
Unit 2, Section 3: Linear Combinations, Spanning, and Linear Independence

Linear Combinations, Spanning, and Linear Independence

We have seen that there are two operations defined on a given vector space V :

1. vector addition of two vectors, and

2. scalar multiplication of a vector by a scalar.

The most fundamental way to combine vectors in a vector space is by employing these two
operations on some collection of vectors and scalars. The definition below makes this idea precise:

Definition 2.3. A linear combination of a list v1, . . . , vm of vectors in a vector space V over a
field F is a vector of the form

α1v1 + . . .+ αmvm,

where α1, . . . , αm ∈ F.

Example. As a simple example, consider the vectors

w =

(
3 −5
0 2

)
and

e11 =

(
1 0
0 0

)
, e12 =

(
0 1
0 0

)
, and e22 =

(
0 0
0 1

)
in the vector space U2(R) of 2 × 2 real upper triangular matrices. We can think of w as a linear
combination of the vectors e11, e12, and e22: indeed, it is quite easy to see that

w = 3e11 − 5e12 + 2e22.

In a sense, we can use e11, e12, and e22, together with the two operations of addition and scalar
multiplication in U2(R), to “build” w.

Example. Describe the set of all linear combinations of e11, e12, and e22.
It should be clear that you can use the vectors e11, e12, and e22 to build any other vector in

U2(R): if

u =

(
u11 u12
0 u22

)
is a vector in U2(R), then we can think of u as the linear combination

u = u11e11 + u12e12 + u22e22.

On the other hand, it is easy to see that any linear combination of the vectors e11, e12, and e22
will be another vector in U2(R). Thus there is a sense in which these three vectors give you all the
information you need to know about U2(R).
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Span

In the example above, we saw that we could use three vectors to build all of U2(R). This leads us
to a definition:

Definition 2.5. Let S = (v1, v2, . . . , vm) be a list of vectors in a vector space V . The span of S,
denoted span (S) or span (v1, v2, . . . , vm), is the set of all linear combinations of vectors in S.

The span of the empty list () is defined to be {0}, that is span () = {0}.

Remark. Most literature refers to the span of a set, as opposed to the span of a list (the difference
being that a set is unorderd, while a list has an order). However, order is invariably important when
referring to some set of vectors that span, so we solve the problem by thinking of our collection of
vectors as a list (even though I will often refer to “spanning sets”).

Example. Describe the span of the list (e11, e12, e22).
We saw above that the set of all linear combinations of vectors in the list above is all of U2(R);

we write
span (e11, e12, e22) = U2(R).

It turns out that spans of sets are extremely important in the context of vector spaces:

Theorem 2.7. Let S = (v1, v2, . . . , vm) be a list of vectors in a vector space V . Then:

1. The span of S is a subspace W of V .

2. W = span (S) is the smallest subspace of V that contains all of the vectors in S.

With these ideas in mind, we record a definition:

Definition 2.8. If there is a list of vectors (v1, v2, . . . , vn) so that

V = span (v1, v2, . . . , vn),

we say that the vectors v1, v2, . . . , vn span V .

The theorem above tells us several useful facts. First of all, it guarantees that the set that we
create when we create the span of a list of vectors is automatically a subspace of the original
vector space.

Second, the theorem guarantees that if U is a subspace of V different from W = span (S)
and U contains all of the vectors in S, then U contains all of the vectors in W and is a larger
vector space than is W :
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Key Point. The key point of the theorem is that spans of sets are vector subspaces. In a sense,
the theorem gives us the power to build many different subspaces of a vector space V : just choose
your favorite vectors from V , and take the span (set of all linear combinations) of those vectors.
You automatically get a subspace.

Example 1

In a previous section, we saw that the set U2(R) of all real upper triangular 2 × 2 matrices is a
subspace of the vector space M2(R) of all real 2× 2 matrices, by checking that U∈(R) was closed
under the operations of addition and scalar multiplication.

Theorem 2.7 gives us another way to check that U2(R) is a subspace: we know that

U2(R) = span (e11, e12, e22).

Since the vectors e11, e12, and e22 are also vectors in the vector space M2(R), Theorem 2.7 says
that their span U2(R) is a subspace.
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Example 2

The standard unit vectors

e1 =


1
0
...
0

 , e2 =


0
1
...
0

 , and en =


0
0
...
1


in Rn actually span Rn; any n dimensional vector can be written as a linear combination of the
vectors e1, e2,. . . , en.

Example 3

In the vector space P5(F) of all polynomials over F of degree at most 5, the list

S = (1, x, x2, x3, x4, x5)

spans P5, because any vector in P5(F) (i.e., any polynomial of degree at most 5) can be written as
a linear combination of the vectors in S.

