
Unit 3, Section 3: Null Space and Range

Null Space and Range

As we work to understand linear transformations in more detail, we pause to consider two subspaces
that can give us a wealth of information about the transformation itself: the null space and the
range.

Null Space of a Transformation

The first subset of interest is the null space:

Definition 3.12. Let T : V → W be a linear transformation. The null space of T , denoted by
null (T ), is the set of all vectors v ∈ V so that T (v) = 0.

Remark. Notice that the nullspace is a subset of the domain V , and not of the codomain W . To
find null (T ), we must determine which vectors in V are mapped to 0 ∈W .

Example. Given any vector spaces V and W , the transformation

T0 : V →W,

given by
T0(u) = 0,

has null space
null (T0) = V,

since every vector in V maps to 0 under the action of T0.

Example. Let V be any vector space, and let

TI : V → V

be defined by
TI(v) = v.

Then since the only vector mapped to 0 is 0 itself, we see that

null (TI) = {0}.
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Example. Given linear transformation

π :M2(R)→ U2(R)

defined by

π

((
v1 v2
v3 v4

))
=

(
v1 v2
0 v4

)
,

find null (π).
The null space of π is the set of all vectors in M2(R) that are mapped to

0 =

(
0 0
0 0

)
∈ U2(R).

If

π

((
v1 v2
v3 v4

))
=

(
0 0
0 0

)
,

then we must have
v1 = v2 = v4 = 0.

However, v3 is free, so the null space of π is the set

null (π) =

{(
0 0
v 0

)∣∣∣∣ v ∈ R
}
.

Example. With

M =

1 0
0 1
1 1

 ,

find the null space of the map TM : R2 → R3 defined by

TM

((
u1
u2

))
= M

(
u1
u2

)
.

Now null (TM ) is the set of all vectors v ∈ R2 so that

Mv = 0.

Of course, to find the set of all solutions to the matrix equation above, we may simply row reduce
M itself:

1 0
0 1
1 1

 →

1 0
0 1
0 0

 ,
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so that there is only one solution v to

Mv = 0.

Thus
null (TM ) = {0}.

As you may have already guessed, null (T ) is more than just a subset of V ; it is actually a
subspace of V , as indicated by the following theorem:

Theorem 3.14. If T : V →W is a linear transformation, then null (T ) is a subspace of V .

We will not prove the theorem in detail, as it is quite straightforward. Indeed, the standard
procedure applies immediately here: one must show that, if v, w ∈ null (T ), then v + w ∈ null (T )
as well (i.e., show that T (v+w) = 0 if T (v) = 0 and T (w) = 0), and that λv ∈ null (T ) (i.e., show
that T (λv) = 0 if T (v) = 0). Both tasks are easily accomplished using the fact that T is a linear
transformation.

We have seen examples of transformations with null space {0}; null space V ; or even null space
“in between” 0 and V . We will soon see that transformations with null space null (T ) = {0} are
particularly nice. Accordingly, we introduce the following definition:

Definition 3.15. A linear transformation T : V →W is one-to-one or injective if

T (u) = T (v)→ u = v.

Remark. Injectivity simply means that no two different vectors map to the same place. The idea
looks a bit like the concept of invertibility from calculus; while there is a relation, we will see that
invertibility and injectivity are not quite the same, and you should not assume that injectivity
implies any sort of “invertibility”.

The idea of an injective map is actually closely tied to the null space of that transformation, as
indicated by the following theorem:

Theorem 3.16. The linear transformation T : V →W is injective if and only if null (T ) = {0}.

Proof. For any linear transformation T ,

T (0) = 0.

Thus if T is injective, then no other vector v can map to 0, so that

null (T ) = {0}.
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On the other hand, suppose that T has null space {0}, and let u and v be any vectors in V so
that T (u) = T (v). Then T (u)− T (v) = 0. However, since T is a linear transformation, we have

0 = T (u)− T (v)

= T (u− v),

so that u− v ∈ null (T ). Since null (T ) = {0}, u− v = 0 and u = v. Thus T is injective.

