . ., t, — 1}.

(The ideal IH may also be described as /H = ker ¢, where ¢: ZH — Z is the
homomorphism with e(h) = 1 VA € H. This function ¢ is known as the “augmenta-
tion map” or “trivializer” of ZH, and IH is the “augmentation ideal” of ZH.)

In 1953, in [5], Guillermo Torres proved that if p > 2 then the Alexander
polynomials of L and its sublink L, = L — K, satisfy:
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594 LORENZO TRALDI
(2 if p = 2 then

(t) = DA(L)(1y, 1) = (¢f = I)Al(Lp)(tl),
where / is the linking number / = /(X, K,); and
(2,)if p > 3 then

ALYty oty 1) = (( ]<I z,!,) - 1)A1(L,‘)(z1, cea b
i<p
where if 1 </ <p, /; is the linking number /; = /(K;, K,).

(These equations must be used with caution, since the Alexander polynomials are
only defined within multiplication by units.)

An equivalent statement may be formulated as follows. If G, = (S — L,) and
H, is its abelianization, then there is a (unique) homomorphism ¢: ZH — ZH, with
®(t;) = t; whenever 1 <i <p, and ¢(z,) = 1. Using the relations (1,_,) and (1,),
the relations (2) can be reduced to the single property:

2)if p > 2 then

$E,(L) = (( II t,~1') - I)EI(L,.)-

i<p
Here we show that this generalizes to

THEOREM (1.1). In the situation just described,
E,_\(L,) +(( il t;.) - I)Ek(L”) C 0E(L) C E,_\(L,) + IH, - E,(L,)
i<p
Jor any k > 1.

Since E (L) = 0 for any link, the first of these inclusions is the equality (2) if
k = 1. The upper bound E,_,(L,) + IH, - E,(L,) can be reduced somewhat by
geometric considerations (see §4).

It is, perhaps, unfortunate, but (2') cannot be generalized to higher values of k as
an equality. Examples are given in §3 which indicate that either of the inclusions of
Theorem (1.1) may be an equality for a given link L and value of k, or neither, or
both.

Nineteen years before the publication of Torres’ paper, Seifert had mentioned, in
[4], that A;(L)(1) = eA(L) = =1 if p = 1. Torres used the relations (2) to deduce
from this that Aj(L)(1, 1) = eA(L) = */ if p =2, and A (L)1, ..., 1) = eA[(L)
= 0if u > 3. Using the relations (1) and (2), and the fact that the elementary ideals
of a tame link form an ascending sequence, one can actually verify these proper-
ties:

(@) if p = 1 then ¢E (L) = Z forany k > 1;

(i) if u =2 then E\(L) C ((t; — 1)z, — 1), t| — 1, ¢, — 1), where / € Z is the
linking number; and

(iii) if u > 2 then E,(L) C (IH)*" .

We generalize these to:

(i) if p > 1then eE (L) = Z forany k > p;
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(i) if p > 2 then E, (L) C J + C, where J C ZH is the ideal generated by the
products (¢, — 1)z, — 1), p#¢q, and C CZH is the ideal generated by the
elements /%% — 1, p # ¢; and

(iii") if p > 2 then E,(L) C (IH)*~* for any k < p.

In particular, the augmented ideals ¢E,(L) depend only on the number of
components of L: eE, (L) = 0 whenever k < u, and eE, (L) = Z whenever k > pu.

This paper is a revised version of the second chapter of the author’s Ph.D. thesis
[6], which was written at Yale University under the guidance of William S. Massey,
to whom we would like to express our deep gratitude. We are also grateful to the
referee, who made several helpful suggestions. The author’s wife, Sharon Richter, is
to be thanked for drawing the illustrations.

2. The elementary ideals. In this section we outline a procedure by which the
elementary ideals of a tame link can be obtained from any regular projection of it.
The material is standard and appears, for instance, in Torres’ paper [5].

Let L C S be a tame link, given with a regular projection in the plane, which
has been normalized by removing short arcs surrounding the underpassing point of
each crossing. We denote the arc components of the projection ¢;; (1 <i < p and
1 <j < j); they are indexed so that for each i, ¢, U - - - Ug; is the image of K;
in the projection and ¢, . . ., ¢; appear consecutively around K;, determining an
orientation of it. We call the crossing that separates ¢;; from ¢, the ijth crossing
of the projection, and say it is of type +1 or —1 according to whether the
overpassing arc is ‘oriented from left to right or from right to left, relative to the
orientation of the underpassing component. If i %, € {1,..., u} the linking
number /(K;, K)) is the sum of the types of the crossings of K; over X; [3, p. 132].

A presentation {x,; r;;> of G = 7,(S* — L) is associated to this projection. A
generator x;; corresponds to each arc ¢;, and a relator r,; corresponds to each
crossing, if é,, 1s the overpassing arc of the jjth crossing, r,; is x,,x; jqu‘x L, or
Xpe x, i XpgXii L accordmg to whether the crossing is of type +1 or —1 If Fis the
free group on {x;}, y: F— G is the epimorphism associated to the presentation,
and a: G— H = G/[G, G] is the abelianizing homomorphism, then ay(x;,) =
ay(x, ) Vivj, k € {1,...,);}, and {t, = ay(x;)} freely generates H.

