
Homework 5 Key

1. Consider the vectors x2, 2x− 1, and x2 + 1 in P2(R).

(a) Do the vectors span P2(R)? If so, show it; if not, provide an example of a vector not in
their span.

Solution: Every linear combination of the vectors above has form

αx2 + 2βx− β + γx2 + γ = (α+ γ)x2 + (2β)x+ (γ − β).

Now a vector f in P2(R) is a polynomial with degree at most 2 with real coefficients,
and may be written in the form

f(x) = ax2 + bx+ c,

where a, b, c ∈ R.

Setting

β =
b

2
, γ = c+

b

2
, and α = a− c− b

2
,

we see that

(a− c− b

2
)x2 + (

b

2
)(2x− 1) + (c+

b

2
)(x2 + 1) = ax2 − cx2 − b

2
x2 + bx− b

2
+ cx2 +

b

2
x2 + c+

b

2
= ax2 + bx+ c

= f(x),

so that every vector in P2(R) is a linear combination of vectors in the list (x2, 2x −
1, x2 + 1).

(b) Are the vectors independent in P2(R)? If so, show it; if not, provide a counterexample.

Solution: If α, β, and γ are numbers so that

αx2 + 2βx− β + γx2 + γ = 0,

then by equating powers of x, we must have

α+ γ = 0

2β = 0

−β + γ = 0.

This implies that α = β = γ = 0, so that the vectors are indeed independent.

2. Consider the vectors (
2 1
1 1

)
,

(
0 3
3 9

)
, and

(
−1 0
0 1

)
in M2(C).
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(a) Do the vectors span M2(C)? If so, show it; if not, provide an example of a vector not
in their span.

Solution: I claim that the vector (
0 1
0 0

)
is not in the span of the vectors above. To be certain, we check

α

(
2 1
1 1

)
+ β

(
0 3
3 9

)
+ γ

(
−1 0
0 1

)
=

(
0 1
0 0

)
(

2α α
α α

)
+

(
0 3β

3β 9β

)
+

(
−γ 0
0 γ

)
=

(
0 1
0 0

)
.

To make things easier on ourselves, we rewrite the last equation as the system

2α− γ = 0

α+ 3β = 1

α+ 3β = 0

α+ 9β + γ = 0,

whose augmented matrix is given by
2 0 −1 | 0
1 3 0 | 1
1 3 0 | 0
1 9 1 | 0

 ;

row reducing, we see that
2 0 −1 | 0
1 3 0 | 1
1 3 0 | 0
1 9 1 | 0

 →


1 0 −1/2 | 0
0 3 1/2 | 1
0 0 0 | −1
0 6 1 | −1

 ,

which is clearly an inconsistent system. Thus the list of vectors does not span M2(C).

(b) Are the vectors independent inM2(C)? If so, show it; if not, provide a counterexample.

Solution: We need to check the equation

α

(
2 1
1 1

)
+ β

(
0 3
3 9

)
+ γ

(
−1 0
0 1

)
=

(
0 0
0 0

)
(

2α α
α α

)
+

(
0 3β

3β 9β

)
+

(
−γ 0
0 γ

)
=

(
0 0
0 0

)
,

which correspondes to the system system

2α− γ = 0

α+ 3β = 0

α+ 3β = 0

α+ 9β + γ = 0.
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The augmented matrix for this system is
2 0 −1 | 0
1 3 0 | 0
1 3 0 | 0
1 9 1 | 0

 ,

which row reduces to
2 0 −1 | 0
1 3 0 | 0
1 3 0 | 0
1 9 1 | 0

 →


1 0 −1/2 | 0
0 3 1/2 | 0
0 3 1/2 | 0
0 9 3/2 | 0



→


1 0 −1/2 | 0
0 1 1/6 | 0
0 0 0 | 0
0 0 0 | 0

 ,

which has nonzero solutions; e.g. γ = 6, β = −1, α = 3. Thus the vectors are not
independent.

3. Consider the vectors (
2 1
0 −2

)
,

(
0 0
1 0

)
,

(
−1 0
4 1

)
, and

(
1 1
1 −1

)
in sl(2,R), the vector space of all 2× 2 trace 0 matrices over R.

(a) Use a system of linear equations and Gauss-Jordan elimination on the resulting aug-
mented matrix to show that the vectors span sl(2,R).

Solution: Any matrix in sl(2,R) can be written in the form(
a b
c −a

)
.

We wish to show that any matrix in sl(2,R) may also be written in the form

α

(
2 1
0 −2

)
+ β

(
0 0
1 0

)
+ γ

(
−1 0
4 1

)
+ δ

(
1 1
1 −1

)
=

(
2α− γ + δ α+ δ
β + 4γ + δ −2α+ γ − δ

)
.

