
Unit 3, Section 1: Linear Transformations

Linear Transformations of Vector Spaces

As we begin to think more deeply about the structure of vector spaces, our next logical step is
to understand vector spaces in relation with each other–indeed, to introduce maps or functions
between the spaces.

Of course, we would like our maps to preserve the key data about a vector space: the way that
vector addition and scalar multiplication work. Thus we introduce the following definition:

Definition 3.2. Let V and W be vector spaces over F. A linear transformation T : V → W is a
function from V to W satisfying the following properties:

1. T (u+ v) = T (u) + T (v) for all u, v ∈ V , and

2. T (λu) = λT (u) for all u ∈ V , λ ∈ F.

The definition above simply requires that the map T in question interact nicely with the vector
space operations.

Example. The 0 transformation
Given any vector spaces V and W , the transformation

T0 : V →W,

given by
T0(u) = 0,

(every vector in V gets sent to 0 ∈W ), is a linear transformation.

Example. The identity transformation
Let V be any vector space, and let

TI : V → V

be defined by
TI(v) = v,

that is, TI sends every vector to itself; TI is called the identity transformation. Then clearly TI is
a linear transformation.

Example. The function
ι : U2(R)→M2(R)

defined by

ι

((
u1 u2
0 u3

))
=

(
u1 u2
0 u3

)
is a linear transformation. Notice that ι is not the identity transformation, since its domain and
codomain are different; ι is often referred to as an embedding.
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Example. The function
π :M2(R)→ U2(R)

defined by

π

((
v1 v2
v3 v4

))
=

(
v1 v2
0 v4

)
is a linear transformation. The transformation π is called a projection.

Example. Show that the function
T : R3 → U2(R)

defined by

T

(u1u2
u3

) =

(
u1 u2
0 u3

)
is a linear transformation.

To be convinced that T is a transformation, we must show that

1. T (u+ v) = T (u) + T (v) for all u, v ∈ R3, and

2. T (λu) = λT (u) for all u ∈ R3, λ ∈ R.

Let’s begin by showing that T interacts nicely with addition:

T

(u1u2
u3

+

v1v2
v3

) = T

(u1 + v1
u2 + v2
u3 + v3

)

=

(
u1 + v1 u2 + v2

0 u3 + v3

)

=

(
u1 u2
0 u3

)
+

(
v1 v2
0 v3

)

= T

(u1u2
u3

)+ T

(v1v2
v3

).
Thus T preserves addition.
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Next, we check that T preserves scalar multiplication:

T

(
λ

u1u2
u3

) = T

(λu1λu2
λu3

)

=

(
λu1 λu2
0 λu3

)

= λ

(
u1 u2
0 u3

)

= λT

(u1u2
u3

).
Again, T interacts nicely with the operation. Thus T is indeed a linear transformation.

Key Point. If V and W are different spaces, then they have different addition and scalar multi-
plication operations. Thus a statement such as

T (u+ v) = T (u) + T (v)

is a bit ambiguous–the first “+” refers to addition in V , whereas the second refers to addition in
W . However, a linear transformation draws parallels between the two operations, indicating that
they are in some sense analogous; T preserves the operations even as it changes the ambient spaces.

Example. Show that the function T : R2 → R3 defined by

T

((
u1
u1

))
=

 u1
u2

u1 + u2


is a linear transformation.

To show that T is actually a linear transformation, we need to be show that it interacts nicely
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with the addition and scalar multiplication operations. First, we check that T (u+v) = T (u)+T (v):

T

((
u1
u2

)
+

(
v1
v2

))
= T

((
u1 + v1
u2 + v2

))

=

 u1 + v1
u2 + v2

u1 + u2 + v1 + v2



=

 u1
u2

u1 + u2

+

 v1
v2

v1 + v2


= T

((
u1
u2

))
+ T

((
v1
v2

))
.

Next, we check that T (λu) = λT (u):

T

(
λ

(
u1
u2

))
= T

((
λu1
λu2

))

=

 λu1
λu2

λu1 + λu2



= λ

 u1
u2

u1 + u2


= λT

((
u1
u2

))
.