If {xy,...,%, ry...,r,> is finite presentation of t}ie group G, and F is the
free group on {x,, . . ., x,}, then there is a surjection y: F — G whose kernel is the
normal subgroup of F generated by {r,,...,r,}. The Alexander matrix of this

presentation is the m X n matrix, with entries in ZH, whose ijth entry is

ay(d(r)/ dx;) whenever 1 <i <m and 1 < < n. The elementary ideals E,(G),
k > 0, are defined by: E,(G) = 0 whenever k <n — m, E (G) = ZH whenever
k>n, and if n — m <k <n then E,(G) CZH is the ideal generated by the
determinants of the (n — k) X (n — k) submatrices of the Alexander matrix.
(These ideals do not depend on the particular presentation of G used to construct
the Alexander matrix, as shown in [1, pp. 104—107].) The elementary ideals E, (L)
of a link L are those of its group.

It is well known that any one of the relators 7;; is a consequence of the others
(see [3, p. 60]). Since there are at least as many generators x;; as relators r;; in the
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presentation, this shows that any tame link L possesses an Alexander matrix with
strictly fewer rows than columns, and hence Ey(L) = 0.

3. Examples. In this section the elementary ideals of certain links are calculated,
using the procedure of §2. To facilitate the calculations, the group presentations
have been simplified prior to the derivation of the associated Alexander matrix.
Also, if the final version of a presentation has as many relators as generators, then
the final relator is simply ignored in the calculation of the Alexander matrix.

In each of the first five examples, sufficiently many of the elementary ideals are
given to determine all of them, using the facts that £, = 0 and the elementary
ideals of a tame link form an ascending sequence.

The links of Examples 3 and 5 appear in the table at the end of [3] as 4% and 63,
respectively. Two projections are provided of the latter, only one of which is used
in the calculation of the ideals.

ExampLE 1. The trivial link 7" of p components. G = {(xy,, ..., x,;; 1). The
Alexander matrix of this presentation is the 1 X p matrix (0 0- - - 0). The
elementary ideals are E" = ZH, and EM_l = 0.

ExaMPLE 2. (Note the ordering of the components.)

€32

*

€31

G = (Xyy, Xp1, X315 X31X11X31X11> X31%2,%31%51 ». The Alexander matrix of this pre-
sentation is
(t3 -1 0 1 - t,)
0 -1 1—-4)
The elementary ideals are £, = (t; — 1)IH, E, = IH, and E; = ZH.

EXAMPLE 3. The link 42,

12

Vans

€11

~ S U | -1 -1 -1,.-1 -1 -1
G= <x11, X215 X11%21X11%X21X11 %21 X 11 %215 x21x11x21x11x21x11x21xll>
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The Alexander matrix of this presentation is
(5" = (o' + ") (1 = (5" + 1'3")).

The elementary ideals are E, = (¢;' + ;")IH = (¢, + t))IH, and E, = ZH.

EXAMPLE 4.

€3

<—€12

e
31
€11

e - >
22> ey

- Lol -1 1 -1
G = Xy, X215 X315 XX 11X X 11X X 1 X201 % 115

xz_llx3_11x2|x3_11x21x31x2_11x31’ x2_11x3|x21x3_1lx21x3_1lx2_11x3|>~
The Alexander matrix of this presentation is
((t;‘ +5Y1 -1 (P +E) -1 0 )
0 (' =D+ 5D (- DR+ 5'5Y) )
The elementary ideals are
E\ = (1, — D+ )1, + t3)IH,

597

Ey=((t; — D(t, + ), (ty = 1)1, + 1), (t; = D(t, + 13), (5 — 1)(¢; + 1)), and

E,=ZH.
ExaMpPLE 5. The Borromean rings (the link 63).

~ . -1 1,1 11
G = (xpy, X915 X315 X21X31X21%11%21X31X21 X3, X 11 X31 >

-1 1 -1 “1_-1 -1 11 -1
X31X11%X31%21%X31%X11X31X11%X21% 11> x11x21x11x31x11x21xllx2lx31x21>‘
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The Alexander matrix of this presentation is

( 0 A=) -1) (4n—-D0A- tz))
(&, — (1 — 1) 0 (L =-D-1)
The elementary ideals are

E, = (t, = )t — I)(t; — DIH,

E,=((t; = Dt = 1), (, = (13 = 1), (¢; — 1)(#3 — 1)), and

E,=17H.

ExaMPLE 6. The simple chain C* of u components.

G/ej/

G={x;...,%

. -1,-1 11
1> X21X11X21 X115+« o5 XX, llxp.lxp.—ll>‘

> pltp—
The Alexander matrix of this presentation is

', -1 1-1
-1  1-1,

We observe only that E, = ZH and E,_, = IH.

Consider the link L of Example 2. Its sublink L, is the trivial link T? of two
components (Example 1), so E,(L,) = 0 and Ey(L,) = ZH,. Hence

E(L,) + (( 11 t,.’v) - I)EZ(L") =0+ ((1,t,) - 1)ZH,
i<p
is the principal ideal of Z H, generated by (#,1,) — 1, and
El(Lu) + IH, - EZ(L#) =0+ 1/H,-ZH, = IH,.