Example 4

In section 1 of this unit, we saw that the set sl(2,R) of 2 × 2 trace 0 matrices is a vector space.
Recall that every 2× 2 trace 0 matrix has form(

a b
c −a

)
.

With this in mind, it shoud be clear that the vectors(
1 0
0 −1

)
,

(
0 1
0 0

)
, and

(
0 0
1 0

)
span sl(2,R).

Example 5: A set that does not span

Let’s return once more to the set U2(R) of all upper triangular 2× 2 matrices. We saw earlier that
the three vectors

e11 =

(
1 0
0 0

)
, e12 =

(
0 1
0 0

)
, and e22 =

(
0 0
0 1

)
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span U2(R).

Now if we only consider the list (e11, e12) (i.e., throw away e22), I claim that we no longer have
a spanning list of U2(R). It is actually quite easy to see that the list (e11, e12) does not span U2(R):
for example, there is no way to find a linear combination of

e11 =

(
1 0
0 0

)
and e12 =

(
0 1
0 0

)
that will yield the vector

w =

(
4 1
0 −2

)
.

Since there are elements of U2(R) that are not linear combinations of e11 and e12, the list
(e11, e12) does not span U2(R).

Example

Do the vectors

v1 =

(
3
1

)
and v2 =

(
2
2

)
span R2?

Determining if v1 and v2 span R2 amounts to checking that every vector in R2 can be written
as a linear combination of v1 and v2.

Given an arbitrary vector

b =

(
b1
b2

)
in R2, we hope to be able to find scalars k1 and k2 so that

b = k1v1 + k2v2;

alternatively, we can write this equation as(
b1
b2

)
=

(
3k1
k1

)
+

(
2k2
2k2

)
.

In equation form, we want to show that the system

3k1 + 2k2 = b1

k1 + 2k2 = b2

is consistent for any real numbers b1 and b2. Fortunately, we learned a theorem in Unit 1, Section
10 that will allow us to check this quite easily:

Theorem. Let A be an n× n matrix. Then the following are equivalent:
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• Ax = b is consistent for every n× 1 matrix b.

• detA 6= 0.

Thinking of our system

3k1 + 2k2 = b1

k1 + 2k2 = b2

in matrix form as (
3 2
1 2

)(
k1
k2

)
=

(
b2
b2

)
,

we see that the system will be consistent for every vector b in R2, as desired, if and only if the
determinant of the coefficient matrix for the system is nonzero. Let’s check the determinant:

det

(
3 2
1 2

)
= 3 · 2− 2 · 1

= 6− 2

= 4.

Since the determinant of the coefficient matrix for the system is nonzero, the system is consistent
for any vector b in R2. In other words, no matter how we choose the vector b, we will always be
able to find scalars k1 and k2 so that(

b1
b2

)
=

(
3k1
k1

)
+

(
2k2
2k2

)
.

Thus the vectors v1 and v2 span R2, so that we may use them to “build” all of R2.
For example, if we choose

b =

(
−7
3

)
,

we can write b as the linear combination(
−7
3

)
= −5

(
3
1

)
+ 4

(
2
2

)
.

Key Point. At this point, we know of two different lists that span R2:((
1
0

)
,

(
0
1

))
and

((
3
1

)
,

(
2
2

))
.

In a sense, these two sets give us two different ways to build R2. The two alternate spanning
sets are graphed below in R2:
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As indicated above, we can use either spanning set to build any vector in R2 that we like, as
illustrated below with the vector

(
−7 3

)
:

Finite and Infinite Dimensional Vector Spaces

We will soon see that the ideas of spanning and linear combination are closely tied to the idea of
the “size” of a vector space. Thinking back to Example 2 above in Rn, we saw that there is a set
of 2 vectors that spans R2; a set of 3 vectors that spans R3; etc.

Of course, we also think of R2 as a “smaller” space than R3 (indeed, R2 is embedded in R3);
we will soon see that the relative sizes of spanning sets correspond in a natural way to the relative
sizes of the spaces themselves (we will discuss this idea further in the next few sections).
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At this point, we would like to make an observation: there are vector spaces that are not spanned
by any finite set.

Example. Let P(R) be the vector space of all polynomials over R, and let S be any (finite)
list of vectors in P(R). The list is finite, so there is a vector in the list of highest degree, say
αmx

m + . . .+ α1x+ α0.
Clearly the polynomial xm+1 is not a linear combination of vectors from S, so no finite set of

vectors spans P(R).

