Unit 3, Section 5: Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors of Matrices and Transformations

In this section we will introduce the concept of eigenvalues and eigenvectors of a transformation.
We begin with an illustrative example.
Define
T:R? — R?

()= (2)

Geometrically, we can think of T" as a “shear”; indeed, T leaves the 2nd coordinate of each
vector alone, but stretches out the first coordinate. Let’s calculate the images of vectors

) e ) e
o = 7((3))

under the action of T

The vectors above and their images are graphed below; vectors v; and T'(v1) are graphed in
blue; vy and T'(ve) are in green; and vz and T'(vs) are in red:
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There is something interesting about the action of T on vector vs; indeed,

o =1( ()= ()2

that is, T simply scaled vector vs (unlike the other two vectors, which were also rotated).
The vector vg above is our first in-class example of an eigenvector, and the scalar 2 is called an
etgenvalue for T. We introduce the definitions below:

Definitions 5.5/5.7. Let T': V' — V be a linear operator (that is, a transformation from V to V).
A number A € F is called an eigenvalue of T if there is a vector v € V', v # 0, so that T'(v) = v,
and vector v is called an eigenvector corresponding to A.

Example. Given any vector space V, the transformation
To: V>V

given by
To(’U) =0

has eigenvalue A = 0, since for any vector v € V,
T(v)=0-v=0.

Every nonzero vector v € V' is an eigenvector associated with A = 0 (the zero vector 0 is not called
an eigenvector).
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Example. Let V be any vector space, and let
Tr:V >V

be defined by
T](v) = .

The scalar 1 € F is the only unique eigenvalue for 7', since
Tr(v)=1-v=w.

Any nonzero vector v is an eigenvector associated with A = 1.

Example. Let T : M2(R) — M3(R) be given by
TX)=X+X".
Find all eigenvalues and associated eigenvectors for 7T'.
If A is an eigenvalue for T, then there is a nonzero matrix X so that
AX =X +XxT.
There are two cases to consider:

1. A #0: Then
X = %(X + X1

Notice that
(X+XxNHT=Xx+XT,

that is $(X 4+ X ") (and thus X) is symmetric. Of course, if X is symmetric then X = X',
so we have

X = —(X+X7)

= (X +X)

>l = > =

2
= —X.
A

In order to guarantee equality, we must have A = 2, so A = 2 is an eigenvalue of T' corre-
sponding to any X € M3(R) so that X is symmetric.

2. A =0: Then
0=X+X"

so that
X=-XT

that is X is skew symmetric. Thus A = 0 is an eigenvalue of T' corresponding to any X €
M3 (R) so that X is skew-symmetric.
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Example. Let

and define T4 : R? — R? by
Ta(z) = Ax.

Find all eigenvalues of T4 and describe the associated eigenvectors.

We wish to find A € R and = € R? so that
Ax = .
This is equivalent to solving the matrix equation
(A=X)z=0

for x; we could, of course, proceed by row reducing

3—A 3
P LN

However, this will be a bit troublesome. We can solve the problem using a nice observation:

the system
(A=X)z=0

has only the trivial solution x = 0 if and only if det(A — A\I) # 0. Of course, z = 0 is not an
eigenvector.
So we actually wish to find all scalars A so that

(A= X)z =0

has trivial solutions, which occurs if and only if det(A — AI) = 0. Thus we look for A with this
property:

3—A 3
det(A—\I) = det( 5 _5_)\>

= —(3-NB+A) -9
= —(15-22-X2) -9
= 15422+ -9
= MN4+2\-24

= (A+6)(A—4).
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Thus the only scalars so that det(4A — AI) = 0 are A = —6 and A = 4. These are the only
eigenvalues for T'4.

To find the associated eigenvectors, we look for vectors x so that

Ax = 4x or Az = —62.

55 = (n)

which results in the system of equations

If Az = 4z, then we have

3r1+ 32 = 4r;
3£L‘1 — 51‘2 = 4:L'2.
Simplifying, we have
—x1 + 312 0
3r1 — 922 = 0;

row-reducing the resulting augmented matrix, we have
-1 3 |0 . 1 =3 ] 0
3 =910 3 -9 | 0
. 1 =3 ] 0
0 0o | 0)°
The system thus has infinitely many solutions; parameterizing xo = ¢, we see that any vector of

the form
_— 3t
o\t

is an eigenvector associated with A = 4.

Proceeding in a similar fashion for A = —6, we wish to find € R? so that
3r1+3x9 = —611
3$1 — 5$2 = —6$2
or
91 + 322 =
3r1+xo = 0.

Again row reducing, we have
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Once more, we have infinitely many solutions; parameterizing s = t, we see that any vector of the

form (—t/3>
Tt

is an eigenvector associated with A = —6.

Observation. It is easy to see that, if v # 0 is an eigenvector of T associated with A, then aw
is also an eigenvector associated with A for all @ # 0. Similarly, if v; and vy are eigenvectors
associated with the same eigenvalue A, then v; + vs is also an eigenvector associated with A. Thus
if \ is an eigenvalue,

WW={veV|T(v) = v}

is a subspace of V' (as you have proved in the context of matrices in a recent homework assignment).

