
Unit 3, Section 5: Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors of Matrices and Transformations

In this section we will introduce the concept of eigenvalues and eigenvectors of a transformation.
We begin with an illustrative example.

Define
T : R2 → R2

by

T

((
x1
x2

))
=

(
2x1 + 2x2

x2

)
.

Geometrically, we can think of T as a “shear”; indeed, T leaves the 2nd coordinate of each
vector alone, but stretches out the first coordinate. Let’s calculate the images of vectors

v1 =

(
0
1

)
, v2 =

(
−1
1

)
, and v3 =

(
2
0

)
under the action of T :

T (v1) = T

((
0
1

))

=

(
2
1

)

T (v2) = T

((
−1
−1

))

=

(
−4
1

)

T (v3) = T

((
2
0

))

=

(
4
0

)
.

The vectors above and their images are graphed below; vectors v1 and T (v1) are graphed in
blue; v2 and T (v2) are in green; and v3 and T (v3) are in red:

1



Unit 3, Section 5: Eigenvalues and Eigenvectors

There is something interesting about the action of T on vector v3; indeed,

T (v3) = T

((
2
0

))
=

(
4
0

)
= 2T (v3),

that is, T simply scaled vector v3 (unlike the other two vectors, which were also rotated).
The vector v3 above is our first in-class example of an eigenvector, and the scalar 2 is called an

eigenvalue for T . We introduce the definitions below:

Definitions 5.5/5.7. Let T : V → V be a linear operator (that is, a transformation from V to V ).
A number λ ∈ F is called an eigenvalue of T if there is a vector v ∈ V , v 6= 0, so that T (v) = λv,
and vector v is called an eigenvector corresponding to λ.

Example. Given any vector space V , the transformation

T0 : V → V

given by
T0(v) = 0

has eigenvalue λ = 0, since for any vector v ∈ V ,

T (v) = 0 · v = 0.

Every nonzero vector v ∈ V is an eigenvector associated with λ = 0 (the zero vector 0 is not called
an eigenvector).
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Example. Let V be any vector space, and let

TI : V → V

be defined by
TI(v) = v.

The scalar 1 ∈ F is the only unique eigenvalue for T , since

TI(v) = 1 · v = v.

Any nonzero vector v is an eigenvector associated with λ = 1.

Example. Let T :M2(R)→M2(R) be given by

T (X) = X +X>.

Find all eigenvalues and associated eigenvectors for T .

If λ is an eigenvalue for T , then there is a nonzero matrix X so that

λX = X +X>.

There are two cases to consider:

1. λ 6= 0: Then

X =
1

λ
(X +X>).

Notice that
(X +X>)> = X +X>,

that is 1
λ(X +X>) (and thus X) is symmetric. Of course, if X is symmetric then X = X>,

so we have

X =
1

λ
(X +X>)

=
1

λ
(X +X)

=
2

λ
X.

In order to guarantee equality, we must have λ = 2, so λ = 2 is an eigenvalue of T corre-
sponding to any X ∈M2(R) so that X is symmetric.

2. λ = 0: Then
0 = X +X>

so that
X = −X>,

that is X is skew symmetric. Thus λ = 0 is an eigenvalue of T corresponding to any X ∈
M2(R) so that X is skew-symmetric.
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Example. Let

A =

(
3 3
3 −5

)
and define TA : R2 → R2 by

TA(x) = Ax.

Find all eigenvalues of TA and describe the associated eigenvectors.

We wish to find λ ∈ R and x ∈ R2 so that

Ax = λx.

This is equivalent to solving the matrix equation

(A− λI)x = 0

for x; we could, of course, proceed by row reducing

A− λI =

(
3− λ 3

3 −5− λ

)
.

However, this will be a bit troublesome. We can solve the problem using a nice observation:
the system

(A− λI)x = 0

has only the trivial solution x = 0 if and only if det(A − λI) 6= 0. Of course, x = 0 is not an
eigenvector.