With this example in mind, we record a definition, and follow the definition with a reasonable
assumption:

Definitions 2.10/2.15. A vector space V is called finite dimensional if there is a finite list of
vectors spanning V . Otherwise, V is infinite dimensional.

Example. We saw above that there is no finite list spanning P(R), so it is an example of an infinite
dimensional vector space. In fact, the spaces R(−∞,∞) and C(−∞,∞) of real-valued functions
and continuous functions with domain (−∞,∞) are both infinite dimensional.

On the other hand, Pn(F) is finite dimensional for any n <∞, as are Rn and Mmn.

Remark. Unless otherwise specified, we will assume throughout this course that all of our vector
spaces are finite dimensional–i.e. that each one has a finite list of vectors spanning it.

Linear Independence

We saw above that, if a list S = (v1, v2, . . . , vm) of vectors from a vector space V spans V , then
every vector in V can be written as a linear combination of the vectors in S. In a sense, we can use
the vectors in S, along with the operations of addition and scalar multiplication on V , to “build”
any vector we want from V .

We looked at an example above in R2: we saw that both of the lists

S = (e1, e2) =

((
1
0

)
,

(
0
1

))
and T = (v1, v2) =

((
3
1

)
,

(
2
2

))
span R2; the vectors from S is graphed below in red, and those from T are graphed in blue.
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Now I claim that the list of four vectors

R =

((
1
0

)
,

(
0
1

)
,

(
3
1

)
,

(
2
2

))
is also a spanning list. Of course, my claim is quite easy to check: since the list R includes all of
the vectors from the spanning lists S and T , we can certainly write any vector in R2 as a linear
combination of the vectors in R.

Unfortunately, this spanning list causes us some problems. As an example, consider the vector

w =

(
6
4

)
.

Since w is in R2, it is a linear combination of the vectors in the spanning set R, say

w =

(
1
0

)
+

(
0
1

)
+

(
3
1

)
+

(
2
2

)
= e1 + e2 + v1 + v2.

However, we could also write w as a linear combination of the vectors in R as

w = 6

(
1
0

)
+ 4

(
0
1

)
= 6e1 + 4e2 + 0v1 + 0v2,

or even as

w = −4

(
1
0

)
− 6

(
0
1

)
+ 5

(
2
2

)
= −4e1 − 6e2 + 0v1 + 5v2.
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In a sense, this particular spanning set for R2 introduces ambiguity: it gives us multiple ways
to write a particular vector in R2 as a linear combination of vectors in the spanning set.

Now, if we restrict our lists to just

S =

((
1
0

)
,

(
0
1

))
or alternatively to

T =

((
3
1

)
,

(
2
2

))
,

we won’t have this difficulty: a vector in R2 can be written in only one way as a linear combination
of vectors in S, and in only one way as a linear combination of vectors in T .

So there is a sense in which the spanning list

R =

((
1
0

)
,

(
0
1

)
,

(
3
1

)
,

(
2
2

))
for R2 is just too big: it gives us too much flexibility, introducing ambiguity into the way we build
vectors (should we write w as w = e1 + e2 + v1 + v2, or as w = −4e1 − 6e2 + 5v2?)

Key Point. Saying that a list S spans a vector space V is the same as saying that we can use the
vectors in S to build any vector that we like from V ; there is a sense in which S is all we need to
know in order to understand V .

Of course, we want to avoid any ambiguity in our understanding of V , so we would like to
choose the list S to be as small as possible. We quantify what we mean when we say that a set is
“too big” below with a discussion of linear independence.

Linearly Independent Lists

The reason that the spanning set

R =

((
1
0

)
,

(
0
1

)
,

(
3
1

)
,

(
2
2

))
is “too big” is that we can use some of the vectors in R to build other vectors in R. For example,
you should check that e1 can be written as the linear combination

e1 =
1

2
v1 −

1

4
v2.

So in a sense, we could throw out e1 from our spanning list without losing any information:
anytime we want to write e1, we could just as well write 1

2
v1 − 1

4
v2.

With these ideas in mind, we introduce the idea of a list of linearly independent vectors:
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Definitions 2.17/2.19. A nonempty list S = (v1, v2, . . . , vm) of one or more vectors in V is said
to be linearly independent if the only choice of scalars α1, . . . , αn ∈ F so that

α1v1 + . . .+ αmvm = 0

is
α1 = . . . = αm = 0.

Otherwise, the list of vectors is linearly dependent.
For purposes of convenience, we choose to call the empty list () independent.

Key Point. Saying that a set of vectors is linearly independent is the same as saying that they
are “unique”, or perhaps even essential; you can’t build one of them using the others, so losing one
of the vectors in the list would result in a loss of information about the list and its span.