Range of a Transformation

Another important subset related to a linear transformation is the range:

Definition 3.17. The range or image of a linear transformation T : V → W , denoted range (T ),
is the set of all w ∈W so that there is a v ∈ V with T (v) = w.

Remark. The range of a transformation is a subset of the codomain W (unlike the null space,
which lives inside the domain V ).

Example. Given any vector spaces V and W , the transformation

T0 : V →W,

given by
T0(u) = 0,

has range
range (T0) = {0},

since every vector in V maps to 0 under the action of T .

Example. Let V be any vector space, and let

TI : V → V

be defined by
TI(v) = v.

Every vector in V maps to itself, so every vector is in the range of T :

range (T ) = V.
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Example. Given linear transformation

π :M2(R)→ U2(R)

defined by

π

((
v1 v2
v3 v4

))
=

(
v1 v2
0 v4

)
,

find range (π).
The range of π is the set of all vectors in U2(R) that are images of at least one vector inM2(R).

Of course, it is clear that every vector in U2(R) is the image of a vector from M2(R), so

range (π) = U2(R).

Example. With

M =

1 0
0 1
1 1

 ,

find the range of the map TM : R2 → R3 defined by

TM

((
u1
u2

))
= M

(
u1
u2

)
.

The range of TM is the set of all vectors w ∈ R3 so that there is a solution v ∈ R2 to the matrix
equation

Mv = w.

Thus we row reduce the augmented equation for the system:

1 0 | w1

0 1 | w2

1 1 | w3

 →

1 0 | w1

0 1 | w2

0 0 | w3 − w1 − w2

 .

Notice that there is a solution v ∈ R2 if and only if

w3 − w1 − w2 = 0;

then w1 = v1, w2 = v2 and w3 = w1 + w2. Since v1 and v2 may be chosen to be any real numbers,
we see that the range of TM is

range (TM ) =

{ w1

w2

w1 + w2

∣∣∣∣w1, w2 ∈ R
}
.
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Again, we have defined this specific subset for a reason: the range of T is a subspace of W .

Theorem 3.19. If T : V →W is a linear transformation, then range (T ) is a subspace of W .

Once again, the proof is quite straightforward: we must show that if w1, w2 ∈W are vectors in
the range of T (i.e., there are vectors v1, v2 ∈ V so that T (v1) = w1, T (v2) = w2), then so is their
sum w1 +w2, and that if w ∈ range (T ) (i.e. there is a vector v ∈ V with T (v) = w), then so is λw.
Both are easily accomplished using the fact that T is a linear transformation.

Again, we have seen examples of transformations with range {0}; range W ; or range somewhere
in between. Transformations with range (T ) = W are particularly important, and are named below:

Definition 3.20. A linear transformation T : V →W is onto or surjective if range (T ) = W .

Remark. Surjectivity means that every vector in W is the image of at least one vector in V .
It is important to distinguish between the ideas of surjectivity and injectivity: they are not the
same, and we will see momentarily that a map can be surjective but not injective; injective but not
surjective; both injective and surjective; or neither injective nor surjective.

Example. Given any nontrivial vector spaces V and W , the transformation

T0 : V →W

given by
T0(u) = 0

is neither injective nor surjective.

Example. For any V , the map
TI : V → V

defined by
TI(v) = v

is both injective and surjective.
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Example. We showed above that the linear transformation

π :M2(R)→ U2(R)

defined by

π

((
v1 v2
v3 v4

))
=

(
v1 v2
0 v4

)
is surjective, but it is easy to see that it is not injective.

Example. With

M =

1 0
0 1
1 1

 ,

the map TM : R2 → R3 defined by

TM

((
u1
u2

))
= M

(
u1
u2

)
is injective but not surjective.

An Aside on Transformations In Euclidean Space

Of course, the null space and range of a transformation are closely tied to the matrix of the
transformation. In order to understand the interconnections, we introduce the idea of the rank of
a matrix:

Definition. The rank of an m×n matrix A, denoted rank (A), is the number of leading 1s in rows
in its reduced row echelon form.

For example, the matrix

M =

1 0
0 1
1 1


has reduced row echelon form 1 0

0 1
0 0

 ,

so rank (M) = 2.