Thus we have the system of equations

2α− γ + δ = a

α+ δ = b

β + 4γ + δ = c
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(we may ignore the last equation, since it is a scalar multiple of the first). The matrix
equation for this system is

2 0 −1 1
1 0 0 1
0 1 4 1



α
β
γ
δ

 =

ab
c

 .

We may apply Gauss-Jordan elimination to the resulting augmented matrix:2 0 −1 1 | a
1 0 0 1 | b
0 1 4 1 | c

 →

1 0 −1/2 1/2 | a/2
1 0 0 1 | b
0 1 4 1 | c



→

1 0 −1/2 1/2 | a/2
0 0 1/2 1/2 | b− a/2
0 1 4 1 | c



→

1 0 −1/2 1/2 | a/2
0 1 4 1 | c
0 0 1/2 1/2 | b− a/2



→

1 0 −1/2 1/2 | a/2
0 1 4 1 | c
0 0 1 1 | 2b− a



→

1 0 −1/2 1/2 | a/2
0 1 0 −3 | c− 8b+ 4a
0 0 1 1 | 2b− a



→

1 0 0 1 | b
0 1 0 −3 | c− 8b+ 4a
0 0 1 1 | 2b− a



This system is clearly consistent, so that the listed vectors span sl(2,R).

(b) Use the equivalent conditions from Unit 1, Section 10 to show that the list is dependent.

Solution: If (
2α− γ + δ α+ δ
β + 4γ + δ −2α+ γ − δ.

)
= 0,

then the resulting matrix equation is
2 0 −1 1
1 0 0 1
0 1 4 1
−2 0 1 −1



α
β
γ
δ

 =


a
b
c
−a

 .
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The coefficent matrix

A =


2 0 −1 1
1 0 0 1
0 1 4 1
−2 0 1 −1


is clearly determinant 0 (since the last row is a multiple of the first), so that the system

α

(
2 1
0 −2

)
+ β

(
0 0
1 0

)
+ γ

(
−1 0
4 1

)
+ δ

(
1 1
1 −1

)
=

(
0 0
0 0

)
has nontrivial solutions.

4. In the last homework, we saw that if A is an n × n matrix and λ ∈ F, then the set of all
vectors x so that

Ax = λx

is a subspace of Fn.

Let

A =

1 −1 1
0 2 −1
0 0 1


and λ = 1.

(a) Let E be the subspace of R3 of all vectors x so that

Ax = λx.

Find a parametric description for a general vector in E.

Solution: Since λ = 1, we are looking for vectors x ∈ R3 so that

Ax = x, or equivalently (A− I)x = 0.

Using the second equation above, we wish to find x ∈ R3 so that

0 = (A− I)x

=

1− 1 −1 1
0 2− 1 −1
0 0 1− 1

x1x2
x3



=

0 −1 1
0 1 −1
0 0 0

x1x2
x3

 .
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Reducing the augmented matrix for the system, we have0 −1 1 | 0
0 1 −1 | 0
0 0 0 | 0

 →

0 1 −1 | 0
0 1 −1 | 0
0 0 0 | 0



→

0 1 −1 | 0
0 0 0 | 0
0 0 0 | 0

 .

Thus both x1 and x3 are free variables; parameterizing

x1 = t, x3 = s,

we have

x =

ts
s

 .

Thus E is the subspace of all vectors in R3 of the formts
s

 ,

s, t ∈ R.

(b) Find a list of two vectors that spans the subspace E.

Example: Every vector in E may be written in the formts
s

 =

t0
0

+

0
s
s



= t

1
0
0

+ s

0
1
1

 .

Thus the list (1
0
0

 ,

0
1
1

)
spans E.

5. Recall that C3, the vector space of all 3× 1 matrices with complex entries, is a vector space
over C, with basis (1

0
0

 ,

0
1
0

 ,

0
0
1

).
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(a) Show that the list of vectors above is not a basis for C3 when C3 is viewed as a vector
space over R.

Solution: Clearly there are no real numbers so that

a

1
0
0

+ b

0
1
0

+ c

0
0
1

 =

i0
0

 ,

so the vectors do not span C3 over R.

(b) Extend the list of vectors above to a basis for C3 over R.

Example: It seems reasonable to guess that the list

(1
0
0

 ,

0
1
0

 ,

0
0
1

 ,

i0
0

 ,

0
i
0

 ,

0
0
i

)

could be a basis for C3 over R.

Let’s verify that the vectors span C3: every vector in C3 can be written in the formαβ
γ

 ,

where α, β, γ ∈ C; however, rewriting

α = a1 + a2i

β = b1 + b2i

γ = c1 + c2i,

where aj , bj , cj ∈ R, we see thatαβ
γ

 =

a1b1
c1

+ i

a2b2
c2



= a1

1
0
0

+ b1

0
1
0

+ c1

0
0
1

+ a2

i0
0

+ b2

0
i
0

+ c2

0
0
i

 .