Altering the observation from the example above just a bit, we see that

e1 −
1

2
v1 +

1

4
v2 = 0;

thus

R =

((
1
0

)
,

(
0
1

)
,

(
3
1

)
,

(
2
2

))
is a list of dependent vectors.

However, we will see momentarily that lists

S =

((
1
0

)
,

(
0
1

))
and

T =

((
3
1

)
,

(
2
2

))
are both linearly independent.

Remark. Any (finite) set containing the 0 vector is automatically linearly dependent.
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Examples of Linearly Independent Vectors

Example 1

In Rn, the standard unit vectors

e1 =


1
0
...
0

 , e2 =


0
1
...
0

 , and en =


0
0
...
1


(which span Rn) are also linearly independent.

To see why, suppose that α1, . . . , an are constants so that

α1e1 + . . .+ αnen = 0 =


0
0
...
0

 .

Then clearly α1 = . . . = αn = 0, and the vectors are linearly independent.

Example 2

The list

T =

((
3
1

)
,

(
2
2

))
of vectors in R2 is an independent list: indeed, suppose that

α1

(
3
1

)
+ α2

(
2
2

)
=

(
0
0

)
.

Then we have (
0
0

)
= α1

(
3
1

)
+ α2

(
2
2

)
=

(
3α1

α1

)
+

(
2α2

2α2

)
=

(
3α1 + 2α2

α1 + 2α2

)
.

In other words, we would like to know what values for α1 and α2 will make the system

3α1 + 2α2 = 0

α1 + 2α2 = 0

consistent.
Once again, we return to a theorem from Unit 1, Section 10:
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Theorem. Let A be an n× n matrix. Then the following are equivalent:

• Ax = 0 has only the trivial solution.

• detA 6= 0.

Thinking of our system

3α1 + 2α2 = 0

α1 + 2α2 = 0

in matrix form as (
3 2
1 2

)(
α1

α2

)
=

(
0
0

)
,

we see that we should check the determinant of the coefficient matrix:

det

(
3 2
1 2

)
= 3 · 2− 2 · 1

= 6− 2

= 4.

Since the determinant of the coefficient matrix is nonzero, the system

3α1 + 2α2 = 0

α1 + 2α2 = 0

has only the trivial solution α1 = α2 = 0: in other words, the only way to make the statements
true is to choose α1 = 0 and α2 = 0.

Thus the vectors in the list

T =

((
3
1

)
,

(
2
2

))
are linearly independent.

Example 3

We saw above that the list ((
1 0
0 0

)
,

(
0 1
0 0

))
does not span the vector space U2(R) of all real upper triangular 2× 2 matrices.

However, it is quite easy to see that this set is linearly independent: the only way to make(
k1 0
0 0

)
+

(
0 k2
0 0

)
=

(
0 0
0 0

)
is by choosing k1 = k2 = 0.
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Example 4

The vectors (
1 0
0 −1

)
,

(
0 1
0 0

)
, and

(
0 0
1 0

)
span sl(2,R); I claim that they are also linearly independent. This fact is easy to see: if(

α 0
0 −α

)
+

(
0 β
0 0

)
+

(
0 0
γ 0

)
=

(
0 0
0 0

)
,

then clearly
α = β = γ = 0.

Example of a List of Dependent Vectors

I claim that the vectors 
1
0
1
3

 ,


0
0
1
0

 ,


0
0
−2
1

 ,


0
0
0
3


are not linearly independent in R4. We can check that this is true by inspecting the coefficient
matrix of the system of equations

α1 + 0α2 + 0α3 + 0α4 = 0

0α1 + 0α2 + 0α3 + 0α4 = 0

α1 + α2 − 2α3 + 0α4 = 0

3α1 + 0α2 + α3 + 3α4 = 0.

Again, we resort to the theorem from Unit 1, Section 10:

Theorem. Let A be an n× n matrix. Then the following are equivalent:

• Ax = 0 has only the trivial solution.

• detA 6= 0.

Since the statements above are equivalent, we know that there are nontrivial solutions α1, α2,
α3, and α4 to the system if and only if the determinant of the coefficient matrix is 0. The coefficient
matrix is given by

A =


1 0 0 0
0 0 0 0
1 1 −2 0
3 0 1 3

 .
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Since the matrix is lower triangular, its determinant is just the product of its diagonal entries; we
have

detA = 1 · 0 · (−2) · 3 = 0,

which indicates that there are nontrivial solutions to the system. Thus the vectors are linearly
dependent.