Since Ey(L) = IH, ¢Ey(L) = IH, = E\(L,) + IH,- Ey(L,). This shows that the
second inclusion of Theorem (1.1) may be an equality when the first is not.

If we consider instead the link L of Example 4, then its sublink L, is the link of
Example 3, so E\(L,) = (¢, + t;)IH,, and Ey(L,) = ZH,. Hence
E,(Lu) + (( i t"-) - I)EZ(L#) =(4 + )IH, + (% - l)ZH"

i<p

=((4 + )4 = 1), (4 + )t = 1), (6 + 1)(1, — 1)),
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and
E(L,) + IH,- E(L,) = IH,- ZH, = IH,.
Thus
E(L) = ((1; — D(ty + 1), (1, — D(#; + 1), (1, — (1, + 1), 0)

= E(L,) + (( 1l ti"') —~ l)Ez(L”).
i<pm

This shows that the first inclusion of Theorem (1.1) may be an equality when the

second is not.

The link of Example 5 shows that it is possible for neither of the inclusions of
Theorem (1.1) to be an equality (k = 2), and the links of Example 6 show that it is
possible for both inclusions to be equalities at the same time (k = p — 1).

The inclusions of (ii") and (iii’) are realized as equalities by the E, _, of Examples
2 and 6; the inclusion of (i) is also an equality for Example 5. According to
calculations not presented here, (i) is an equality for twenty-seven more of the
three-component links listed in Appendix C of [3], all but 8, 82, 83, 93,, 93,, 93,
and 93,.

4. Proof of Theorem (1.1). Suppose that a tame link L= K, U - - - UK, C S 3
of u > 2 components is given, together with a regular projection in the plane. The
projection is assumed to contain no crossings in which the overpassing arc is one of
the underpassing arcs. (We call such crossings “trivial”; clearly they can be
adjoined to, or deleted from, a link’s projection at will.) It is also convenient to
assume that there are as many crossings in which K, is the underpassing compo-
nent as there are arcs e,; in the projection. (If this is not the case, then K, is an
unknotted component of L which is unlinked from the rest of L, and the situation
can be remedied by “sliding it under” some other component of L to introduce
nontrivial crossings over K,,.)

Following the procedure of §2, a presentation {x,; r;;» of G = 7,(S>— L) is
obtained, in which the generators x;; are in one-to-one correspondence with the
arcs ¢;; and the relators r;; are in one-to-one correspondence with the crossings of
the projection. If this presentation is used in the construction of the Alexander
matrix, then an m X n (where m is the number of crossings of the projection, and
n = 2., j; is the number of arcs ¢;;) matrix is obtained.! Each row of the matrix
has precisely three nonzero entries; explicitly, the row corresponding to the ijth
crossing has these nonzero entries: #, or &, 'in the column corresponding to ¢, 7
(according to whether the crossing is of type +1 or —1), -1 in the column
corresponding to ¢;,, (independent of the type of the crossing), and 1 — ¢ or
t, '(, = 1) in the column corresponding to the overpassing arc e,, (according to
whether the crossing is of type +1 or —1).

'Unless L has some unknotted component unlinked from the rest of L, m = n, and the Alexander
matrix is square. (In fact, even if L has such a component, it will still have some regular projections for
which m = n.) Eliminating any redundant row(s), though convenient when dealing with specific
examples, does not simplify the ensuing arguments at all, so we do not eliminate any rows.
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The rows and columns of this matrix may be partitioned as indicated in Figure 1.

columns corresponding  columns corresponding

to arcs s i<u to arcs e,
rows corresponding to ,
.. . . M N
ijth crossings, i < u
=M

rows corresponding to ,

. . D D
ujth crossings

FIGURE 1

Let M’, N, D, and D’ be the indicated submatrices of the Alexander matrix M.

An obvious property of determinants is their functoriality, that is, if P is a square
matrix with entries in some commutative ring R, f: R — R’ is a homomorphism,
and f(P) is the matrix whose entries are the images under f of the entries of P, then
det f(P) = f(det P).

Using the definition of the elementary ideals E (L) = E,(G), it follows that
¢E, (L) = 0 whenever 0 < k <n — m, ¢E (L) = ZH, whenever k > n, and if
n —m < k <n then ¢E,(L) is the ideal of ZH, generated by the determinants of
the (n — k) X (n — k) submatrices of ¢p(M).

Torres notes in [S] that ¢(M’) is an Alexander matrix for the link L, =
Ky U - -+ UK,_y; in fact it is easy to see that a regular projection of L, which
yields this Alexander matrix can be obtained from the original projection of L by
replacing each crossing in which K, passes over some other component of L by a
trivial crossing. (See Figure 2.)

€ Cii+1 ] Cij+1

€uq

Original crossing  is replaced by a  trivial crossing.
FIGURE 2
Note that the same trivial crossing is inserted, irrespective of the type of the
original crossing.