T passes both conditions, and is thus a linear transformation.

Example. Set

M =

1 0
0 1
1 1

 .

Show that the map TM , defined by

TM

((
u1
u2

))
= M

(
u1
u2

)
,

(that is, TM acts on vectors in R2 via matrix multiplication by M) is a linear transformation from
R2 to R3.
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It is actually quite easy to see that TM is a linear transformation by using properties of matrix
arithmetic. First of all, since M is 3× 1, TM (u) = Mu will be a 3× 1 matrix for all u ∈ R2, that is

TM (u) ∈ R3.

Second,

TM (u+ v) = M(u+ v)

= Mu+Mv

= TM (u) + TM (v)

since matrix multiplication distributes over matrix addition.
Finally,

TM (λu) = M(λu)

= λMu

= λTM (u),

again using properties of matrix arithmetic.
Thus the map TM is a linear transformation.

Example. Given linear transformations T and TM from the last two examples, show that

T (u) = TM (u)

for all u ∈ R2.
Let’s begin by calculating the form of the vector TM (u) ∈ R3:

TM (u) = TM

((
u1
u2

))

=

1 0
0 1
1 1

(u1
u2

)

=

 u1 + 0
0 + u2
u1 + u2



=

 u1
u2

u1 + u2

 .
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Now the resulting matrix is precisely the image of the original vector u under T , that is

TM

((
u1
u2

))
= T

((
u1
u2

))
,

so that
TM = T.

Remark. We will see that the last example is extremely important, and indeed indicative of the
interconnections between matrices and linear transformations. In the next section of this unit, we
will discuss these interconnections in detail.

Bases and Linear Maps

Since a basis for a vector space tells us virtually everything we need to know about the space, it
seems reasonable to guess that a chosen basis for V can be thought of as the controlling factor for
linear transformations out of V . The following theorem confirms that intuition:

Theorem 3.5. Let v1, v2, . . . , vn be a basis for V , and let w1, w2, . . . , wn be any list of vectors in
W . Then there is a unique linear transformation T : V →W so that T (vi) = wi for all i, 1 ≤ i ≤ n.

Proof. Define a map T on the basis (v1, v2, . . . , vn) by T (vi) = wi, 1 ≤ i ≤ n; we will extend
the map linearly to all of V .

Given u ∈ V written with respect to this basis as

u = α1v1 + α2v2 + . . .+ αnvn,

define T (u) using the rule

T (u) = α1T (v1) + α2T (v2) + . . .+ αnT (vn).

Now every u ∈ V is a linear combination of vectors in the list (v1, v2, . . . , vn), and every linear
combination of T (v1), T (v2), . . . , T (vn) must be a vector in W , so clearly the T may be applied to
any vector in V , and the resulting vector is in W ; that is,

T : V →W.

It remains to show that T is a linear transformation.
Given u, v ∈ V with

u = α1v1 + α2v2 + . . .+ αnvn and v = β1v1 + β2v2 + . . .+ βnvn,
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the definition for T implies that

T (u+ v) = T (α1v1 + α2v2 + . . .+ αnvn + β1v1 + β2v2 + . . .+ βnvn)

= T ((α1 + β1)v1 + (α2 + β2)v2 + . . .+ (αn + βn)vn)

= (α1 + β1)T (v1) + (α2 + β2)T (v2) + . . .+ (αn + βn)T (vn)

= α1T (v1) + β1T (v1) + α2T (v2) + β2T (v2) + . . .+ αnT (vn) + βnT (vn)

= (α1T (v1) + α1T (v2) + . . .+ α1T (vn)) + (β1T (v1) + β1T (v2) + . . .+ β1T (vn))

= T (u) + T (v).

Thus T satisfies the linearity property on addition. Next, we check that T is linear on scalar
multiplication.