So we actually wish to find all scalars λ so that

(A− λI)x = 0

has trivial solutions, which occurs if and only if det(A − λI) = 0. Thus we look for λ with this
property:

det(A− λI) = det

(
3− λ 3

3 −5− λ

)
= −(3− λ)(5 + λ)− 9

= −(15− 2λ− λ2)− 9

= −15 + 2λ+ λ2 − 9

= λ2 + 2λ− 24

= (λ+ 6)(λ− 4).
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Thus the only scalars so that det(A − λI) = 0 are λ = −6 and λ = 4. These are the only
eigenvalues for TA.

To find the associated eigenvectors, we look for vectors x so that

Ax = 4x or Ax = −6x.

If Ax = 4x, then we have (
3 3
3 −5

)(
x1
x2

)
=

(
4x1
4x2

)
,

which results in the system of equations

3x1 + 3x2 = 4x1

3x1 − 5x2 = 4x2.

Simplifying, we have

−x1 + 3x2 = 0

3x1 − 9x2 = 0;

row-reducing the resulting augmented matrix, we have(
−1 3 | 0
3 −9 | 0

)
→

(
1 −3 | 0
3 −9 | 0

)

→
(

1 −3 | 0
0 0 | 0

)
.

The system thus has infinitely many solutions; parameterizing x2 = t, we see that any vector of
the form

x =

(
3t
t

)
is an eigenvector associated with λ = 4.

Proceeding in a similar fashion for λ = −6, we wish to find x ∈ R2 so that

3x1 + 3x2 = −6x1

3x1 − 5x2 = −6x2

or

9x1 + 3x2 = 0

3x1 + x2 = 0.

Again row reducing, we have (
9 3 | 0
3 1 | 0

)
→

(
1 1/3 | 0
3 1 | 0

)

→
(

1 1/3 | 0
0 0 | 0

)
.
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Once more, we have infinitely many solutions; parameterizing x2 = t, we see that any vector of the
form

x =

(
−t/3
t

)
is an eigenvector associated with λ = −6.

Observation. It is easy to see that, if v 6= 0 is an eigenvector of T associated with λ, then αv
is also an eigenvector associated with λ for all α 6= 0. Similarly, if v1 and v2 are eigenvectors
associated with the same eigenvalue λ, then v1 + v2 is also an eigenvector associated with λ. Thus
if λ is an eigenvalue,

Vλ = {v ∈ V |T (v) = λv}

is a subspace of V (as you have proved in the context of matrices in a recent homework assignment).

Eigenvalues and Operators

We know how to add linear transformations (and thus operators), a fact that we can use to quickly
determine whether or not a scalar λ is an eigenvalue. Indeed,

T (x) = λx ⇐⇒ T (x) = λTI(x)

⇐⇒ T (x)− λTI(x) = 0

⇐⇒ (T − λTI)(x) = 0

⇐⇒ x ∈ null (T − λTI).

This is actually a proof of (a) ⇐⇒ (b) in the theorem below; the remaining equivalences follow
immediately from Theorem 3.69:

Theorem 5.6. Let V be finite dimensional, T : V → V a linear operator, and λ ∈ F. The following
are equivalent:

(a) λ is an eigenvalue of T ;

(b) T − λTI is not injective;

(c) T − λTI is not surjective;

(d) T − λTI is not invertible.

We may be curious as to the relationships among the eigenvectors for a linear transformation
T ; the theorem below provides a partial answer.
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Theorem 5.10. Let T : V → V be a linear operator on the finite dimensional vector space V . If
λ1, . . . , λn are distinct eigenvalues of T , and if v1, . . . , vn are vectors so that vi is an eigenvector
associated with λi, then the list (v1, v2, . . . , vn) is an independent list.

Sketch of Proof. Proceed by induction: show that, if v1 and v2 are eigenvectors for T and are
also dependent, then they must be associated with the same eigenvalue.

For the inductive hypothesis, let v1, . . . , vn be any eigenvectors associated with unique eigenval-
ues, so that (v1, . . . , vn) is an independent list. Let vn+1 be any eigenvector of T in span (v1, . . . , vn),
and show that vn+1 must be associated with one of the eigenvalues λ1, . . . , λn.