By hypothesis, there are as many crossings in which K, is the undercrossing
component as there are arcs e,;, that is, D is a j, X j, matrix. Hence ¢(M’) is an
(m — j,) X (n — j,) Alexander matrix for L,. By the definition of §2, it follows that
E(L,) =0 whenever 0 <k <(n—j,)—(m—j)=n—-m E(L)=1H,
whenever k > n — j,, and if n — m <k <n — j,, then E,(L,) is the ideal of ZH,
generated by the determinants of the (n — j, — k) X (n — j, — k) submatrices of

H(M).
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In particular, ¢E, (L) = E(L,) = E,_,(L,) = 0 whenever 0 < k <n — m, and
$E, (L) = E(L,) = E,_,(L,) = ZH, whenever k > n, so both inclusions of Theo-
rem (1.1) are equalitiesif k <n — mork > n.

Consider the matrix ¢(D); the description, at the beginning of this section, of the
entries of M leads immediately to the conclusion that

where if 1 <j <, the diagonal entry d, is 1, ¢,, or tp“, according to whether K,
passes over itself in the pjth crossing, or 1 < p <p and K, passes over K, in the
with crossing, which is of type +1, or 1 < p <p and K, passes over K, in the yjth
crossing, which is of type —1. As Torres notes in [§], it follows that

n pel
det¢(D)=(H d,)—1=(H t,-")—l,
j=1 i=1
where /, = I(K,, K,) whenever 1 <i < p. Furthermore, if D, is the submatrix of D
obtained by deleting its first column and last row, clearly det ¢(D,) = *1.

In particular, ¢(M) has the (j, — 1) X (j, — 1) submatrix ¢(Dy) with det ¢(D,)
= =*1, and hence ¢E,_ J, +1(L) = ZH,. Since the ideals of L form an ascending
sequence, it follows that ¢E,(L) = Z H, whenever k > n — j,, and hence ¢E(L) =
E,_(L,) = ZH, whenever k > n — j,. Thus both inclusions of Theorem (1.1) are
equalities if k > n — j,.

It remains to consider the valuesn — m <k <n — j,.

Torres notes in [S] that ¢(D’) = 0; this follows also from the description of the
entries of M given at the beginning of this section. Thusif 1 <p <m -, and P
isap X p submatrix of ¢(M"), (M) hasa (p + j, — 1) X (p +j, — 1) submatrix

P X P X
( 0  &(Dy) 0 ¢(Dy)

and ¢(M) also has a (p + j,) X (p + j,) submatrix (§ ,5)) with

) with det( ) = *det P,

w—1
det(g ¢();)))=(det¢(D))(det P) = (( i z,!') - l)det P

i=1
(Here X and Y are submatrices of ¢(N) which do not affect the values of the
determinants of the matrices in which they appear.) It follows that E, _,(L,) C
¢E, (L) whenever n — m <k <n —j,, and ((I*2) t}) — DE(L,) C ¢E(L)
whenever n — m <k <n — j,. Certainly E,_,_ (L) =0C¢E,_,(L). Also,
since ¢(D) is aj, X j, submatrix of ¢(M), the principal ideal

(det (D)) = (( 11 z,.'f) - 1)-ZH# = (( II z,.") - I)En_j"(L#)

i<p <p
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is contained in ¢E, _ j”(L). Thus

E, (L) + (( I;I til') - I)Ek(L,.) CoE (L)
i<p
whenevern —m < k <n — j,.

To verify the second inclusion of Theorem (1.1), it must be shown that det X &
E._ (L) + IH,- E(L,) whenever n —m <k <n —j, and X is an (n — k) X
(n — k) submatrix of ¢(M).2 The argument is split into three cases.

Case 1. X does not involve some of the last j, columns of ¢(M). Suppose that X
involves precisely j of the last j, columns of ¢(M), j <j,. Expanding det X by
minors along the last j columns of X yields an expression of det X as a sum in
which each summand is a multiple of the determinant of some (n — k — j) X
(n — k — j) submatrix of ¢(M’). Thus det X can be expressed as a sum of certain
elements of Ekﬂ._j”(L#), so det X € Ek+j_j“(L”). Since j <j,, k+j —Jj, <k -1,
and hence E,,; (L) C E,_ (L), since the ideals of L, form an ascending
sequence. Thus det X € E,_,(L,) in this case.

Case 2. X involves all of the last j, rows and columns of ¢(M). Then X is of the
form X = (§ 4, for some (n — k — j,) X (n — k — j,) submatrix X of (M) and
(n — k — j,) X, submatrix Y of ¢(NV), and hence

det X = (det ¢(D))(det X ) = ((;H t,.") - l)det X e ((’H t,.") - I)Ek(L#).
Clearly ' '

E((H t,.")—l)=H1"—1=l—l=O,

i<p i<p
NeJ

(( II t,-") - 1) € ker & = IH,.
i<p

(Here &: ZH, - Z is the augmentation &) = 1 Vh € H,.) Thus det X € IH,,-
E,(L,) in this case.

Case 3. X involves all of the last j, columns of ¢(M), but does not involve some
of the last j, rows of ¢(M). Expanding det X by minors along the last j, columns of
X yields an expression of det X as a sum in which each summand is some multiple
of a product ed, where e is some entry of ¢(N) and d is the determinant of some
(n—k —j,) X (n— k —j,) submatrix of ¢(M’). From the description of the
entries of M given at the beginning of the section, it can easily be deduced that
every nonzero entry of ¢(N) is *£(f; — 1) for some i € {1,...,u — 1}, i.e., every
entry of ¢(N) is in /H,. Thus det X can be expressed as a sum in which each
summand is in /H, - E;(L,), so det X € IH, - E,(L,) in this case. Q.E.D.