Thus the list (1
0
0

 ,

0
1
0

 ,

0
0
1

 ,

i0
0

 ,

0
i
0

 ,

0
0
i

)
spans C3.

To show that the vectors are independent, we need merely observe that for a1, a2 ∈ R,

a1 + a2i = 0 ⇐⇒ a1 = a2 = 0.
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Thus

a1

1
0
0

+ b1

0
1
0

+ c1

0
0
1

+ a2

i0
0

+ b2

0
i
0

+ c2

0
0
i

 =

0
0
0


if and only if each aj , bj , cj above is identically 0.

6. Recall that an n× n matrix A is skew-symmetric if A> = −A. It is easy to see that the set
so(n,F) of all n× n skew-symmetric matrices with entries in F is a subspace of Mn(F).

(a) Find a basis for so(2,C).

Example: One possible choice of basis is((
0 1
−1 0

))
.

(b) Find a basis for so(3,C); prove that your list of vectors forms a basis.

Example: Any matrix in so(3,C) can be written in the form 0 a b
−a 0 c
−b −c 0

 .

Thus I claim that the list( 0 1 0
−1 0 0
0 0 0

 ,

 0 0 1
0 0 0
−1 0 0

 ,

0 0 0
0 0 1
0 −1 0

)

is a basis.

Now given any 3× 3 skew symmetric matrix

u =

 0 a b
−a 0 c
−b −c 0

 ,

it is clear that u is a linear combination of the vectors in our list:

a

 0 1 0
−1 0 0
0 0 0

+ b

 0 0 1
0 0 0
−1 0 0

+ c

0 0 0
0 0 1
0 −1 0

 =

 0 a b
−a 0 c
−b −c 0

 .

The vectors in our list are also clearly independent, since they do not have any interacting
nonzero entries.

(c) Find a formula for the number of vectors in a basis for so(n,C).

Solution: To find the number of vectors in a basis for so(n,C), we simply need to count
the number of above diagonal entries in an n× n matrix.
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Row 1 of our matrix has n entries, thus n− 1 above diagonal entries. Row 2 has n− 2
above diagonal entries; etc. So the total number of above diagonal entries in an n × n
matrix is the sum of the first n− 1 numbers, which can be written as

n−1∑
i=1

i =
n(n− 1)

2
.

7. Suppose that the list
(v1, v2, . . . , vm)

is linearly independent, and that w is a vector in V so that that the list

(v1 + w, v2 + w, . . . , vm + w)

is linearly dependent. Prove that

w ∈ span (v1, v2, . . . , vm).

Solution: If (v1 + w, v2 + w, . . . , vm + w) is a dependent list, then there are constants α1,
. . . , αn, at least one αi 6= 0, so that

α1v1 + α1w + α2v2 + α2w + . . .+ αmvm + αmw = 0.

Rearranging terms in the equation, we see that

w(α1 + α2 + . . .+ αm) = −α1v1 − α2v2 − . . .− αmvm.

Now we know that
−α1v1 − α2v2 − . . .− αmvm 6= 0

since at least one αi 6= 0 and the vi are independent. Thus

w(α1 + α2 + . . .+ αm) 6= 0,

which means that
w 6= 0 and α1 + α2 + . . .+ αm 6= 0.

Thus we can divide by α1 +α2 + . . .+αm, so that w may be written as the linear combination

w =
−α1

α1 + α2 + . . .+ αm
v1 +

−α2

α1 + α2 + . . .+ αm
v2 + . . .+

−αm

α1 + α2 + . . .+ αm
vm.

8. Prove that a vector space V is infinite dimensional if and only if there is an infinite sequence

v1, v2, . . .

of vectors in V so that the list
(v1, v2, . . . , vm)
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is independent for every positive integer m.

Solution: “⇐” If there is an infinite sequence

v1, v2, . . .

of vectors in V so that the list
(v1, v2, . . . , vm)

is independent for every positive integer m, then since every spanning list is at least as long
as every independent list, there is no finite spanning list for V ; thus V is infinite dimensional.

“⇒” If V is infinite dimensional, it has no finite spanning list. We proceed by contradiction:
suppose that there is no such sequence of vectors. Then for every infinite sequence

v1, v2, . . .

of vectors, there is some finite list

(v1, v2, . . . , vm)

that is dependent. This implies that for any finite list of independent vectors in V , say

S = (u1, u2, . . . , um),

there are only finitely many vectors in V that may be added to S while maintaining indepen-
dence of S. Without loss of generality we may assume that S is independent, and that no
vector in V may be added to S while maintaining independence. Thus every vector u ∈ V is
a linear combination of the vectors in the (finite) list S, a contradiction.
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