Eigenvalues and Operators

We know how to add linear transformations (and thus operators), a fact that we can use to quickly
determine whether or not a scalar A is an eigenvalue. Indeed,

T(x)=x <= T(z)=N7(x)
— T(z)—N1(z)=0
— (T'-X71)(z)=0
< zenull (T — \T7y).

This is actually a proof of (a) <= (b) in the theorem below; the remaining equivalences follow
immediately from Theorem 3.69:

Theorem 5.6. Let V be finite dimensional, T': V' — V a linear operator, and A € F. The following
are equivalent:

A is an eigenvalue of T

(a
(

)
b) T — AT is not injective;
(¢) T — ATy is not surjective;
)

(d) T — AT7 is not invertible.

We may be curious as to the relationships among the eigenvectors for a linear transformation
T'; the theorem below provides a partial answer.
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Theorem 5.10. Let T : V — V be a linear operator on the finite dimensional vector space V. If
Al, ..., A\ are distinct eigenvalues of T', and if vy, ..., v, are vectors so that v; is an eigenvector
associated with \;, then the list (vy, ve, ..., v,) is an independent list.

Sketch of Proof. Proceed by induction: show that, if v1 and ve are eigenvectors for T and are
also dependent, then they must be associated with the same eigenvalue.

For the inductive hypothesis, let v1, ..., v, be any eigenvectors associated with unique eigenval-
ues, so that (v1, ..., v,)isanindependent list. Let v,,11 be any eigenvector of T"in span (vi, ..., vy),
and show that v, must be associated with one of the eigenvalues A1, ..., A,.

The next theorem follows immediately:

Theorem 5.13. A linear operator on an n dimensional vector space V has at most n distinct
eigenvalues.

Proof. V can have at most n linearly independent vectors in any list. Since any independent list
of k eigenvectors has k distinct associated eigenvalues, V has at most n distinct eigenvalues.

Remark. While n is an upper bound on the number of distinct eigenvalues of an operator T on an
n dimensional space V', T' could certainly have fewer than n distinct eigenvalues. For example, we
saw that the only eigenvalue of the operator 17 is A = 1, regardless of the dimension of the space
V.

Eigenvalues and Eigenvectors of Matrices

Since an n x n matrix A can be thought of as a linear operator on F", we can talk about eigenvectors
and eigenvalues for A. The definition is virtually identical to that for eigenvalues and eigenvectors
of abstract transformations:

Definition. Let A € M, (F). A number A\ € F is called an eigenvalue of A if there is a vector
v € F", v #£ 0, so that Av = Av, and vector v is called an eigenvector corresponding to A.

The theorems that we have discussed on eigenvalues and eigenvectors of transformations transfer
immediately to eigenvalues and eigenvectors of matrices; we record several without proof.

Theorem. A matrix A € M,,(F) has at most n distinct eigenvalues.
Theorem. Let A € M,,(F) and A € F. The following are equivalent:
1. A is an eigenvalue of A;
2. (A — AI)z = 0 has nontrivial solutions;

3. det(A — \I) = 0.
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Notice that, if A = 0 is an eigenvalue, then automatically Az = 0 has nontrivial solutions. Thus
we add to the list of equivalent conditions that we began in Unit 1, Section 10:

Theorem. Let A be an n X n matrix. Then the following are equivalent:
e A is invertible.
e Ax = 0 has only the trivial solution.

The reduced row echelon form of A is I,,.

e Ax = b is consistent for every n x 1 matrix b.

e Ax = b has exactly one solution for every n x 1 matrix b.

det A # 0.

0 is not an eigenvalue of A.

Characteristic Polynomial of a Matrix

In an earlier example, we found the eigenvalues of the matrix
3 3
= 5)

det(A — AI) =0.

by solving the equation

This technique will actually produce the eigenvalues for any n x n matrix A; thus we introduce the
following definition:

Definition. Given A € M,,(F), the polynomial p(\) = det(A — AI) is called the characteristic
polynomial of A, and the equation
det(A—XI)=0

is called the characteristic equation of A.

Theorem. The eigenvalues of an A € M, (C) are precisely the solutions to its characteristic
equation, that is the roots of its characteristic polynomial.
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Eigenvalues of Operators and of their Associated Matrices

The discussion above leads to a natural question: do eigenvalues for a linear operator match up
with the eigenvalues for its associated matrices?

The answer is yes, and is quite easy to ascertain: if A € F is an eigenvalue for T : V — V', and
A = A(p,p) is the matrix of A with respect to basis B of V, then we have

so that

Of course, the reverse is true as well: if A has eigenvalue A, then )\ is an eigenvalue for T. We
record the observations below:

Theorem. The scalar A € F is an eigenvalue for the linear operator 7' : V' — V if and only A is an
eigenvalue for the matrix A of T" with respect to some basis B for V.

Since a transformation 7' has multiple matrix representations (one for each basis), you may be
concerned about well-definedeness. That is, if A and A’ are the matrices for T with respect to
bases B and B’ respectively, then must A and A’ have the same eigenvalues?

Fortunately, the answer is yes, and is due to the following theorem:

Theorem. If A, A’ € M,,(F) are matrices so that there is an invertible matrix X € M, (F) with
A= XAX"' then A and A’ share eigenvalues.

Since matrices for the same transformation are similar (4 = X A’X '), we have the following
corollary:

Corollary. If A and A’ are matrices for T' with respect to bases B and B’ respectively, then A and
A’ share eigenvalues.