Given u = α1v1 + α2v2 + . . .+ αnvn and λ ∈ F,

T (λu) = T (λ(α1v1 + α2v2 + . . .+ αnvn))

= T (λα1v1 + λα2v2 + . . .+ λαnvn)

= λα1T (v1) + λα2T (v2) + . . .+ λαnT (vn)

= λ(α1T (v1) + α1T (v2) + . . .+ α1T (vn))

= λT (u).

Thus T is linear over both scalar multiplication and vector addition on V , and is a linear
transformation.

Finally, we need to check that T is unique; so suppose that there is another linear transformation
S : V →W so that

S(vi) = wi

for all i. Now S is a linear transformation, so for any v ∈ V ,

v = α1v1 + α2v2 + . . .+ αnvn,

we have

S(v) = S(α1v1 + α2v2 + . . .+ αnvn)

= S(α1v1) + S(α2v2) + . . .+ S(αnvn)

= α1S(v1) + α2S(v2) + . . .+ αnS(vn)

= α1w1 + α2w2 + . . .+ αnwn

= α1T (v1) + α2T (v2) + . . .+ αnT (vn)

= T (α1v1 + α2v2 + . . .+ αnvn)

= T (v).

So T (v) = S(v) for all v ∈ V , so that T = S. Thus T is unique.

7



Unit 3, Section 1: Linear Transformations

Key Point. A linear transformation is completely determined by its action on a basis.

Example. Given

M =

1 0
0 1
1 1


and the associated linear transformation TM defined by

TM

((
u1
u2

))
= M

(
u1
u2

)
,

determine the action of TM on the standard basis for R2.
The standard basis vectors e1 and e2 for R2 are

e1 =

(
1
0

)
, and e2 =

(
1
0

)
.

Applying TM to these vectors, we see that

TM (e1) = Me1

=

1 0
0 1
1 1

(1
0

)

=

1
0
1

 ,

and

TM (e2) = Me2

=

1 0
0 1
1 1

(0
1

)

=

0
1
1

 .

Now the theorem tells us that TM is completely determined by its action on e1 and e2; so if we
like, we may rewrite our definition of TM to see this more clearly. Since any vector u in R2 may be
written as

u =

(
u1
u2

)
= u1e1 + u2e2,
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where u1, u2 ∈ R, we see that we can think of TM as the linear transformation so that

TM (u) = TM (u1e1 + u2e2)

= u1TM (e1) + u2TM (e2)

= u1

1
0
1

+ u2

0
1
1



=

 u1
u2

u1 + u2

 .

This last equation should look familiar–indeed, we saw earlier in this section that the linear
transformation T : R2 → R3 defined by

T

((
u1
u1

))
=

 u1
u2

u1 + u2


is exactly TM , that is T = TM ; we have just confirmed this equality again.

The Vector Space of Linear Transformations

Definition 3.3. The set of all linear transformations from V to W is denoted by L(V,W ).

We will see momentarily that the set L(V,W ) of linear transformations from V to W has a great
deal of structure inherited from the structure of the background spaces; perhaps unsurprisingly,
L(V,W ) is itself a vector space over the same field.

Of course, in order to be a vector space, L(V,W ) must have two operations–thus we take a
moment to define vector addition and scalar multiplication on L(V,W ).

Definition 3.6. Given S, T ∈ L(V,W ), (that is S and T are both linear transformations from V
to W ), the sum S + T of S and T is the linear transformation defined by the rule

(S + T )(v) = S(v) + T (v).

If V and W are vector spaces over F, then the scalar product λS of S ∈ L(V,W ) with λ ∈ F is
the linear transformation defined by the rule

(λS)(v) = λ · S(v).

Notice that the definition above claims that maps S + T and λS are linear transformations if
S and T are; technically we should prove this assertion, but the proof is standard enough that we
will leave it as an exercise.
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Theorem 3.7. The set L(V,W ) of all linear transformations from V to W with the operations of
vector addition and scalar multiplication as defined in Definition 3.6 is a vector space.

Again, the proof is quite straightforward, and we leave it as an exercise.

Products of Linear Transformations

In general, a vector space has only two operations defined on it; however, it is possible to define an
extra operation for certain linear transformations.