If T : Rn → Rm is a linear transformation represented by matrix A, then the rank of A is closely
tied to the dimensions of the null space and range of A. The interconnections are indicated in the
following theorem:
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Theorem. Let T : Rn → Rm be a linear transformation represented by matrix A (with respect to
any bases). Then:

1. dim(range (T )) = rank (A)

2. dim(null (T )) = n− rank (A)

We will not consider a proof of the theorem here. Instead, let us briefly compare the result with
a problem introduced earlier.

The matrix

M =

1 0
0 1
1 1


of the linear transformation TM has rank (M) = 2. In addition, we have seen that dim(range (TM )) =
2 and dim(null (TM )) = 0. Since TM : R2 → R3, n = 2. Notice that

1. dim(range (TM )) = 2 = rank (M)

2. dim(null (TM )) = 0 = 2− rank (M),

exactly as predicted by the theorem.

Remark. Notice that the theorem suggests that

dim(range (T )) + dim(null (T )) = n = dim(Rn).

This statement can actually be generalized to apply to any linear transformation between finite
dimensional vector spaces, as we will see below.

Fundamental Theorem of Linear Transformations

We sum up all of the data we have accumulated on linear transformations in the following theorem:

Theorem 3.22: Fundamental Theorem of Linear Transformations. Let T : V → W be a
linear transformation. Then

dim(V ) = dim(null (T )) + dim(range (T )).

Proof. Let
Bn = (v1, v2, . . . , vk)

be a basis for null (T ), and extend Bn to a basis B for V , say

B = (v1, v2, . . . , vk, vk+1, . . . vm).
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I claim that
Br = (T (vk+1), . . . , T (vm)))

is a basis for range (T ). Let w be any vector in range (T ). Then there is some vector v ∈ V ,
v = α1v1 + α2v2 + . . .+ αnvm, with T (v) = w. However,

T (v) = T (α1v1 + α2v2 + . . .+ αmvm)

= α1T (v1) + . . .+ αkT (vk) + αk+1T (vk+1) + . . .+ αmT (vm)

= αk+1T (vk+1) + . . .+ αmT (vm)

since T (vi) = 0, i ≤ k. Thus

w = αk+1T (vk+1) + . . .+ αmT (vm),

that is every vector in range (T ) is also in span (Br).
To show that Br is a basis for range (T ), we must now show that the vectors in Br are inde-

pendent. So suppose that there are constants βi so that

βk+1T (vk+1) + . . .+ βmT (vm) = 0.

Then the vector βk+1vk+1 + . . .+βmvm is in the null space of T , and must be a linear combination
of vectors in Bn, say

β1v1 + . . .+ βkvk = βk+1vk+1 + . . .+ βmvm.

However, the vectors in B itself are independent, so each βi in the equation

β1v1 + . . .+ βkvk − βk+1vk+1 − . . .− βmvm = 0

is identically 0. Thus the vectors T (vk+1), . . . , T (vm) are independent, so that the list Br is a basis
for range (T ).

Now dim(range (T )) = m− k and dim(null (T )) = k, so

dim(V ) = m = dim(null (T )) + dim(range (T )).

We finish the section with a quick corollary:

Corollaries 3.23/3.24. Let T : V →W be a linear transformation. Then:

1. If dimV > dimW , T is not injective.

2. If dimV < dimW , T is not surjective.

Proof. 1. If T is injective, then dim(null (T )) = 0. Then by the Fundamental Theorem of
Linear Maps, we have

dim(V ) = dim(null (T )) + dim(range (T ))

= dim(range (T )).

Now range (T ) is a subspace of W , so the equation

dimV = dim(range (T )) ≤ dimW

when T is injective implies that dimV ≤ dimW .
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2. If T is surjective, then range (T ) = W . Again using the Fundamental Theorem, we have

dimV = dim(null (T )) + dim(range (T ))

= dim(null (T )) + dimW.

Now null (T ) is a vector space and has dimension dim(null (T )) ≥ 0, so the equation

dimV − dimW = dim(null (T )) ≥ 0

when T is surjective implies that dimV ≥ dimW.
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