Homework 6, Due 3/18

1. Recall that the vector space $\mathfrak{sl}(2,\mathbb{R})$ of 2×2 trace $\overline{0}$ matrices is a subspace of $\mathcal{M}_2(\mathbb{R})$. The list

$$\left(\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \right).$$

Find two different subspaces W_1 and W_2 of $\mathcal{M}_2(\mathbb{R})$ so that

$$\mathcal{M}_2(\mathbb{R}) = \mathfrak{sl}(2,\mathbb{R}) \oplus W_1 \text{ and } \mathfrak{sl}(2,\mathbb{R}) \oplus W_2.$$

2. Let V be the subspace of \mathbb{R}^4 spanned by the vectors

$$\left(\begin{pmatrix}11\\4\\1\\10\end{pmatrix}, \begin{pmatrix}2\\1\\1\\1\end{pmatrix}, \begin{pmatrix}8\\1\\-5\\13\end{pmatrix}, \begin{pmatrix}-1\\0\\1\\-2\end{pmatrix}\right).$$

- (a) Determine the dimension of V.
- (b) Find a basis for V.

3. Let

$$A = \begin{pmatrix} 1 & -1 & 4 \\ 2 & -1 & 5 \\ 1 & 0 & 1 \end{pmatrix}.$$

We can think of the columns of A as vectors in \mathbb{R}^3 . The subspace of \mathbb{R}^3 spanned by the columns of A is called the *column space* of A, denoted by column (A).

- (a) Find two nonzero vectors in column(A).
- (b) Show that column $(A) \neq \mathbb{R}^3$ using an argument on the determinant of A.
- (c) Find a basis for column(A) and determine the dimension of column(A).
- 4. Let V be the subspace of $\mathcal{P}_4(\mathbb{R})$ of all vectors $p \in \mathcal{P}_4(\mathbb{R})$ so that

$$p''(1/2) = 0.$$

- (a) Find a basis for V.
- (b) Extend the basis to a basis for $\mathcal{P}_4(\mathbb{R})$.
- 5. Prove that every subspace of \mathbb{R}^3 is either $\{0\}$, a line through the origin, or a plane through the origin.
- 6. Prove that if U and W are both 5 dimensional subspaces of \mathbb{R}^9 , then $U \cap W \neq \{\mathbf{0}\}$.
- 7. The notation

$\dim_{\mathbb{F}}(V)$

denotes the dimension of V as a vector space over field \mathbb{F} .

Let V be any vector space over \mathbb{C} . Since $\mathbb{R} \subset \mathbb{C}$, V is also a vector space over \mathbb{R} . Prove that

$$\dim_{\mathbb{R}}(V) = 2\dim_{\mathbb{C}}(V)$$