Definition 3.8. Let T ∈ L(U, V ) and S ∈ L(V,W ). Then the product ST defined by

ST (u) = S(T (u))

is a linear transformation, and
ST : U →W,

that is ST ∈ L(U,W ).

There are several important points to notice about the definition:

1. The definition asserts that ST is a linear transformation. Technically we should check this
statement, but once more this is quite routine, and is left as an exercise.

2. In order to define the “product” of a pair of linear transformations, we used function com-
position; indeed, the product ST acts on u by first applying T to u, then applying S to the
resulting vector.

3. The product of a pair of transformations is only defined if the “middle spaces” match up (this
may make you think of the definition of matrix multiplication, which is only defined if the
number of columns of the first matrix matches up with the number of rows of the second.)

4. The order of the transformations is important. With T ∈ L(U, V ) and S ∈ L(V,W ), suppose
that we wish to apply the product to u ∈ U . Now we must apply T first, since T : U → V ;
thus we write T (u). Next, since T (u) ∈ V , we may now apply S, and write S(T (u)) or ST (u),
which is an element of W . In particular, it is easy to think that we should write “TS” for
the product of the transformations, but given the way that we denote function composition,
TS implies that we first apply S, then apply T (which would not make sense). In particular,
with T ∈ L(U, V ) and S ∈ L(V,W ), the product TS is not defined if U 6= W .

Example. Consider

M =

1 0
0 1
1 1
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and its associated linear transformation TM , defined by

TM

((
u1
u2

))
= M

(
u1
u2

)
.

Let
N =

(
1 1 1

)
.

Then it is easy to see that the map TN : R3 → R1 defined by

TN

(u1u2
u3

) = N

u1u2
u3


is a linear transformation. Compute the linear transformation defined by the product

TNTM .

Notice that, since
TM ∈ L(R2,R3) and TN ∈ L(R3,R1),

the product
TNTM ∈ L(R2,R1).

Of course, this makes sense since we will apply the 3× 2 matrix M to a 2× 1 matrix, resulting in
a 3× 1 matrix; multiplying afterwards by the 1× 3 N results in a 1× 1 matrix.

Let’s make the calculation:

TNTM

((
u1
u2

))
= TN

(
TM

((
u1
u2

)))

= TN

(1 0
0 1
1 1

(u1
u2

))

= TN

( u1
u2

u1 + u2

)

=
(
1 1 1

) u1
u2

u1 + u2


=

(
u1 + u2 + u1 + u2

)
=

(
2u1 + 2u2

)
.

Thus the linear transformation TNTM ∈ L(R2,R1) is defined by

TNTM

((
u1
u2

))
=
(
2u1 + 2u2

)
.
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Example. Show that
TNTM (u) = (NM)u.

Since
TNTM (u) = N(Mu) = (NM)u

(using properties of matrix arithmetic), we note that the product TNTM is really defined by mul-
tiplying u ∈ R2 by the matrix NM . Since

NM =
(
1 1 1

)1 0
0 1
1 1


=

(
2 2

)
,

then

TNTM

((
u1
u2

))
=
(
2 2

)(u1
u2

)
.

We record without proof a few observations on the properties of the product of transformations:

Theorem 3.9. 1. If T1, T2, and T3 are linear transformations so that the products

T1T2 and T2T3

make sense, then
(T1T2)T3 = T1(T2T3)

(associativity).

2. For T ∈ L(V,W ) and TI the identity transformation on V ,

TTI = T ;

similarly, if TI is the identity transformation on W , then

TIT = T

(TI acts like a multiplicative identity).

3. If T , T1, T2 ∈ L(U, V ) and S, S1, S2 ∈ L(V,W ), then

S(T1 + T2) = ST1 + ST2 and (S1 + S2)T = S1T + S2T

(distribution of multiplication over addition).

Finally, we record an observation about the action of a transformation on the 0 vector:

Theorem 3.11. If T ∈ L(U, V ), then
T (0U ) = 0V ,

where the notation 0U indicates the zero vector in U .
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