Definition. A power series centered at \(x = a \) is an infinite polynomial of the form

\[
\sum_{n=0}^{\infty} c_n (x - a)^n = c_0 + c_1 (x - a) + c_2 (x - a)^2 + c_3 (x - a)^3 + \ldots
\]

where \(a \) and each \(c_i \) are constants.

Theorem. For a given power series

\[
\sum_{n=1}^{\infty} c_n (x - a)^n,
\]

there are only three possibilities:

1. The series converges only when \(x = a \).

2. The series converges (absolutely) for every \(x \).

3. There is a number \(R > 0 \) so that the series converges absolutely for all \(x \) so that \(|x - a| < R \) and diverges for all \(x \) so that \(|x - a| > R \). The series may or may not converge at the points \(x = a - R \) and \(x = a + R \).

We put all of this information together to get a method for determining where the power series

\[
\sum_{n=1}^{\infty} c_n (x - a)^n
\]

converges:

1. Ignore the original series and consider the absolute value of the series \(\sum_{n=1}^{\infty} |c_n (x - a)^n| \).

2. Test the series of absolute values for convergence, usually by using the ratio test or the root test. If we find that the series converges whenever \(|x - a| < R \), then the series converges for all \(x \) so that \(a - R < x < a + R \).

3. Test separately for convergence of the series at the endpoints \(a - R \) and \(a + R \) by evaluating the series at these endpoints and using tests from 11.2-11.6.

4. The series converges when \(a - R < x < a + R \), diverges when \(x < a - R \) or \(x > a + R \), and may converge or diverge at the endpoints \(a - R \) and \(a + R \) depending on the solutions found in the previous step.