Certain geometric considerations may be used to limit the upper bound of
Theorem (1.1) significantly. Let #: (S — {pt}) — R? be an orthogonal projection
map which, when restricted to L, yields the given regular projection of L in the

2The second inclusion is trivially true if k = n — Ju for (M) certainly has entries which are units of

ZH, so E,_, (L) =1Z1H,
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plane. Let U7 = {i|l <i <p and there is a crossing in m(L) in which K; passes
under K, }, and let /] be the ideal of ZH, generated by {#;, — 1|i € U;'}. Then

LeMMA (4.1). The second inclusion of Theorem (1.1) still holds if E,_,(L,) +
IH, - E(L,) is replaced by E,_\(L,) + 1] - E,(L)).

ProOF. If 1 <7 <p and /; # O then K; must pass under K, in some crossing of
any regular projection of L, since [, = I(K;, K,) = I(K,, K;) can be calculated by
considering only such crossings, as noted in §2. Hence i € Uy whenever 1 <i <p
and [, # 0, so (f; — 1) € I whenever 1 <i <p and /; # 0. The element (II,_, th
— 1 of ZH, can be expressed as

(H ti[') —1=23 (- )y,

i<p 1,#0

where y; is

(ma(z ) o (a2,

according to whether /; >0 or /; < 0. Since (4 — 1) € I] whenever /; # 0, this
shows that (II, ., th-1¢€e 17

Furthermore, if N is the submatrix of the Alexander matrix M indicated in
Figure 1, then every entry of ¢(N) is an element of 1, as can be deduced from the
description of the entries of M given at the beginning of this section. Q.E.D.

A simple application of this lemma is

COROLLARY (4.2). Suppose that L has a projection w(L) such that U, contains only
a single element uy, and suppose further that (K, , K,) = *1. Then the first inclusion
of Theorem (1.1) is an equality for any k > 1.

PrOOF. For then the lower bound of Theorem (1.1) coincides with E,_(L,) + 1
- E(L).

In particular, any link L = K, U K, with I(K,, K;) = %1 satisfies the hypothesis
of this corollary. (Note that in this case the upper bounds provided by Theorem
(1.1) and the lemma are identical.)

Another way of using the lemma is by considering the various upper bounds it
gives when the projection « is varied. For instance, consider the link L of Example
5in §3. As shown there, L has projections 7 and 7’ in the plane with U; = {1} and
UT = {2}. Also, its sublink L, = L, is the trivial link 72 of Example 1, so
E\(L,) = 0and Ey(L,) = ZH,. Theorem (1.1) then states that

0=E(L,)+ (( IT til’) - I)Ez(Lp) C oE,(L)

i<p
C E(L,)+ IH,- EZ(L,‘) =IH,

in which neither inclusion is an equality. Applying the lemma, it can be concluded
that ¢E,(L) C (¢; — 1), by considering the projection «, and ¢E,(L) C (¢, — 1), by
considering 7', and hence ¢E,(L) C (¢, — 1) n (¢, — 1). Since ¢, — 1 and ¢, — 1
are relatively prime (see §5), it follows that ¢E,(L) C ((¢, — 1)(¢, — 1)); this
inclusion is in fact an equality.
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S. The properties (i), (ii’), and (iii’). In this section these properties, mentioned in
the introduction, are verified.

The property (i') is considered first. Since the ideals of a tame link form an
ascending sequence, to verify (i') it suffices to show that eE,(L) = Z whenever L is
a tame link with g components; this is proven by induction on u. If g = 1, thisis a
consequence of the property (i) stated in the introduction. Suppose that p > 2, and
that (i) holds for all tame links of p — 1 components. In particular, then ¢E, _,(L,)
= Z, where &: ZH, — Z is the augmentation map. Clearly ¢ = é¢: ZH — Z, and
hence by Theorem (1.1) Z = ¢E,_(L,) C epE (L) = eE,(L).

A similar inductive argument, using the second inclusion of Theorem (1.1) rather
than the first, can be used to show that eE, (L) = O (i.e., E (L) C IH) whenever L
is a tame link of & > k components.

Proofs of the other two properties require more preparation.

In [2, p. 189] it is shown that if u > 1 and H is a free abelian group with basis
Lo dy then there is an exact sequence

Y, Y, 5 IH 0
of ZH-modules of the following form: Y, and Y, are free Z H-modules with bases
{b|]1 <i < p)and {b;|1 <i<j < p), respectively, a)(b) = #; — 1 whenever 1 <
i <, and ay(b;) = (4 — Db, — (; — 1)b, whenever 1 <i <j < p. (If p = 1 then
Y,=0)

From this, two properties of the elements 7, —1,...,7, — 1 of ZH can be
readily concluded, namely: if i #; then f; — 1 and 4 — 1 are relatively prime, and
if ZH is considered as an algebra over Z then {f, — 1, ..., t, — 1} is an algebrai-
cally independent subset (i.e., if Z[y,,...,y,] is the ring of polynomials with
integer coefficients in the indeterminates y,, . . ., Y then the (unique) homomor-
phism Z[ y,, . .., y,] = ZH which takes each y; to #; — 1 is injective.)