Relative Sizes of Spanning Lists and Independent Lists

We have considered the list

S =

((
1 0
0 0

)
,

(
0 1
0 0

))
of vectors in U2(R) several times; in particular, we have seen that the list is independent, but does
not span U2(R).

On the other hand, the list

S′ =

((
1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
0 1

)
,

(
1 0
0 1

))
certainly spans U2(R); however, it is not an independent list (you should check)!

The relative sizes of these lists is important to note when considering the phenomena described
above. Notice that S is a relatively small list, while S′ is relatively large. Smaller lists are more
likely to be independent, whereas larger lists are more likely to span. In a sense, the more vectors
you add to a list, the more likely you are to introduce some dependence relations (thus preventing
the list from being independent); but adding more vectors means that you are also more likely to
be able to build the entire space (i.e., span).

These ideas are made concrete by the following theorem; recall that the notation | · |, when
applied to a list or set, refers to the number of items in the set or “length” of the list.

Theorem 2.23. Let V be a finite dimensional vector space. Suppose that I is a list of independent
vectors in the space, and that S is a list of vectors that span V . Then

|I| ≤ |S|.

Before we look at a proof of the theorem, let us discuss a helpful lemma:

Linear Dependence Lemma. Suppose that v1, . . . , vm is a linearly dependent list in V . Then
there is a j, 1 ≤ j ≤ m, so that

1. vj ∈ span (v1, v2, . . . vj−1), and

2. span (v1, v2, . . . vm) = span (v1, v2, . . . , vj−1, vj+1, . . . , vm); that is, removing vj from
the list does not affect the span of the list.
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We will not give a detailed proof of the lemma, but will discuss it briefly. Clearly if the set is
dependent, then there are constants α1,. . .αn, not all 0, so that α1v1 + . . . + αmvm = 0. We may
assume that αm 6= 0 (reorder the list if necessary). Then

vm = − α1

αm
v1 − . . .−

αm−1
αm

vm−1,

so that vm ∈ span (v1, . . . , vm−1).
For part (2), suppose that w is a linear combination of the vectors in the list; simply replace

vm by

− α1

αm
v1 − . . .−

αm−1
αm

vm−1,

so that w is a linear combination of the remaining vectors.

Key Point. If v is a linear combination of other vectors in a list, removing v from the list will not
affect the span of the list.

Proof of Theorem 2.23. Given the independent list

I = (u1, u2, . . . , um)

and the (finite) spanning list
S = (w1, w2, . . . , wn),

we wish to show that m ≤ n. We proceed in an iterative fashion:

Step 1:

Vector u1 is a linear combination of the vectors in S, say

u1 = α1w1 + . . .+ αnwn;

so the list
Ŝ1 = (u1, w1, . . . , wn)

is a dependent list with the same span as that of S, that is,

span (Ŝ) = span (S) = V.

Returning to the linear combination

u1 = α1w1 + . . .+ αnwn,

we may assume that α1 6= 0 (reorder the list if necessary). Thus w1 is a linear combination of
vectors in the list

S1 = (u1, w2, w2, . . . , wn),

created from Ŝ by deleting w1. By applying the Linear Dependence Lemma to the dependent set
Ŝ1, we see that removing w1 from the list does not change its span. Thus

span (S1) = span (Ŝ1) = V.
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Step 2:

Since S1 spans V , vector u2 is a linear combination of the vectors in S1, say

u2 = β1u1 + β2w2 + . . .+ βnwn,

so the list
Ŝ2 = (u1, u2, w2, . . . , wn)

is dependent (and spans V ). Now the list I is independent, so

u2 − β1u1 6= 0.

Thus at least one βi 6= 0, i > 1, say β2 (again, reorder the list if necessary). Thus w2 is a linear
combination of the vectors in the list

S2 = (u1, u2, w3, w4, . . . , wn),

created from the dependent list Ŝ2 by removing w2. Again, we have merely removed a vector that is
a linear combination of the others from a dependent list, so the Linear Dependence Lemma applies:

span (S2) = span (Ŝ2) = V.

Steps 3-m:

Iterate the process from step 2 of adding ui to Si−1 and deleting an appropriate wj to create the
new spanning list Si. At each step, there must be at least one wj available for deletion, because if
not we would have

ui = γ1u1 + . . .+ γi−1ui−1,

violating the independence of I. Thus we will not run out of vectors wj before we run out of vectors
ui, implying that

|I| ≤ |S|.

We record without proof one more theorem in this section, which will become useful later:

Theorem 2.26. Every subspace of a finite dimensional vector space is finite dimensional.

In other words, if V has a finite spanning list, then so does any subspace of V .
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