The next theorem follows immediately:

Theorem 5.13. A linear operator on an n dimensional vector space V has at most n distinct
eigenvalues.

Proof. V can have at most n linearly independent vectors in any list. Since any independent list
of k eigenvectors has k distinct associated eigenvalues, V has at most n distinct eigenvalues.

Remark. While n is an upper bound on the number of distinct eigenvalues of an operator T on an
n dimensional space V , T could certainly have fewer than n distinct eigenvalues. For example, we
saw that the only eigenvalue of the operator TI is λ = 1, regardless of the dimension of the space
V .

Eigenvalues and Eigenvectors of Matrices

Since an n×n matrix A can be thought of as a linear operator on Fn, we can talk about eigenvectors
and eigenvalues for A. The definition is virtually identical to that for eigenvalues and eigenvectors
of abstract transformations:

Definition. Let A ∈ Mn(F). A number λ ∈ F is called an eigenvalue of A if there is a vector
v ∈ Fn, v 6= 0, so that Av = λv, and vector v is called an eigenvector corresponding to λ.

The theorems that we have discussed on eigenvalues and eigenvectors of transformations transfer
immediately to eigenvalues and eigenvectors of matrices; we record several without proof.

Theorem. A matrix A ∈Mn(F) has at most n distinct eigenvalues.

Theorem. Let A ∈Mn(F) and λ ∈ F. The following are equivalent:

1. λ is an eigenvalue of A;

2. (A− λI)x = 0 has nontrivial solutions;

3. det(A− λI) = 0.
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Notice that, if λ = 0 is an eigenvalue, then automatically Ax = 0 has nontrivial solutions. Thus
we add to the list of equivalent conditions that we began in Unit 1, Section 10:

Theorem. Let A be an n× n matrix. Then the following are equivalent:

• A is invertible.

• Ax = 0 has only the trivial solution.

• The reduced row echelon form of A is In.

• Ax = b is consistent for every n× 1 matrix b.

• Ax = b has exactly one solution for every n× 1 matrix b.

• detA 6= 0.

• 0 is not an eigenvalue of A.

Characteristic Polynomial of a Matrix

In an earlier example, we found the eigenvalues of the matrix

A =

(
3 3
3 −5

)
by solving the equation

det(A− λI) = 0.

This technique will actually produce the eigenvalues for any n×n matrix A; thus we introduce the
following definition:

Definition. Given A ∈ Mn(F), the polynomial p(λ) = det(A − λI) is called the characteristic
polynomial of A, and the equation

det(A− λI) = 0

is called the characteristic equation of A.

Theorem. The eigenvalues of an A ∈ Mn(C) are precisely the solutions to its characteristic
equation, that is the roots of its characteristic polynomial.
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Eigenvalues of Operators and of their Associated Matrices

The discussion above leads to a natural question: do eigenvalues for a linear operator match up
with the eigenvalues for its associated matrices?

The answer is yes, and is quite easy to ascertain: if λ ∈ F is an eigenvalue for T : V → V , and
A = A(B,B) is the matrix of A with respect to basis B of V , then we have

T (v) = λv,

so that

A(v)B = (T (v))B

= (λv)B

= λ(v)B.

Of course, the reverse is true as well: if A has eigenvalue λ, then λ is an eigenvalue for T . We
record the observations below:

Theorem. The scalar λ ∈ F is an eigenvalue for the linear operator T : V → V if and only λ is an
eigenvalue for the matrix A of T with respect to some basis B for V .

Since a transformation T has multiple matrix representations (one for each basis), you may be
concerned about well-definedeness. That is, if A and A′ are the matrices for T with respect to
bases B and B′ respectively, then must A and A′ have the same eigenvalues?

Fortunately, the answer is yes, and is due to the following theorem:

Theorem. If A, A′ ∈ Mn(F) are matrices so that there is an invertible matrix X ∈ Mn(F) with
A = XAX−1, then A and A′ share eigenvalues.

Since matrices for the same transformation are similar (A = XA′X−1), we have the following
corollary:

Corollary. If A and A′ are matrices for T with respect to bases B and B′ respectively, then A and
A′ share eigenvalues.
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