A consequence of the latter property is

LEMMA (5.1). Let H be a free abelian group with basis t,, . . . , t,, and suppose that
x €ZH, n,p,,...,p, >0, p=3%,p,>0, y =1t — D, and xy € (IH)"*".
Then x € (IH)".

PrOOF. There is a w it ¥ € ZH such that ux is a polynomial (with integer
coefficients) in #,...,¢, [1, p. 117]. Since £, =(4 — 1)+ 1 Vi, ux is also a
polynomialin¢, — 1,..., t, — 1, asisuxy.

Since {#; —1,...,7 — 1} is algebraically independent, ux and uxy can be
represented uniquely as sums of (nonzero) integer multiples of monomials® in
ty, —1,...,¢ — 1, without any monomial appearing more than once in either
sum. By uniqueness, the representation of uxy is obtained from that of ux by
multiplying by y. By hypothesis, each monomial appearing in the representation of
uxy is of total degree at least n + p, so each monomial appearing in the representa-
tion of ux is of total degree at least n. Hence ux € (IH)", so x = uxu™' € (IH)".
Q.E.D.

3We consider 1, and no other integer, as a monomial.
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It is convenient to broaden the notation used heretofore. If L = K; U - - - UK,
C 8% and 1 <j < p then let L; be the sublink L; = K, U - - - UK;_; U K,
U--- UK, =L- K of L leth=7r1(S3——Lj)bethegroupoijandH,its
abelianization, let ¢, ..., %_y, 44y, - - -, t, € H; be the preferred basis elements
constructed in §2, and let ¢;: ZH — ZH, be the (unique) ring homomorphism such
that ¢,(#;) = ¢, whenever i #, and ¢,(1) = 1. Then from Theorem (1.1) it can be
concluded that

B+ ((IL 459) = 1)Bu(L) € 9ED) € Fni(L) + 11 B(L)
i~f
whenever k > land 1 < j < p.
Property (iii’) may now be verified, that is, that E,(L) C (IH)*~* whenever L is
a tame link of u components and p > k > 1. If p = 2 then necessarily k = 1, and
E\(L) C IH by the property (1,) stated in the introduction. The proof proceeds by
induction on u. By inductive hypothesis
E_ (L) c (1)~ 7470 = (1) "
and
—k—
E(L) c (1H)*™
whenever 1 < j < u. Hence by Theorem (1.1),
—k —_
8 E(L) C Ec_(L) + IH,- E(L) C (IH)" ™" = ¢((IH)"™")
whenever 1 < j < p. Suppose x € E,(L); then ¢,(x) € ¢1((IH)"_"), SO
x € (IH* % + ker ¢, = (IH)* ™% + (¢, — 1),

that is, x = x, + (¢, — 1)y, for some x, € (UH)* *and y, €ZH. If k =p—1
then this shows that x € IH = (IH)* " *. If k < p — 1 then

dy(x) = dp(x)) + S (y)(1 — 1) € (IH,)* %,
and also
dy(x)) € $(IH)*™*) = (IH)* ™5,
SO
Syt — 1) € (IHY" ™~
Applying Lemma (5.1), it can be concluded that
¢y(¥1) € (TH)**71 = ¢y(IH)* ™ 7),
and hence
yy € IHY ¥ '+ ker ¢, = (IH)* “7 '+ (5, - 1),

that is, y, = yi + y{(t, — 1) for some y; € (IH)* % 'andy|{ € ZH. Then

x=x, +y(t, = 1) =x +y(t; - Y& = 1),
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where x, = x, + yi(t; — 1) E UH)* % and y,=y] € ZH. If k = p — 2, this
shows that x € (IH)? = (IH)* % If k < u — 2, then the same argument (essen-
tially) can be used, repeatedly, to show that whenever 2 <i < u — k there are
x; €(IH)* *andy, € ZH such that x = x; + y, - H}=,(§. — 1). In particular,

p—k

x=x,_+y, 1l (-1 e -
j=1

Since x € E,(L) was arbitrary, this shows that E,(L) C (IH)*~*.

Property (ii") differs from (i’) and (iii") in that it is not, strictly speaking, a
consequence of Theorem (1.1), though part of the proof of Theorem (1.1) is used in
its verification.

LEMMA (5.2). Let H be a free abelian group with basis t,, . . ., t,, p > 2, and let
J CZH be the ideal generated by the products (8, — 1)(¢, — 1), p # q. Suppose
Ay ..., A, are ideals of ZH, x EZH, 1 <i < p, and x(t; — 1) €J + T, 4;-
(¢ = 1). Then
x€(h—1L..., .~ Lty — 1., — 1)+ 4,

PROOF. Suppose that for 1 < j < p, 4; is the ideal of ZH generated by {a;}. It
suffices to verify the lemma for i = 1.

