Homework 7, Part 1, Due 4/1

- 1. Find the coordinates of each of $f_2(x) = x^2$, $f_1(x) = x$, and $f_0(x) = 1$ with respect to each of the following bases for $\mathcal{P}_2(\mathbb{R})$:
 - (a) $B_1 = (x^2, x, 1)$
 - (b) $B_2 = (2x 3, x^2 + 1, 2x^2 x)$
- 2. The vectors

$$e_{11} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \ e_{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \text{ and } e_{21} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

form a basis B for the space $\mathfrak{sl}(2,\mathbb{R})$ of 2×2 trace 0 matrices with real entries. We may extend this basis to a basis \hat{B} for all of $\mathcal{M}_2(\mathbb{R})$ by adjoining vector

$$e_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}.$$

(a) Find the coordinates of

$$v = \begin{pmatrix} 7 & -3 \\ 1 & -7 \end{pmatrix}$$

as a vector in $\mathfrak{sl}(2,\mathbb{R})$ with respect to

$$B = (e_{11}, e_{12}, e_{21}).$$

- (b) Find the coordinates of v as a vector in $\mathcal{M}_2(\mathbb{R})$ with respect to $\hat{B} = (e_{11}, e_{12}, e_{21}, e_1)$.
- 3. Let V be a finite dimensional vector space over \mathbb{F} with basis

$$B = (v_1, v_2, \ldots, v_n).$$

Prove the following assertions:

- (a) $(u+v)_B = (u)_B + (v)_B$ for all $u, v \in V$
- (b) $(\lambda u)_B = \lambda(u)_B$ for all $u \in V, \lambda \in \mathbb{F}$.
- 4. For each of the following functions, determine if the function is a linear transformation on the given spaces (please justify your conclusions):

(a)
$$S : \mathbb{R}^2 \to \mathbb{R},$$

(b) $D : \mathcal{M}_2(\mathbb{R}) \to \mathbb{R},$
 $D\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) = ad - bc.$

(c) For fixed $b \in \mathbb{R}^3$, $P_b : \mathbb{R}^3 \to \mathbb{R}^3$ is defined by projection onto b, that is

$$P_b(a) = \left(\frac{a \cdot b}{|b|^2}\right)b$$