Suppose first that u = 2. Then by hypothesis
x(t — 1)‘ =xo(ty = D( — 1) + %xlkalk(tl -1+ %x2k02k(t2 - 1)
for some xy, x4, X, € ZH. Since t; — 1 and ¢, — 1 are relatively prime and
(§x2ka2k)(t2 -1 = (x —xo(t = 1) — %xlkalk)(tl -1

is divisible by ¢, — 1, 2, xy,a,, = x,(¢; — 1) for some x; € ZH. Thus by cancella-
tion

x=xt, =D+ x(t,—- 1)+ %x,kalk E(t,— 1)+ 4,

Suppose now that g > 2, and the lemma holds for free abelian groups of
ranks < p. Let H, be the free abelian group with basis #,,...,,_;, and let ¢,:
H — H, be the group homomorphism given by ¢,(#) = ¢ forj < p, and ¢,(t) = 1.
Since

p—1
¢ ()1 =D €g () + X ,(4)- (5 - 1),
J

=1

by inductive hypothesis

o (x)E(t,—1,...,0,_,—1)+¢,(4,) CZH,.

Hence x €¢,'(, = 1,..., 4,y = D+ oA =(t,— L, ...,t,_, — 1)+ 4,
+ker¢p,=(—1,...,4,— 1D+ 4, QED.

As noted in §2, any one of the relators in the presentation {x;;; r;;» of G =
7,(S* — L) is a consequence of the others. It is shown in [1, p. 105] that this
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implies that each row of the Alexander matrix M of this presentation is a linear
combination of the other rows. As a consequence of this, we obtain

LeMMA (5.3). Suppose 2 < k < m. Given a choice of k columns and k — 1 rows of
M, let X,, ..., X, .., be those k X k submatrices of M which involve these chosen
columns and rows. Then any one of det X, ..., det X,,_, ., is in the ideal of ZH
generated by the others.

PrOOF. Let Y be the (k — 1) X k submatrix of M involving the chosen rows and
columns. For 1 < i < m let Y, be the k X k matrix whose last k — 1 rows are the
rows of Y, and whose first row consists of those entries of the ith row of M that lie
in the chosen columns.

Suppose that 1 < p <m — k + 1, and that X, involves the gth row of M in
addition to the chosen rows. Since the gth row of M is a linear combination of the
other rows of M, the multilinearity of the determinant (as a function of the rows of
a matrix) implies that det Y, is a linear combination of the determinants of the Y,
r # q. If the rth row of M is among the chosen rows, then Y, has two identical
rows and, hence, det Y, = 0; thus det Y, is a linear combination of the determi-
nants of those Y,, r # g, such that the rth row of M is not among the chosen rows.
Each such Y, is, up to permutation of its rows, one of X, . . ., X,,,_; ., but not X,s
also Y, is, up to permutation of its rows, X,,. Thus det X, is a linear combination of
the determinants of the X, s # p. Q.E.D.

A proof of (ii’) may now be presented.

If u = 2, then by property (1,) of the introduction,

E(L)y=A/(L)IH =A(L)- (¢, — 1, ¢, —1).
By (2,),
o,((1, — DA(L)) = (t{(K"KZ) - I)Al(Lp.)’
SO
(ty — DA(L) — (t{(K"KZ) - I)Al(Lp.) Eker g, = (1, — 1),
that is, (1, — DAY(L) — (+{%*%? — 1)A|(L,) is divisible by 7, — 1. Since it is also
divisible by ¢, — 1, and ¢, — 1 and ¢, — 1 are relatively prime, it must be divisible
by the product (¢, — 1)(z, — 1). Thus
(tl - I)AI(L) - (tll(K"KZ) - I)Al(L,u) EJ,
so (¢, — DAJ(L) € C + J. Similarly, (¢, — 1)A,(L) € C + J, and hence
E(L)y=A(L)-(t,- 1L, - 1)CC+J.
Proceeding inductively, suppose that p > 2. The inductive hypothesis implies
that E, (L) C¢(J + O)Vie{1,...,pn}; clearly then

E, L)+ ((E ,jz(:(.,m) - I)EH_,(L,.) Co+C) Vie(l...,p).
To verify that (ii’) holds for L, it is necessary to show that detX €J + C
whenever X is an (n — u + 1) X (n — p + 1) submatrix of M. The proof of this is
split into two cases.
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Case 1. Thereisani; € {1, ..., p} andj,, j; € {1,...,; } such that X involves
neither the column of M corresponding to ¢; ; nor the row of M corresponding to
the 7, j,th crossing in the projection. A simple counting argument indicates that
either there is an i, € {1, ..., u} such that X does not involve the column of M
corresponding to €, for some j € {1, ... »Jip}s OF else there is an i, € {1,..., u}
such that X involves both the column corresponding to ¢, ; and the row corre-
sponding to the i, jth crossing in the projection for everyj € {1, .. ., j; }. By Cases
1 and 2 of the final argument of the proof of Theorem (1.1),

¢, (det X) € E,_,(L;) + (( 11 t,.l(K"Kiz)) - 1)EM_1(L,.2)
iy
no matter which of these two properties is satisfied by i,. Also, by Case 1 of the
proof of Theorem (1.1), ¢; (det X) € E,_,(L;).
As noted above, we can conclude that ¢, (det X) € ¢, (J + C) and ¢, (det X) €
¢;,(J + C). From the former it follows that

detX €J+ C+ker¢, =J + C+ (s — 1),

that is, there are y €J + C and z € ZH with det X =y + (4, — 1)z. Then
¢ (det X) = ¢, (¥) + (4, — D¢, (2). Since ¢, (det X) and ¢, () are both elements of
$,(J + C) = ¢,(J) + ¢,(C), sois (;, — 1), (2).
Let C; C ZH be the ideal generated by the set of elements of the form
till (K,.K) — 1
4 — 1

for i # i,. (This expression denotes that element of ZH whose product with £, — 1
is /%% — 1) Then by Lemma (5.2)
o(DEd((ti—1L..stioi =Lty —1L...,0, = 1)+ C),
and hence
ze(t =16 - L= 1.0, — 1)+ G +kerg¢,
=(tn-L.... - Lt =1, -1)+C,.
Thus (4, — 1)z € J + Cand, hence,det X =y + (f;, — D)z €J + C.

Case 2. For any i € {1,...,pu}, either X involves the column of M corre-
sponding to ¢; for every j € {1, ..., i}, or X involves the row of M corresponding
to the jjth crossing in the projection for every j € {1, ..., ;}. Choose i, €
{1,...,u) and j € (1,...,/;} such that X does not involve the column of M
corresponding to ¢; ;, and let X = X, X, ..., X,,_,, bethe(n — p + 1) X (n -
p + 1) submatrices of M which involve the same columns as X and involve every
row of M involved by X, except possibly the one corresponding to the i, jth
crossing in the projection. Then each X,, i > 2, falls under Case 1 and, hence,
det X; € J + C whenever i > 2. By Lemma (5.3), det X is an element of the ideal

of ZH generated by the determinants of the X, i > 2; hence detX € J + C.
Q.E.D.
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Before closing out this section, a final comment may be in order. The obvious
analogy between the properties (i), (ii) and (iii) and the properties (i), (ii’), and (iii")
may give the impression that “everything that can be said about the first
elementary ideal can be said about the higher ideals”. This is not true. To illustrate
this point, consider a link L = K, U K, such that /(K,, K,) = 0. From Torres’
relation (2,) it can be concluded that A,(L)(#;, 1) = ¢,A(L) =0, and also
that A(L)(1,t) = A (L) =0, so that A (L) is divisible by the product
(t; — 1)(t, — 1); in particular, A(L) € (JH)? and hence E,(L) =A(L)-IH C
(ZH)>. (This can also be concluded from the property (ii).) However, it is not true,
in general, that E, (L) C (IH)’ if L is a link of p > 3 components and all the
linking numbers of the various components of L with each other are zero, as can be
seen by considering Example 5 of §3.

6. The link polynomials. A simple consequence of the first inclusion of Theorem
(L. is

COROLLARY (6.1). In the situation of the statement of Theorem (1.1),
A (L)t - - -5 8y, 1) = 9O (L) divides both A,_y(L,) and ((II;., th - DALY
for any k > 1.

(This follows immediately from the definition of the g.c.d. of an ideal of ZH,,.)

The second inclusion of Theorem (1.1) cannot be used in a similar manner, since
$A,(L) need not be a g.c.d. of ¢pE(L) in ZH,.

An inductive proof can be constructed very easily, using Corollary (6.1) and the
property (i) of the introduction, of a property which may reasonably be called
property (i”): namely, that eA (L) = A (L)(1, ..., 1) = =1 whenever L is a tame
link of p < k components.

Furthermore, Corollary (6.1) can be generalized to state: if 1 <i < u then
B (LX(tys - oo s iy L, b4y, - -+, 8,) divides both A, _((L;) and

(( II tjl(K”Kj)) - I)Ak(Li)9
i
for any k > 1, just as Theorem (1.1) was generalized in §5. A simple inductive
argument, using this statement and the fact that for tame links of two components
*eA(L) is the linking number, may be used to show: A,_,(L)(1,...,1) =
eA,_;(L) divides the linking number of any two components of L if L is a tame
link of u components. In the string of analogies, this is property (ii”).

Unfortunately, this property (ii”) is highly inaccurate. For instance, consider that
the link of Example 5 of §3 has A, = A,_; = 1, even though the linking numbers of
its components with each other are all zero.

Even worse is the failure of any “property (iii”)”. For the links of Example 6 of
§3 show that for any p > 3 there is a link of g components with A, = 1.

In sum, Theorem (1.1) and the properties (i), (ii"), and (iii") are reflected only
partially by the link polynomials. This is symptomatic of the loss of information
involved in the passage from the ideals to their g.c.d.s.



610 LORENZO TRALDI

BIBLIOGRAPHY

1. R. H. Crowell and R. H. Fox, Introduction to knot theory, Springer-Verlag, Berlin and New York,
1977.

2. S. Mac Lane, Homology, Springer-Verlag, Berlin and New York, 1967.

3. D. Rolfsen, Knots and links, Publish or Perish, Berkeley, Calif., 1976.

4. H. Seifert, Uber das Geschlecht von Knoten, Math. Ann. 110 (1934), 571-592.

5. G. Torres, On the Alexander polynomial, Ann. of Math. (2) 57 (1953), 57-89.

6. L. Traldi, On the determinantal ideals of link modules and a generalization of Torres’ second relation,
Ph.D. Dissertation, Yale Univ., New Haven, Conn., 1980.

DEPARTMENT OF MATHEMATICS, LAFAYETTE COLLEGE, EASTON, PENNSYLVANIA 18042



